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Abstract

The problem of integrating heterogeneous data
sources into an ontology is highly relevant in the
database field. Several techniques exist to approach
the problem, but side constraints on the data can-
not be easily implemented and thus the results may
be inconsistent. In this paper we improve previ-
ous work by Taheriyan et al. [2016a] using Ma-
chine Learning (ML) to take into account inconsis-
tencies in the data (unmatchable attributes) and en-
code the problem as a variation of the Steiner Tree,
for which we use work by De Uña et al. [2016] in
Constraint Programming (CP). Combining ML and
CP achieves state-of-the-art precision, recall and
speed, and provides a more flexible framework for
variations of the problem.

1 Introduction
Relational data sources are still one of the most popular ways
to store enterprise or Web data. However, the issue with rela-
tional schema is the lack of a well-defined semantic descrip-
tion. A common ontology provides a way of representing the
meaning of a relational schema and can facilitate the integra-
tion of heterogeneous data sources. Indicating semantic cor-
respondences manually might be appropriate if only few data
sources need to be integrated, however, it becomes tedious
with the growing number of heterogeneous schemata.

Automatically integrating heterogeneous data sources is a
long standing issue in the database research field and is of
high relevance in many real-world domains [Rahm and Bern-
stein, 2001; Dhamankar et al., 2004; Taheriyan et al., 2013].

A standard approach to tackle this problem is to design
a common ontology and to construct source descriptions
which specify mappings between the sources and the ontol-
ogy [Doan et al., 2012]. In this paper, we approach the data
integration problem consisting in automatically mapping a
new relational data source onto a user provided ontology. To
do so, we develop a new system that automatically builds a

semantic model which describes a relational data source in
terms of concepts and relationships defined by an ontology.

Consider the situation where we have some simple rela-
tional database tables with columns 〈Surname, Event, Date〉,
and 〈Company, Festival, Address〉. We do not a priori know
if “Date” is a date of birth of the person or the start date of the
event (c.f. Fig. 1); or whether “Address” refers to the name of
the place where the festival is located, or the email address of
the company. Given an ontology like in Fig. 1, we would like
to automatically map new data sources to the ontology.

In this paper we use Machine Learning (ML) techniques
and Constraint Programming (CP) to learn mapping rules
from previously mapped instances. To this end we formulate
the Relational-To-Ontology Mapping Problem (REL2ONTO)
as a Steiner Tree Problem (STP) with side constraints.

Firstly, we build a graph which includes attributes from
the new source as well as ontology classes and properties.
We name it integration graph. It uses information gathered
from previously mapped data sources, and is further extended
with information derived from the ontology. Secondly, we ap-
ply ML techniques to assign costs to its edges, by borrowing
ideas from previous work by Taheriyan et al. [2016a]. Lastly,
we use CP to find a minimum cost Steiner Tree in the graph
by building a novel CP model and using solving techniques
developed by De Uña et al. [2016]. The goal is to assign the
costs of the edges in a way that the resulting Steiner Tree
is a valid and coherent semantic model for the new source.
Our contributions are: a novel modeling framework for the
REL2ONTO problem that uses knowledge representation, ML
and CP techniques; an efficient approach to handle attributes
which cannot be matched to the ontology; a flexible and ex-
tensible approach to the problem, easy to reuse and adapt to
specific situations through the use of CP.

2 Problem Statement
An ontology O includes basic elements such as classes
(which represent concepts), literal values, individuals (mem-
bers of classes) and properties [Spanos et al., 2012]. Prop-
erties are classified into object properties, which relate two
individuals, and datatype properties, which relate individuals

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1277



Person

Organisation

Event

Place

City State

w
or

ks
Fo

r

ceo

location

bornIn

livesIn

organizer

location nearby

partOf

isIn

name

birthDate

na
me

phone

email

sta
rtD

ate

endDate

title

namepostalCode

“has an object
property”

“has a data
property”

“subClassOf”

Figure 1: Example of ontology by Taheriyan et al. [2013].
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Figure 2: Examples of two semantic models

to literal values. Fig. 1 gives an example of an ontology. Here,
an individual of the class “Organisation” can be related to an
individual of the class “Person” via object properties “ceo” or
“worksFor”, and it can have a data property “name”. We also
consider a special “subclass” (or “is-a”) type of object prop-
erties. For example, “Cities” and “States” are both “Places”.
A subclass inherits all the properties of the parent class.

A semantic model m is a directed graph with two types of
nodes: class nodes and data nodes. We denote them as Cm
and Dm, respectively. Cm corresponds to classes in the on-
tology whereas Dm corresponds to data properties. Edges in
the semantic model correspond to properties in the ontology,
as shown in Fig. 2 (notice the same edges appear in Fig. 1).
The semantic model may have several instances of the same
ontology class, that is why class nodes are enumerated.

In our setting we work with relational sources. Hence, a
data source s is a n-ary relation with a set of attributes As =
(a1, ..., an). We want to map them to the target ontology O.

Following the traditional data integration framework [Doan
et al., 2012], we decompose the problem into two parts. First,
semantic labeling [Rümmele et al., 2018] finds correspon-
dences between attributes from data sources and data nodes
of the target ontology. Second, in the schema mapping part
we want to generate the semantic models of data sources by
identifying the connecting paths for the matched data nodes.

An attribute mapping function φ : As 7→ Dm maps the
attributes of the source s into the nodes of the semantic model
m. It can be a partial mapping, (i.e. only some of the attributes
are connected to the nodes of m). This function addresses the
first part of the problem (i.e. the semantic labeling).

We define a source description as a triple δ = (s,m, φ),
where s is a source, m is a semantic model, and φ is an
attribute mapping. Our problem can hence be stated as fol-
lows. We have an ontologyO and a set of source descriptions
∆T = {(s1,m1, φ1), ..., (sl,ml, φl)}. Given a new source
s?, we want to build a semantic model m? and an attribute
mapping function φ? such that δ? = (s?,m?, φ?) is an ap-
propriate source description. We use the term “appropriate”
since there might be many such triples which are well-formed

source descriptions, but only one or a few will capture the in-
tended meaning of the source. Our goal is to automatically
build δ? such that it maximizes the precision and recall be-
tween the semantic model m? and the semantic model m†
that the user considers correct.

3 ML for Training on Source Descriptions
3.1 Semantic Labeling
The semantic types LO = {l1, l2, ..., lp} of an ontology cor-
respond to all pairs (c, d), where c is a Class in O, and d is
a data property of that class (including inherited properties).
E.g., in Fig. 1, we would get (City,name) and (State,name).

The first step to model the semantics of a new source s? is
to recognize the semantic types present in the source. We call
this step semantic labeling, which assigns a confidence value
to a match of an attribute from s? to a type l ∈ LO. Typ-
ically semantic labeling techniques encounter several prob-
lems such as: naming conflicts [Pinkel et al., 2016], multi-
ple data representations, and semantically different attributes
might have syntactically similar content. Also, there may be a
considerable number of attributes which have no correspond-
ing property in the ontology (accidentally or deliberately).

We formulate the problem of semantic labeling as a multi-
class classification problem. The known source descriptions
∆T provide us the training sample. We compute a feature vec-
tor for each attribute in a data source and associate the known
semantic type with the corresponding feature vector. The fea-
ture vector includes, among others, characteristics such as a
number of whitespaces and other special characters, statis-
tics of values in the column. One of the important features
characterising information content of an attribute is Shan-
non’s entropy. Shannon’s entropy of a string X is defined as
H(X) = −

∑
i pi log2 pi, where pi is the probability of a

character, whose index in character vocabulary is i, to appear
in X , and the summation ranges over all characters in the
vocabulary. To evaluate pi, we evaluate normalized charac-
ter frequency distribution of an attribute, as character counts
in concatenated rows of the attribute, normalized by the total
length of the concatenated rows. The alphabet consists of 100
printable characters. We then add the 100-dimensional vector
of pi to the attribute feature vector. We also compute a set
of features based on similarity metrics inspired by works by
Pham et al. [2016] or Ritze and Bizer [2017] (e.g. mean co-
sine similarity for character distributions of attribute values
and string similarity metrics for attribute names). We train a
random forest on the obtained sample. In this way, we learn
the mapping ψ : As×LO 7→ [0, 1], where ψ(ai, lj) indicates
the confidence that the attribute ai is mapped to the seman-
tic type lj . Note that we keep all the matches, regardless of
the confidence of the match. This is an important difference
between our system and other approaches [Taheriyan et al.,
2016a] that remove some of the matches based on heuristics
in order to simplify the task of finding the semantic model.

3.2 Alignment Graph
To provide an integrated view over the known source descrip-
tions ∆T , we align their semantic models as well as all se-
mantic types. This is done by building an alignment graph.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1278



Person1 Org.1City1State1

Person1.name Person1.birthDateCity1.nameState1.name Org1.name

worksForbornInstate

City2 Person2Org.2 Event1

Person2.name Event1.startDate Event1.endDateOrg2.nameCity2.name

ceo organizerlocation

Place1

Link supported
by known se-
mantic models

Links inferred
from ontology

Figure 3: Example of alignment graph. We omit weights for clarity.

The alignment graph is a directed weighted graph GO =
(VO, EO) built on top of the known semantic models and ex-
panded using the semantic types LO and the ontology O.
Similar to a semantic model, GO contains both class and
data nodes. The links correspond to properties in O and are
weighted. The full algorithm we use to construct the align-
ment graph GO was given by Taheriyan et al. [2016a].

Note how the alignment graph contains data nodes that cor-
respond to semantic types. For instance, it could contain two
nodes City.name and State.name rather than just one node
name connected to two nodes City and State. We say these
nodes are induced into the alignment graph by the semantic
types. We note them DGO and call them the data nodes of the
alignment graph. Class nodes are noted CGO .

The graph is weighted by a function wO : EO 7→ R such
that edges which are present in the known semantic mod-
els have lower weights than those which are inferred from
the ontology. Taheriyan et al. [2016a] provide details on the
weighting function.

3.3 Frequent Graph Pattern Mining
Certain patterns of connections can be prevalent in the do-
main. If we know that the “Person” works for the “Organi-
zation”, then based on the known semantic models (Fig. 2),
“City” is more likely to be the birth place of the “Person”
rather than the location of the “Organization”. To increase the
coherence of the generated semantic models, we would like
to discover such patterns of connections.

We mine these patterns from the set of semantic models in
the training set ∆T . This is known as Transactional Frequent
Graph Pattern Mining. The frequency of a pattern is the num-
ber of semantic models which contain at least one subgraph
isomorphic to the pattern. The support of the pattern is calcu-
lated as its frequency relative to the number of semantic mod-
els. This is an anti-monotonous measure, meaning that bigger
patterns will have lower supports than their subgraphs. We
solve the pattern mining task with the tool DIMSpan [Peter-
mann et al., 2017] which adapts gSpan [Yan and Han, 2002]
pruning techniques to the typed graphs. We obtain patterns of
size up to 6 in under 4 minutes for the biggest instances in
our evaluation framework. Hence, this pattern mining proce-
dure is a highly scalable approach compared to the technique
based on SPARQL queries from [Taheriyan et al., 2016b].

4 Steiner Tree Formulation
Given a graph G = (V,E) and a subset of its nodes T ⊆ V ,
a Steiner Tree Gs = (Vs, Es) is a tree such that T ⊆ Vs ⊆ V

Class nodes of Alignment Graph (i.e. CGO )

S1.n C1.n P1.n P1.b O1.n C2.n O2.n P2.n E1.s E1.e

s?: Surname Workplace Date Location

Attribute
nodes

Figure 4: Example of integration graph. We omit weights and only
show the most likely matches for clarity.

and Es ⊆ E. That is,Gs spans all the nodes in T and may in-
clude additional nodes from V to ensure the connectedness of
the constructed tree. The Steiner Tree Problem (STP) is stated
as follows: given G and a weight function wf : E 7→ R, find
the Steiner Tree that minimizes the sum of the weights of the
edges in Es. This was proven to be NP-hard by Karp [1972].

To formulate the REL2ONTO schema mapping problem as
a STP for a new source s?, we construct the integration graph
Is?O = (Vs?

O , Es
?

O ), where Vs?

O = VO ∪ As? .
The set of edges Es?O is constructed by using all the edges

in the alignment graph, and edges connecting each attribute
of s? to the nodes in the alignment graph induced by the se-
mantic types (i.e. the set of nodes in DGO ). We call this last
set of edgesMs?

O (for “matches”). Thus, Es?O = EO ∪Ms?

O .
We associate a weighting function wI : E 7→ R+ to the

integration graph. For an edge e ∈ EO, wI(e) = wO(e).
For an edge e ∈ Ms?

O connecting attribute ai to the node
lj induced by the semantic types, wI(e) = −ln(ψ(ai, lj)),
making unlikely matches have a higher weight. An example
of an integration graph can be found in Fig. 4.

Note that, although the alignment graph is directed, we dis-
regard the direction of edges for the STP model. We disam-
biguate the direction of edges via their weights.

The goal is to build a subgraph T ? = (V ?, E?) of Is?O
for the new source s?. The solution T ? will be used to build
the source description δ?. In particular, (VO ∩ V ?, EO ∩ E?)
corresponds to the semantic model, and (As? ,Ms?

O ∩ E?)
corresponds to the attribute mapping function.

The solution T ? must satisfy the following constraints: (i)
T ? must be a subgraph of Is?O , (ii) T ? must be a tree, (iii)
∀a ∈ As? , a ∈ V ?, (iv) ∀a ∈ As? , degree(a) = 1, (v)
∀n ∈ DGO ∩ V ?, degree(n) = 2, (vi) V ? ∩ CGO 6= ∅.

It is therefore natural to model this problem as a STP
with side constraints. By designing the weighting function
wI through ML techniques, as shown in Section 3, our ex-
pectation is that the minimum cost Steiner Tree is a valid and
coherent semantic model for the new source.

Patterns: As explained in Sec. 3.3, we use graph patterns
to incentivise the solution tree T ? to contain subgraphs of the
alignment graph that have been frequently seen in the training
set. To do this, we use the support of each obtained patterns as
a prize. If the tree contains a pattern, then its weight is auto-
matically reduced by the value of the support of that pattern.

Unmatched Attributes: It is common that the data sources
to be integrated will have columns that simply cannot be
matched to the ontology. This can happen when a column of
a source table contains some information that is uninteresting
to the user, or because the ontology has not been properly de-
signed. Examples of these situations can be found in domain
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specific data [Pham et al., 2016] or HTML tables [Ritze and
Bizer, 2017]. In current systems, these columns are removed
in a pre-processing step as a manual effort.

For this reason, we add two artificial Class nodes to the
integration graph: unknown and root. The latter will be con-
nected to every other Class node in Vs?

O , including unknown.
We also add a set U = {unk1, ..., unk|As? |} of |As? | data
nodes to the integration graph, each connected to exactly one
node in As? and to the unknown Class node.

If an attribute a is matched to unka, then unka will be
linked to Class node unknown. The other attributes can be
matched normally and build a semantic model as usual. To
maintain connectivity of T ?, the unknown node and any of
the other Class nodes in T ? will both be connected to the root
node (in the optimal solution only one will be connected to
the root). Note that if all attributes find a match, then neither
unknown or root will be selected and the normal behavior will
take place. The weights of the edges between these special
nodes are assigned the same way as for the rest of the edges.

5 Modeling in Constraint Programming
A Constraint Optimization Problem (COP) is a tuple P =
(v, C, o) where v is a set of variables, C is a set of n-ary
constraints over variables v and o is an objective function
o : v 7→ R to be (w.l.o.g.) minimized. A valuation such that
all variables in v map to exactly one value, and all the con-
straints in C are satisfied by the valuation is a solution to P .
A solution θ∗ is optimal if6 ∃θ, θ(v) < θ∗(v). CP allows the
user to model a COP and give it to a “black-box” solver to
find solutions while optimizing the objective function.

Briefly, a CP solver assigns values to each variable of v in
turn. CP uses a combination of complete search and propaga-
tion. The latter removes inconsistent values from the domains
of variables. That way, values that cannot appear in a solu-
tion, given the current set of decisions, are never tried by the
search. Global constraints are higher order constraints that
enforce a complex constraint over a set of variables. They are
implemented with specialized algorithms for performance.

5.1 REL2ONTO in Constraint Programming
We used the MINIZINC language [Nethercote et al., 2007],
and the CHUFFED solver [Chu, 2011]. Since attributes must
be connected to exactly one node of the alignment graph, and
that node will be in DGO ∩ V ?, then the part of the problem
between attribute nodes and the alignment graph is a match-
ing problem. Each attribute must match exactly one node of
DGO . Note that not all nodes in DGO need to match to an at-
tribute, as they are not all part of T ?. Because there are global
constraints in CP specialized in matching [Régin, 1994], we
split the problem into two parts: the steiner global constraint
[De Uña et al., 2016] will only deal with the part of the in-
tegration graph that corresponds to the alignment graph, and
the alldifferent global constraint will deal with the match-
ing part of the problem. We use Boolean variables cx for
any node x ∈ VO, cy for any edge y ∈ EO and an ar-
ray of variables match indexed by the set of attributes of
s? to represent the tree T ?. The semantics of the variables
are: cx = true ⇔ x ∈ V ?, cy = true ⇔ y ∈ E? and

match[a] = d (for a ∈ As? and d ∈ DGO ) means that the
edge (a, d) ∈Ms?

O is part of T ?.
Additionally, for a given set of patterns P with a support

function wP : P 7→ R, we have a set of Boolean variables
cp, ∀p ∈ P , that tell us whether a pattern p appears in T ? or
not. The model is presented below.

Minimize wSTP + wADIFF − wPAT such that (1)
steiner({cn|n ∈ VO}, {ce|e ∈ EO},GO, wO, wSTP ) (2)
∀d ∈ DGO , degree(d) ≤ 1 (3)
∀d ∈ DGO , cd ⇔ degree(d) = 1 (4)

∀a ∈ As? ,match[a] ∈ {d|(a, d) ∈Ms?

O } (5)
alldifferent(match) (6)
∀a ∈ As? , cmatch[a] = true (7)

wADIFF =
∑

(a,d)∈Ms?

O

wI((a, d)) ∗ Jmatch[a] = dK (8)

∀p ∈ P ,
(
∀e ∈ edges(p), ce = true

)
⇔ cp (9)

wPAT =
∑

p∈P wP(p) ∗ cp (10)

cunknown ⇒
(
croot ∧ c(unknown,root)

)
(11)

Eq. 1 is the objective function: we minimize the cost of
T ? while collecting prizes for each pattern we use. Eq. 2 en-
forces the solution T ? to be a tree defined by the cn and ce
variables, subgraph of GO and of total weight wSTP . Eqs. 3
and 4 ensure that if a data node of GO is selected, then at most
one edge reaches it (from the side of GO) and otherwise it is
disconnected. Eqs. 5 and 6 ensure that there is exactly one
data node matched to an attribute. Eq. 7 ensures that if a data
node of GO has been mapped to some attribute, then that data
node must be in the solution tree, and vice-versa. Eq. 8 com-
putes the cost wADIFF of the selected match edges inMs?

O .
Eq. 9 indicates that a pattern is used if and only if all its edges
are selected in the tree. Eq. 10 computes the prizes collected
by using patterns. Eq. 11 ensures that if the unknown class
node is used, then it is connected to root through the edge
(unknown, root). Notice there is no further requirement for
unmatched attributes, as the unki nodes behave like normal
data nodes, and the connectivity requirement ensures that root
is connected to the rest of the tree (i.e. the semantic model).

6 Results
From now on, we call our system SERENE if no patterns are
used in the model, and SERENEPATS otherwise. We run ex-
periments on two domains: museum (29 sources, 20 labels,
443 semantic attributes and 159 unknown attributes) and soc-
cer (12 sources, 18 labels, 138 attributes and 45 unknowns).

We choose KARMA [Taheriyan et al., 2016a] as our base-
line. This system also phrases the REL2ONTO problem as
STP and decomposes it further into two parts. However, it
uses heuristic algorithms both for the matching and for the
STP parts. It solves the problems sequentially, i.e., once it
produces a set of candidate mappings for attributes into the
ontology, it fixes this set and moves onto the STP part. Ad-
ditionally, it does not consider unmatched attributes in the
sources. To ensure that KARMA also handles such attributes,
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we change its semantic labeling model, SemanticTyper [Ram-
nandan et al., 2015], to ours and we add a special unknown
ontology which gives specification for root and unknown
nodes of the alignment graph. The first modification also
ensures the fairness of evaluation since both KARMA and
SERENE will have the same matches for attributes.

The performance of these systems is estimated in terms of
precision and recall. Assuming mp is the predicted semantic
model and m† is the correct semantic model, then: prec =
|rel(mp)∩rel(m†)|/|rel(mp)|, recall = |rel(mp)∩rel(m†)|/|rel(m†)|
where rel(m) is the set of triples (u, e, v) with e being an
edge from the vertex u to the vertex v in the semantic model
m. Note that unmatched attributes as well as unknown and
root nodes are not part of these sets. We also perform a mod-
ification to the ground truth semantic models: if the true se-
mantic label of an attribute a is not present in any of the pre-
viously mapped data sources, we substitute it with unka and
map it to the unknown class node. This way we can validate
how well the systems can detect earlier unseen cases.

We compare our semantic labeling model against the state-
of-the-art model DSL [Pham et al., 2016], which was shown
to perform even better than SemanticTyper. We use mean re-
ciprocal rank (MRR) to evaluate semantic labeling models.
This measure is useful to estimate how highly the true seman-
tic label is ranked among the top k suggestions. It is defined
as: MRR = 1

n

∑n
i=1

1
ri
, where ri is the rank of the correct

semantic label for the attribute ai among the top k predictions
and n is the number of attributes in the data source.

We perform an evaluation strategy outlined by Taheriyan et
al. [2016a]. Let Mj be the set of j known semantic models.
For each data source si in the domain we perform experi-
ments t− 1 times, where t is the total number of data sources
in the domain and each experiment has a different number
of known semantic models M1,M2, . . . ,Mt−1. For exam-
ple, in the soccer domain, for source s1 we run experiments
11 times using M1 = {m2},M2 = {m2,m3}, . . . ,M11 =
{m2,m3, . . . ,m12}. We repeat the procedure for all sources
in the domain and then average the results. This ensures that
each source is at least once in the training and testing datasets.

We have run all our experiments on a Dell server with 252
GB of RAM, 2 CPUs (4 cores). We use a timeout threshold
of 15s for CHUFFED, which runs on a single core.

6.1 Experimental Results
To evaluate our new system SERENE1, we show that its se-
mantic labeling model produces more accurate matches for
attributes and that the CP formulation leads to better seman-
tic models in terms of precision and recall.

Tab. 1 provides evidence that our new semantic labeling
model is better suited for the task when there are unmatched
attributes in domains. DSL uses heuristic measures to cap-
ture the similarity of attributes within the same class, but
unmatched attributes are clearly dissimilar from known se-
mantic types, thus similarity measures may be unsound in the
presence of unmatched attributes. Our intuition as to why our
approach performs better is that we have incorporated fea-
tures which are derived directly from attribute values and are

1http://github.com/NICTA/serene-python-client/tree/stp/stp

Model MRR scores Train time (s)
museum soccer museum soccer

DSL 0.560 0.618 156.6 36.3
SERENE(PATS) 0.866 0.827 100.6 6.80

Table 1: Average performance of semantic labeling models
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Figure 5: Performance for the museum and soccer domains. Aver-
age size of integration graphs for the museum domain: 88 nodes
and 1129 edges. Average run time for the museum domain: SERENE
0.5s, KARMA 0.5s, SERENEPATS 1s.

not based on the notion of similarity [Rümmele et al., 2018].
We then evaluate SERENE and SERENEPATS against the

state-of-the-art system KARMA. All three systems have ac-
cess to the same set of matches produced by our semantic la-
beling model. Fig. 5 shows their performance on the museum
and soccer domains. We report average precision and recall
for the systems with regard to variable number of semantic
models in the training set. For SERENE and SERENEPATS we
report the first solutions found by CHUFFED. All three sys-
tems find solutions in less than a second on average. We use
default parameters for KARMA which were shown to yield
the best results. As we can see, SERENE produces on av-
erage the best semantic models in terms of precision while
SERENEPATS generates slightly better models in terms of re-
call. The t-tests run for the obtained results confirm statistical
significance of our improvements at the level p < 0.01

In Tab. 2 we show how the systems perform if we manually
remove the unmatched attributes for the leave-one-out setting.
In such scenarios, SERENE also yields better solutions than
KARMA, especially in terms of recall, and can often prove
optimality of the found solutions. The first solutions found by
SERENEPATS tend to be bigger than those of SERENE, hence
the precision suffers but the recall is better. We have also ob-
served that given enough time SERENEPATS finds much bet-
ter solutions both in precision and recall. These observations
provide further evidence of the validity of our framework.

In Fig. 6 we show how the performance of SERENE
changes across sequentially found solutions. CHUFFED, the
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Model Precision Recall
museum soccer museum soccer

KARMA 0.72 0.81 0.54 0.64
SERENE 0.82 0.85 0.62 0.75

SERENEPATS 0.6 0.86 0.64 0.75

Table 2: Performance with unknowns manually removed
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Figure 6: Performance of SERENE on the museum domain.

solver of SERENE, successively finds better solutions in terms
of Eq. 1. However, that does not translate directly into more
precise semantic models. On average, SERENE yields very
good results already with the first solution found, and plateaus
after the third solution.

Additionally, we investigate how the performance is influ-
enced by introducing a weighting scheme on the patterns, i.e.,
costs of patterns are scaled by a factor. In Fig. 5 we use a scal-
ing factor 1 for pattern costs. When trying scaling factors 5,
10 or 20 for pattern costs from the museum domain we can
generate semantic models which are almost 90% in precision
and recall. This is a 20% improvement in precision compared
to the first solution found with a scaling factor of 1, and a
10% improvement both in precision and recall for the first
solution from SERENE. Contrarily to SERENE, SERENEPATS
with scaled factors produced better solutions in terms of pre-
cision over time. However, the sequential solutions are not al-
ways better, and hitting the optimal solution may take hours.

We have also observed that SERENE and SERENEPATS
manage to find the ground truth on many instances among
its sequential solutions. This property of our approach can be
used to configure various parameters for the model, e.g., scal-
ing factors for pattern costs or match score.

7 Related Work
Most approaches to solve the REL2ONTO problem are
based on heuristic rules and alignment of constraints spec-
ified within relational schemata and ontologies. Pinkel et
al. [2016] and Spanos et al. [2012] give a comprehen-
sive overview and comparison of existing mapping gener-
ation tools based on this approach. As examples, there are
BootOX [Jiménez-Ruiz et al., 2015], MIRROR [de Medeiros
et al., 2015] and ontop [Fagin et al., 2009]. Briefly, these
tools first apply a default direct mapping specified by the
W3C. Then, the default ontology is enriched by using explicit
and implicit schema constraints. Finally, ontology alignment
techniques are applied to match the default ontology to the
target ontology. The main advantage of these systems is that
they are fully automatic. Our approach is complementary to
them and at its current stage is semi-automatic. However, CP
offers a convenient framework to incorporate integrity con-

straints specified within relational or ontological schema as
additional constraints to govern the search for the solution.

A major issue with fully automatic systems is that con-
straints may be inconsistent or absent completely, e.g., data
from Web services or tables on the Web. To overcome this
issue, Limaye et al. [2010] design a ML system to anno-
tate web tables with entities for cell values, semantic la-
bels for attributes and relationships for binary combinations
of attributes. As in our approach, they decompose the pro-
cess of mapping into two main stages: semantic labeling and
finding relationships between matched semantic labels. Li-
maye et al. [2010] enrich their data sources by using YAGO
Knowledge Base (KB)[Suchanek et al., 2007]. Mulwad et
al. [2013] extend this approach by leveraging information
from Wikitology KB. Venetis et al. [2011] develop a scalable
approach to recover the semantics of Web tables by incorpo-
rating data from the isA database KB. Ritze and Bizer [2017],
on the other hand, use DBPedia as their KB. Hence, these
approaches are limited to domains well represented in those
knowledge bases. Also, they are not able to find the relation
between attributes in the table if there is no direct connection
between the attributes. Our approach, on the other hand, al-
lows a model to be trained on any data and can infer complex
semantic paths which might exist between attributes. How-
ever, it could be further bootstrapped by leveraging external
knowledge bases. This is especially beneficial when the sys-
tem does not have sufficient training data.

As mentioned above, the approaches for mapping Web
tables also perform semantic labeling. They design vari-
ous similarity metrics for attribute names and values. How-
ever, they disregard the attributes which are not matched
to the ontology (the unknown set of attributes) which are
especially abundant on the Web [Ritze and Bizer, 2017;
Pham et al., 2016]. Clearly we cannot speak about similar-
ity for these attributes, since they are rather dissimilar from
known semantic types. Our approach differs from previous
work in that we incorporate an efficient method to handle
the unknown class, compared to the state-of-the-art approach
DSL [Pham et al., 2016].

We build upon the work of Taheriyan et al. [2016a] and use
their ideas for the construction of the alignment graph. The
difference at this step is that we introduce the unknown and
root class nodes and as many unknown data nodes as there
are attributes in the modeled data source. These nodes serve
to capture the unmatched attributes from the source. Though
we have modified KARMA to treat these additional nodes as
well, our approach outperforms KARMA since we have addi-
tional constraints for these nodes and use an exact algorithm
to solve the STP. Taheriyan et al. [2016a] treat the matching
and STP parts of REL2ONTO independently and use heuris-
tic algorithms for both. We, on the other hand, use exact al-
gorithms for both parts and address them within a unified CP
model. In their follow up work, Taheriyan et al. [2016b] sug-
gest using graph patterns to boost the performance of their
system. To this end, they had to revise their algorithm by in-
troducing additional heuristics. However, in our case we only
had to add pattern variables and to modify the objective func-
tion in the MINIZINC model. No changes to the solver were
required. This makes our system very convenient and opens
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directions for validating various additional constraints.

8 Conclusion
We have introduced a new approach to solve the problem
of relational-to-ontology schema mapping. Our experiments
show that SERENE generates on average more consistent se-
mantic models in terms of precision and recall compared
to the state-of-the-art approach KARMA. SERENEPATS pro-
duces, on average, better semantic models in terms of recall,
and its precision can be enhanced by adding a scaling factor
for pattern costs. Furthermore, our approach is highly flexi-
ble and easy to extend with arbitrary side constraints thanks
to the use of CP instead of a specific heuristic algorithm.
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