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Abstract
Collaboration between heterogeneous agents typ-
ically requires the ability to communicate mean-
ingfully. This can be challenging in open envi-
ronments where participants may use different lan-
guages. Previous work proposed a technique to in-
fer alignments between different vocabularies that
uses only information about the tasks being exe-
cuted, without any external resource. Until now,
this approach has only been evaluated with arti-
ficially created data. We adapt this technique to
protocols written by humans in natural language,
which we extract from instructional webpages. In
doing so, we show how to take into account chal-
lenges that arise when working with natural lan-
guage labels. The quality of the alignments ob-
tained with our technique is evaluated in terms of
their effectiveness in enabling successful collabo-
rations, using a translation dictionary as a baseline.
We show how our technique outperforms the dic-
tionary when used to interact.

1 Introduction
Enabling collaboration between agents with different back-
grounds is one of the objectives of open multi-agent sys-
tems. For agents that need to perform complex sequential
tasks, collaborating with others may be necessary when they
lack the resources to perform all steps by themselves, or
convenient for efficiency reasons. To coordinate the collab-
oration, the ability to communicate meaningfully is essen-
tial. However, in truly open environments it is difficult to
ensure that all participants speak the same language. Even
when the language is shared, names for specific tools or ac-
tivities are notably diverse between communities of speak-
ers. Most techniques to tackle vocabulary heterogeneity in
multi-agent interactions rely on external resources, such as
dictionaries or data corpora. These resources are not al-
ways available, and even when they are, they are often not
contextualized and may therefore not be useful for the spe-
cific interactions agents need to perform. An alternative ap-
proach are interaction-based alignment techniques [Chocron

and Schorlemmer, 2016; Atencia and Schorlemmer, 2012;
Chocron and Schorlemmer, 2017], in which agents use (only)
the information in the procedural specification of the tasks to
find an alignment between their vocabularies. For example,
consider two agents that collaborate to make tea. They follow
the same steps, but one uses a specification in English and the
other one in Spanish. The idea is that, if agents make tea to-
gether many times, they can learn the procedure in the foreign
language, by observing the outcomes of different utterances.
Instead of using external resources, agents leverage shared in-
formation, obtaining a cheap and context-specific alignment.

Until now, interaction-based alignment techniques had
only been applied to artificial, randomly generated proto-
cols. Our work considers a concrete scenario in which agents
collaborate to complete real-world step-by-step instructions.
This scenario is based on previous research which showed
how step-by-step instructions described in natural language
can be automatically formalised into machine understandable
data [Pareti et al., 2014]. Unlike related work in processing
instructional knowledge [Addis and Borrajo, 2011; Kiddon
et al., 2015; Tenorth et al., 2010; Schumacher et al., 2012;
Malmaud et al., 2014], the work in [Pareti et al., 2014] pro-
vides a formalisation that allows agents to automatically un-
derstand and execute instructions, provided they have the nec-
essary abilities [Pareti et al., 2016; Pareti, 2016]. We consider
a publicly available dataset that follows this formalisation and
that has been extracted from instructional websites.1

The contribution of this work is twofold. First, we test
interaction-based alignment techniques in a real-world in-
structional dataset, to uncover potential challenges that may
arise in the process, and we provide solutions to solve these
challenges. At the same time, we provide a novel automatic
tool to allow artificial agents that speak different languages
to collaborate when following human-crafted protocols. Our
alignment technique does not rely on external resources and
it aims to be language independent. We are considering a sce-
nario where approaches such as Machine Translation are un-
available or unfeasible to use. However, linguistic resources
are used in the preparation of the data used in the experiments.

The following is the general outline of this paper. In Sec-
tion 2 we describe in formal terms the protocols we use and

1https://github.com/paolo7/KnowHowDataset
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the collaboration setting. Section 3 presents the adaptation of
interaction-based alignment techniques to make them suitable
for our protocols.2 In doing so, we show how to deal with
the challenges that arise from using natural language. Sec-
tion 4 provides details about the data extraction of bilingual
protocols (in English and Spanish) that we use for the eval-
uation. Section 5 describes the evaluation of the techniques
when used by agents following protocols in our corpus, mea-
suring the percentage of successful interactions achieved by
the agents. We used the Oxford Dictionary [Stevenson, 2010]
as a benchmark. In Section 6 we discuss the obtained results.

2 Performing Tasks Collaboratively
The question of what should be expressed by an interaction
protocol has been largely discussed in the multiagent systems
community [Singh, 2000; Alberti et al., 2007]. In this pa-
per we will use a simple formalism that captures well our
data. Intuitively, a procedural protocol is a set of instructions
that must be performed to reach some goal, together with a
dependency relation that specifies an order between these in-
structions. Formally, let V be a vocabulary and V ∗ be the set
of sentences in V , that is, the set of sequences of elements
in V . A protocol over V is a tuple 〈T,≺〉 where T ⊆ V ∗

is a set of sentences representing tasks; and ≺ is a strict par-
tial order≺: T ×T that represents the dependencies between
tasks. More specifically, t1 ≺ t2 means that task t1 must al-
ways precede task t2. As an example, consider the following
protocol Tea that specifies how to achieve the goal of making
tea. We rename the tasks for simplicity.
• T = { “Get a tea bag” (t1), “Get hot water” (t2), “Add

the tea bag in the cup” (t3) }
• t2 ≺ t3, t1 ≺ t3

In this work we make the assumption that tasks are exe-
cuted sequentially. An execution is a sequence of tasks. A
successful execution E of a protocol 〈T,≺〉 is a sequence of
tasks that satisfies two criteria:
• The sequence E contains all and only the tasks in T .
• The order of tasks in E does not violate the depen-

dency relation ≺. Let E′ . t2 be the sequence obtained
by appending element t2 to sequence E′, then t1 ≺
t2 and E = E′ . t2 ⇒ t1 ∈ E′.

Both [t1, t2, t3] and [t2, t1, t3] are successful executions
of the Tea protocol. In the first one, the tea bag is obtained
before getting water, and in the second one before adding it
to the cup. An unsuccessful execution is [t1, t3, t2], which
puts the tea bag in a cup of water before getting the water,
violating the dependency between t2 and t3.

In this paper we consider a message-based collaboration
scenario. Let a and b be two agents that need to work to-
gether to achieve some goal. Agents perform tasks individu-
ally and have their own local representation of the execution.
When one of them completes an action, it communicates this
to its partner by sending a message with the label of the com-
pleted task. We assume messages are not lost and are received

2The code for the techniques is available in
https://github.com/paulachocron/WikiHow-alignment

immediately. In the general case, when an agent receives a
message from its partner, it adds the corresponding task to its
local execution. We tackle the situation in which this step is
hindered because agents speak different languages.

2.1 Protocol Compatibility
We consider agents that share the dependency structure of the
protocol, but not the vocabulary of tasks. To characterize this
situation we will use the notion of compatibility between pro-
tocols, which has been defined for different types of interac-
tion protocols (see for example [Chopra and Singh, 2008]).
In this section we will define the compatibility of the proto-
cols we presented previously. To formalize it, we first need to
define alignments. Let P = 〈T,≺〉 and P ′ = 〈T ′,≺′〉 be two
protocols with vocabularies V and V ′ respectively. An align-
ment between P and P ′ is a function α : T → T ′ such that,
for each execution E that is successful for P , the execution
that results from translating each task with α, called α(E), is
successful in P ′. The two protocols are compatible if there
exists a bijective alignment α from P to P ′ such that its in-
verse function α−1 is an alignment from P ′ to P . Intuitively,
this implies that they have the same number of tasks and that
the structure of their dependencies is the same. To illustrate
these ideas, consider another protocol Tea′ with a different
procedure to make tea:

• T ′ = “Get a tea bag” (t′1),“Get hot water” (t′2), “Put the
water in a cup” (t′3), “Add the tea bag in the cup” (t′4) }
• t′1 ≺′ t′4, t′2 ≺′ t′3, t′3 ≺′ t′4
The protocol Tea′ is not compatible with Tea, since all

its successful executions have four tasks instead of three. In-
stead, consider a third protocol Tea′′:

• T ′′ = { “Get tea” (t′′1 ), “Microwave cup of water for 3
minutes” (t′′2 ), “Add the tea bag in the cup” (t′′3 ) }
• t′′1 ≺′′ t′′3 , t′′2 ≺′′ t′′3
Tea′′ is clearly compatible with Tea, under alignment

α(ti) = t′′i for 1 ≤ i ≤ 3. Notice that the mapped labels
are not a literal translation: “Microwave cup of water for 3
minutes” is not the same as “Get hot water”. Moreover, Tea′′
is also compatible with Tea under another alignment α′, in
which α′(t1) = t′′2 , α′(t2) = t′′1 , and α′(t3) = t′′3 .

This last point is important. Two protocols being compati-
ble under α does not imply that every label t is semantically
equivalent to α(t). The notion of compatibility is structural
and not semantic. As we will explain later, we work under the
implicit assumption that there exists one α that makes proto-
cols compatible which is also meaningful semantically, but
the alignment technique is only defined in structural terms.

2.2 Collaboration Dynamics
We assume agents a and b need to collaborate to achieve dif-
ferent goals, because they are unable to perform all the tasks
by themselves. For each of these goals, a and b have protocols
P = 〈T,≺〉 and P ′ = 〈T ′,≺′〉 respectively, and these proto-
cols are compatible, in particular under an alignment α. For
each pair of protocols, let Ka ⊂ T and Kb ⊂ T ′ be the set of
tasks that a and b can perform respectively. The only restric-
tion to be able to work together is that, by acting jointly, they
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can perform the complete protocol. That is, T ⊆ Ka∪α(Kb)
for some α.

Agents maintain their own execution Ea and Eb respec-
tively, and perform actions individually. After execution Ea,
agent a can perform any possible task t. The set of possible
tasks for agent ag, denoted Possag , includes all tasks that
1. t ∈ Ka, 2. t 6∈ Ea, and 3. for all t′ such that t′ ≺ t,
t′ ∈ Ea . The sequence of real performed tasks is a sequence
Ea,b ∈ T ∪ T ′ that we call a joint execution. As we men-
tioned, agents send messages to each other to communicate
the tasks that they perform. These messages are in the lan-
guage of the sender, so the receiver has to interpret them in
its own set of tasks to be able to continue the execution. To
this aim receivers use a local alignment αag , for ag ∈ {a, b}.
When an agent receives a foreign messagem, it finds αag(m)
and chooses it as an interpretation, adding it to the execution.
Agents finish the interaction when either their local execu-
tions are successful, or none of them has possible messages,
that is, Possa = Possb = ∅.

Two points should be noted. First, there is no guaran-
tee that the protocols are compatible under the local align-
ments αag . When they are not, agents will finish the interac-
tion before obtaining successful local executions, since they
misinterpreted some message. Second, even if agents finish
with successful local executions, the joint execution may not
be semantically correct. For example, if a uses Tea and b
uses Tea′′, they could perform the execution [t1, t

′′
1 , t3]. This

translates to successful interactions under the previously de-
scribed α′, but it results in agents obtaining two tea bags and
no water, which intuitively violates the semantic interpreta-
tion of the instruction. In next section we present a tech-
nique to learn an αag that optimises successful local execu-
tion, making agents obtain successful interactions more often.
The notion of semantically correct execution is not used here;
moreover, we do not assume there is a way of deciding if an
execution is semantically correct or not in the collaboration
scenario. We will show experimentally how alignments that
optimise successful local executions also lead to semantically
correct executions.

3 Alignment Learning Technique
To optimise local successes, agents need to find alignments
under which their protocols are compatible, that we propose
to obtain from the experience of interacting, based on the ap-
proach in [Chocron and Schorlemmer, 2017; 2016]. In these
papers, agents maintain a confidence distribution for possi-
ble mappings between foreign and local messages. When an
agent receives a new message, it uses the confidence distri-
bution to decide how to interpret it locally. In addition, it
updates the confidence distribution taking into account which
local messages are expected and which ones are not; that is,
which messages are in the set Poss. With repeated inter-
actions agents improve their confidence distribution, making
better interpretation choices. By using a probabilistic tech-
nique, agents can use information even when it is uncertain,
since possible messages depend on previous interpretations.

Having a confidence distribution for mappings between
messages is useful when messages are indivisible units that

are frequently repeated, but not in our case, where tasks are
sets of words. For example, consider an agent that learns,
from repeated interactions, that the sentence “Put the tea bag
in the water” maps to the Spanish “Poner la bolsita de té en
el agua”. Even being correct, this translation might not be
useful for future interactions. While words such as water or
tea are likely to be encountered again, the agent could never
receive the exact same message in a different protocol.

The method we propose computes two confidence distribu-
tions: one between words and one between sentences. Con-
sider again agents a and b with vocabularies V a and V b that
interact repeatedly using, for each interaction, different but
compatible protocols in their own languages. We will explain
the technique from the point of view of agent a who needs to
learn αa, but the method is analogous for b. On one side, a
has a confidence distribution ω : V b × V a → N. This is a
partial function that assigns confidences to mappings between
foreign and local words, and it is is updated when new evi-
dence is obtained. A second function, δ : V b∗ × V a∗ → N,
assigns confidences to mappings between foreign and local
sentences, and it is computed using ω. When it receives a
foreign message tb, agent a performs two actions. First, it
computes its expected messages in Possa and updates ω for
the words in tb with this information. Second, it computes δ
to choose a local interpretation for the foreign sentence. In
this way, the similarity of two sentences is computed using
the mapping degree between their words. At the same time,
the update of the word-level mapping confidences takes into
account the whole sentences in which words appear.

This approach makes two assumptions. First, to com-
pute sentence similarities from word similarities it is nec-
essary that the meaning of a sentence is related with the
meanings of the words that appear in it. Second, using full
sentences to determine word similarities is only useful if
similar words tend to appear surrounded by words that are
also similar. These assumptions are similar to the hypoth-
esis of distributional semantics [Turney and Pantel, 2010;
Partee et al., 1992] known as principle of compositionality
and distributional hypothesis respectively. Instead of assum-
ing the existence of a large corpora to extract information
about word similarity, our approach harnesses shared struc-
ture, which in this case is a protocol. In the rest of this section
we explain how confidence distributions are updated.

3.1 Choosing a Mapping
Consider agent a receives a message tb. Finding an inter-
pretation for message tb involves two steps: 1. Computing δ
from ω. 2. Computing αa from δ.

The second step is straightforward. The local interpretation
of message tb is chosen randomly between the possible local
tasks that map with tb with maximal confidence:

αa(tb) ∈ argmax
ta∈Possa

(δ(tb, ta))

Obtaining the sentence mapping degree from ω requires more
work. Intuitively, the confidence for the mapping between
two sentences is computed from the confidences of the map-
pings between their words. The challenge is how to com-
bine the words, considering that word ordering is differ-
ent for each language. For example, adjectives precede
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nouns in English, but not in Spanish. Existent measures
of sentence similarity [Li et al., 2006; Agirre et al., 2016;
Mihalcea et al., 2006] require either external resources such
as semantic databases, large corpora of data, or information
about the grammar of particular languages, which we do not
assume to be available. We present an approach to combine
the information about individual word mappings that, in spite
of its simplicity, is effective in dealing with simple impera-
tive sentences such as the ones commonly found in how-to
instructions. Concretely, we consider all possible combina-
tions of mappings.

Let ta ∈ V a∗ and tb ∈ V b∗, that is, ta = w1, . . . , wn and
tb = v1, . . . , vm, with wi ∈ V a, vj ∈ V b for 1 ≤ i ≤ n
and 1 ≤ j ≤ m. Suppose, in this case, that m ≤ n (oth-
erwise everything is analogous). The value δ(tb, ta) is com-
puted as follows. Consider all the permutations of length m
of the sentence tb, that we will call Permm(tb). For each
c ∈ Permm(tb), we compute its partial confidence degree
δp with ta by considering the mappings between words in the
same indexes:

δp(c, t
a) =

∑
1≤i≤m

ω(c[i], ta[i])

Then, the confidence degree between the original words is the
maximal partial value:

δ(tb, ta) = max
c∈Permm(tb)

δp(c, t
a)

This does not consider the difference in length between the
sentences. Although it should not be considered too strongly,
this information can be helpful, particularly in the first inter-
actions when there are many options. To take it into account,
we subtract to δ(tb, ta) a value that is computed in relation to
the difference in their length. Given a constant parameter ρ,
and if abs is the absolute value of a number:

δ(tb, ta) = δ(tb, ta)− ρ ∗ abs(n−m)

Taking Word Frequencies into Account
The technique we proposed still does not take into account an
inherent property of natural languages: some words are more
frequent than others. Frequent words will be updated more
often, and therefore their mapping with any other word will
have higher value. This can be avoided by including the infor-
mation about word frequency when computing δ. Coherently
with our assumption that agents have no information a priori,
we propose to track the frequency of foreign words dynami-
cally. Concretely, agent a maintains a partial frequency func-
tion Freq : V a ∪ V b → N. The function is partial because it
only has values for those words that have already been used
at least once. For local words v ∈ Va, Freq(v) is updated
each time the agent starts using a new protocol, counting how
many times they appear. For foreign words, it is updated each
time the agent receives a new sentence. When computing the
partial mapping degree between two sentences, the value of
each mapping is divided by these frequencies.

δp(c, t
a) =

∑
0≤i≤m ω(c[i], ta[i])

Freq(c[i]) + Freq(ta[i])

3.2 Updating ω
The values in ω, which represent the confidence on mappings
between individual words, are updated from the experience
of interacting. When agent a receives tb, it first updates the
mappings between the words in tb and the words in possible
messages. Let r be a constant parameter and vb ∈ tb. We
assume the agent initializes ω(va, vb) = 0 for all va ∈ V a

the first time it receives vb. Then, for all ta ∈ Possa and
va ∈ ta:

ω(va, vb) = ω(va, vb) + r

If va does not belong to a possible message, the value of
its mappings remains the same. Using only this simple ap-
proach, agents would be overlooking useful information that
would be easy to take into account. For example, about the
other words that appear in the sentence. Suppose an agent
following a protocol in Spanish receives the sentence ten =
cup of barley. The agent may not know the word barley, but
if it has performed other protocols before, it probably knows
that cup maps to taza. If there is a local task tes = taza de ce-
bada, it may infer that tes maps with ten only using cup, and
learn that barley maps with cebada. The information about
the other words in a sentence is in the already computed con-
fidence values for mappings between sentences. Agents only
need to also use these values to update the confidence degree.

Again, suppose a receives tb. For all ta ∈ Possa, consider
all vb ∈ tb and all va ∈ ta. Assuming again that ta is shorter
than tb, Let Permvb,va be all the permutations c of tb of the
same length as ta such that the index of vb in c is the same as
the index of va in ta. Since the vb only maps with one word,
the agent updates ω as follows:

ω(va, vb) = ω(va, vb) + max
c∈Perm

vb,va

δp(c, t
a)

In our technique, agents perform first the simple update and
then, once the mappings are computed they add these values.

4 Data Acquisition
To evaluate our techniques in a concrete scenario we test them
against real-world protocols of human activities. We obtain
these protocols from the Human Instructions Dataset [Pareti
et al., 2014] which contains over 200,000 sets of instructions
extracted from instructional websites such as wikiHow.3 In
this work, we focus on the English and Spanish subsets of
this dataset.4

Sets of instructions in this dataset are formalized as graphs
using the PROHOW instructional model [Pareti et al., 2014]
and are serialized as RDF [Raimond and Schreiber, 2014]
triples. The PROHOW model represents instructions using
the concepts of steps, methods and requirements. Intuitively,
steps decompose a set of instructions into a set of simpler
tasks; methods provide information about different ways to
decompose a a set of instruction into steps; and requirements
provide a notion of dependency between tasks.

3http://www.wikihow.com/
4https://www.kaggle.com/paolop/

human-instructions-multilingual-wikihow
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We focus our experiment on a particular domain of hu-
man instructions, namely cooking recipes. To do so we se-
lect instructions that belong to 8 wikiHow categories related
to cooking, and that are available both in English and Span-
ish. Sets of instructions are converted into a protocol 〈T,≺〉
as follows. Steps and requirements of a set of instructions are
interpreted as the elements of the set of tasks T . The order-
ing of the steps in the set of instructions is included in the
dependencies ≺ of the derived protocol. Moreover, for each
requirement r of a set of instructions, a dependency r ≺ s is
added, where s is the first step in the set of instructions that
requires requirement r.

Each pair of sets of instructions (one in English and one in
Spanish) is converted into a pair of protocols. Pairs of proto-
cols which are not compatible with each other are excluded
from our experiment. For the sake of brevity, here we give
just a summary of the approach we use to verify compatibil-
ity. Compatibility between protocols can be verified by defin-
ing the dependency tree of a protocol 〈T,≺〉 as the transpose
of the graph which has T as the set of nodes and ≺ as the set
of edges. The way in which protocols are constructed ensures
that this graph is a rooted tree with the task corresponding to
the last step of the set of instructions as the root. Two proto-
cols are compatible if their dependency trees are isomorphic.
This is a result of the fact that if two rooted trees are not iso-
morphic, then there is no bijective alignment α between the
nodes of the trees that is edge-preserving [Elgot et al., 1978].

After this selection, we obtain a final set of 327 pairs of
compatible protocols. The labels of the tasks of these proto-
cols are cleaned using standard natural language approaches
using the FreeLing natural language processing tool suite
[Padró and Stanilovsky, 2012]. We perform Part of Speech
tagging and only keep the lemmatised version of nouns, ad-
jectives, verbs, and adverbs. Other parts of the label, such as
numbers, are removed. The software used in this data acqui-
sition phase, along with details of its exact configuration, is
available on GitHub.5

5 Evaluation
To evaluate the performance of the techniques that we pro-
pose we analysed how well agents can interact using the
alignments that they learn with our technique. Here, we used
the notion of semantic success. A joint execution is seman-
tically successful if it is successful in both protocols when
translated with a semantically correct alignment. Using the
previous example, the execution in which two tea bags and
no water are obtained would be semantically unsuccessful
for the protocol Tea. The semantically correct alignment is
one that maps semantically equivalent tasks. In our case, this
alignment was computed using a combination between extra
information in the protocols, external tools, and human su-
pervision.

In each experiment, we let agents perform a fixed number
of training interactions, in which they executed protocols cho-
sen randomly. During these interactions they updated their
confidence distribution ω as explained in the previous sec-
tion. Then, we performed 100 test interactions on the same

5https://github.com/paolo7/protocol-generators

Figure 1: Success rate for different training interactions. learning
agents use the technique that we propose, learning no freq agents do
not take into account the frequency of words, and oxford agents use
the Oxford Dictionary alignment, without learning.

set of protocols, without updating. We measured how many
of the test interactions were successful. We repeated the ex-
periment for 2n training interactions, with n between 0 and
11. This experiment was repeated 5 times for 5 different sets
of training and test protocols.

We compared two different strategies to compute δ: (1) the
basic agent described in the main part of 3.1 and (2) the basic
agent, without taking frequencies into account. We compared
these agents with the rate of success obtained when agents use
an external alignment, which was extracted from the Oxford
Dictionary Spanish-English 6 module. Agents using the Ox-
ford Dictionary choose their interpretations using δ as we de-
scribed, but instead of learning a distribution over word map-
pings δ, they use one extracted from the dictionary as follows.
For a foreign and local words vb and va respectively,

ω(vb, va) =

{
1 if va is a translation for vbin the dictionary

0 otherwise

Figure 1 shows the success rate for the three agents. Agents
that take into account word frequencies perform better than
those who do not. In particular, the latter become worse after
many interactions, when observing some words more often
than others starts to affect the values.

Our alignment technique allows agents to collaborate suc-
cessfully in nearly 80% of the cases, and they outperform the
success rate obtained with the dictionary after only around
100 interactions. These results are obtained with very simple
updating techniques and no semantic resources at all. Inter-
estingly, an alignment that is semantically correct can be ob-
tained from an update that only takes into account structural
properties. Even if a pair of protocols has many compatible
alignments, our technique will find the one that is semanti-
cally correct. This is because agents learn from many pairs
of protocols and not only one, and the correct one is the only
alignment that makes all pairs compatible. Get a tea bag may
be mapped with microwave water in one protocol, but the
alignment will not work for others. To confirm this, we mea-
sured the success rate obtained with the original interaction-
based alignment method from [Chocron and Schorlemmer,

6https://es.oxforddictionaries.com/english-spanish
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2017; 2016], that is, using a confidence distribution between
sentences directly. The results were always close to 0, be-
cause agents do not choose the alignment that is semantically
correct.

The success rate does not reach 100%. This is because
some protocols have translations that are difficult to learn. For
example, one of the protocols pairs has cuchara de helado
(ice cream spoon) corresponding to melon baller, even when
their individual words are not similar. As we discuss later,
an approach considering noun phrases would solve this issue.
Other protocols had misspelled or strangely written words.
For example, a protocol called for a tea spoon (instead of a
teaspoon), which the agent mapped to té (tea).

6 Discussion
The main objective of this work is to learn an alignment be-
tween words which increases the success rate of the interac-
tions between the agents, without explicitly considering any
semantic interpretation of this alignment. However, it is rea-
sonable to expect that a useful alignment would map together
words which are the translations of each other. We tested this
hypothesis by evaluating the “correctness” of the mappings
between words under the interpretation that they represent a
multilingual translation. We do so by defining a translation
between words in V a and V b as a relation Trans : V a×V b.
If agent a has confidence distribution ωa between words in its
vocabulary and V b, the translation Trans is the set of all the
pairs with highest confidence value. For va ∈ V a, vb ∈ V b,

(va, vb) ∈ Trans⇔ va ∈ argmax
v∈V b

ω(v, vb)

First we automatically evaluated the translations that we ob-
tained using the Oxford Dictionary as a reference. Con-
cretely, we considered a pair of words in Trans as correct if
and only if the Oxford Dictionary lists one of the two words
as a translation of the other. This precision starts at a value
of approximately 17% when the experiment is initialised. As
expected, precision increases as agents interact and reaches
a plateau of 60% after 1000 interactions. One problem with
this evaluation is that not all correct translations are present in
the dictionary. Therefore, we performed a manual evaluation
of 400 translations randomly selected from the set generated
after 1500 interactions. This manual evaluation measured a
precision of 64.2%.

While the obtained alignments are useful to make agents
interact successfully, the values of precision that are obtained
are not sufficiently high to consider them reliable translations.
At this stage, the alignments can be used to interact, but not
for other purposes such as to translate a recipe from scratch.
This is due in large part to unresolved issues in the initial
cleaning and natural language processing of the protocol la-
bels and would be improved with a more efficient tool, able
to identify misspellings and to lemmatize words correctly.

A main issue is not being able to identify noun phrases. An
example is xanthan gum and its Spanish equivalent goma xan-
tana. These words appear always together in the protocol, so
the agent has no way of identifying if the correct alingment
is {(goma, gum), (xantana,xanthan)} or {(goma, xanthan),

(xantana, gum)}. However, both mappings are useful to in-
teract if the words appear together. This explains why the per-
formance of the agents achieves better results than the align-
ment’s precision. Moreover, many concepts (such as turn off
and apagar) can be described with one word in a language
but need more in another one, and therefore cannot be trans-
lated with naive word-to-word alignments. This issue can be
solved in two ways. One option is to use a more powerful
processing that identifies noun phrases. The other one is to
let agents identify them automatically. This, however, would
require more training examples and much more computation
time.

With these issues solved, our alignments would be a very
useful context-specific resource. On one side, we have al-
ready observed that a typical dictionary does not have many
of the particular words that are commonly used in a jargon.
In addition, general dictionaries provide many possible trans-
lations for a word, letting user needs to identify which one is
useful for its needs. Our alignments, instead, would directly
provide a translation that is suitable for the context.

It is also important to highlight the similarity between this
work and the field of Ontology Alignment (OA). In particu-
lar, there exist approaches to match different process models
with each other [Antunes et al., 2015]. Like typical OA sys-
tems, we try to exploit both structural and lexical properties
to reach an alignment. However, unlike typical OA problems,
we do not assume that agents can share explicit ontological
information. Instead, they only share textual messages while
following a protocol. While protocols can be thought of as an
ontology, our system does not generate alignments between
them, but instead finds mappings between words. In addi-
tion, the goal of our system is not to reach a semantically
correct alignment, but instead an alignment that maximises
the success of the collaborations.

7 Conclusions
The methods that we propose in this paper allow agents
that follow instructions in two different languages to learn
domain-specific alignments between their respective vocab-
ularies in order to perform instructions collaboratively. We
start with a structural notion of compatibility to find align-
ments between instructions which does not consider the
meaning of the tasks. We then show that, even when there
may be different such alignments, agents learn the one that
is semantically correct, meaning the one that maps together
equivalent actions. This is because we consider agents that
engage in multiple different collaborations, and the seman-
tically correct alignments are the most useful to them to
achieve the highest rate of compatibility across those proto-
cols. Our techniques allow agents to learn how to collab-
orate to the completion of protocols without using external
resources. In fact, agents that use our technique outperform
those that use the translations from a well-known dictionary.
This suggests that our learning method can be applied in sce-
narios where external resources, such as dictionaries or trans-
lation services, are not available or expensive to use, or as
a complement to these resources to discover additional map-
pings between words, such as domain specific ones.
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