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ABSTRACT
We propose a class of functional dependencies for graphs, re-
ferred to as GFDs. GFDs capture both attribute-value depen-
dencies and topological structures of entities, and subsume
conditional functional dependencies (CFDs) as a special case.
We show that the satisfiability and implication problems
for GFDs are coNP-complete and NP-complete, respectively,
no worse than their CFD counterparts. We also show that
the validation problem for GFDs is coNP-complete. Despite
the intractability, we develop parallel scalable algorithms for
catching violations of GFDs in large-scale graphs. Using real-
life and synthetic data, we experimentally verify that GFDs
provide an effective approach to detecting inconsistencies in
knowledge and social graphs.
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1. INTRODUCTION
Data dependencies have been well studied for relational

data. In particular, our familiar functional dependencies
(FDs) are found in every database textbook, and have been
extended to XML [9]. Their revisions, such as conditional
functional dependencies (CFDs) [16], have proven effective
in capturing semantic inconsistencies in relations [15].

The need for FDs is also evident in graphs, a common
source of data. Unlike relational databases, real-life graphs
typically do not come with a schema. FDs specify a fun-
damental part of the semantics of the data, and are hence
particularly important to graphs. Moreover, (1) FDs help us
detect inconsistencies in knowledge bases [45], which need to
be identified as violations of dependencies [15]. (2) For social
networks, FDs help us catch spams and manage blogs [11].

Example 1: Consider the following examples taken from
real-life knowledge bases and social graphs.
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(1) Knowledge bases, where inconsistencies are common [45]:

◦ Flight A123 has two entries with the same departure
time 14:50 and arrival time 22:35, but one is from Paris
to NYC, while the other from Paris to Singapore [40].

◦ Both Canberra and Melbourne are labeled as the cap-
ital of Australia [13].

◦ It is marked that all birds can fly, and that penguins
are birds [26], despite their evolved wing structures.

We will see that all these inconsistencies can be easily
captured by FDs defined on entities with a graph structure.

(2) Social graphs. When a blog Z with photo Y is posed, a
social network company defines a status X with attachment
Y . It is required that the annotation X.text of X must
match the description Y.desc of Y . That is,

◦ Blog: if Z has status X, Z has photo Y , and if X
has attachment Y , then X.text = Y.desc.

This is essentially an FD on graph-structured data.
Functional dependencies are also useful in catching spams.

◦ Fake account [11]: If account x′ is confirmed fake, both
accounts x and x′ like blogs P1, . . . , Pk, x posts blog y,
x′ posts y′, and if y and y′ have a particular keyword
c, then x is also identified as a fake account.

This rule to identify fake accounts is an FD on graphs. ✷

No matter how important, however, the study of FDs for
graphs is still in its infancy, from formulation to classical
problems to applications. It is more challenging to define
FDs for graphs than for relations, since real-life graphs are
semi-structured and typically do not have a schema. More-
over, for entities represented by vertices in a graph, FDs have
to specify not only regularity between attribute values of the
entities, but also the topological structures of the entities.

Contributions. We study functional dependencies for
graphs, from their fundamental problems to applications.

(1) We propose a class of functional dependencies for graphs,
referred to as GFDs (Section 3). As opposed to relational
FDs, a GFD specifies two constraints: (a) a topological con-
straint in terms of a graph pattern (Section 2), to identify
entities on which the dependency is defined, and (b) an ex-
tension of CFDs to specify the dependencies of the attribute
values of the entities. We show that GFDs subsume FDs and
CFDs as special cases, and capture inconsistencies between
attributes of the same entity and across different entities.

(2) We settle two classical problems for GFDs (Section 4).
For a set Σ of GFDs, we study (a) its satisfiability, to decide



whether there exists a non-empty graph that satisfies all
the GFDs in Σ, and (b) its implication, to decide whether a
GFD is entailed by Σ. We show that the satisfiability and
implication problems for GFDs are coNP-complete and NP-
complete, respectively. The results tell us that reasoning
about GFDs is no harder than their relational counterparts
such as CFDs, which are also intractable [16].

(3) As one of applications of GFDs, we study the validation
problem, to detect errors in graphs by using GFDs as data
quality rules (Section 5). We show that it is coNP-complete
to decide whether a graph contains no violation of a set of
GFDs. Despite the intractability, we develop algorithms that
are parallel scalable, i.e., they guarantee to take less time
when more processors are used. They are 2-approximation
algorithms for a bi-criteria optimization problem, to balance
workload and minimize communication costs (Section 6).
These make it feasible to detect errors in large-scale graphs.

(4) Using real-life and synthetic graphs, we experimentally
verify the effectiveness and efficiency of our GFD techniques
(Section 7). We find the following. (a) Inconsistency de-
tection with GFDs is feasible in real-life graphs. It takes
156 (resp. 326) seconds over replicated (resp. partitioned)
YAGO [44] with 20 processors, for a set of 50 GFDs. (b)
Our algorithms are parallel scalable: they are on average 2.4
and 3.7 times faster on fragmented and replicated real-life
graphs, respectively, when processors increase from 4 to 20.
(c) Our optimization techniques are effective: they improve
performance by up to 1.9 times. (d) GFDs catch a variety
of inconsistencies in real-life graphs, validating the need for
combining topological constraints and value dependencies.

We contend that GFDs are a natural extension of tradi-
tional FDs, by incorporating graph topological structures.
GFDs provide us with primitive dependencies for graphs, to
specify fundamental semantics and to detect inconsistencies.
This work also provides the first complexity bounds for rea-
soning about GFDs. Moreover, we develop the first parallel
scalable algorithms to make practical use of GFDs.

Related work. We categorize related work as follows.

FDs on graphs. Extensions of FDs and CFDs have been stud-
ied for RDF [8, 10, 12, 23, 24, 49]. The definitions of FDs

in [8, 12, 24] are based on RDF triple embedding and the
coincidence of variable valuations. FDs are extended [49] to
specify value dependencies on clustered values via, e.g., path
patterns; similarly for extensions of CFDs [23]. A schema
matching framework is proposed in [10], for transformations
between RDF and relations. It defines FDs as trees in which
each node denotes an attribute in a corresponding relation.

Our work differs from the prior work in the following.
(1) We define GFDs with graph patterns to express topo-
logical constraints of (property) graphs, beyond RDF. (2)
GFDs capture inconsistencies in graph-structured entities
identified by patterns. In contrast, the FDs of [8, 12, 24]
are value-based regardless of what entities carry the values,
and the reasoning techniques of [24] are based on relational
encoding of RDF data. Moreover, these FDs cannot express
equality with constants (semantic value binding) as in CFDs,
e.g., x.city = “Edi”, while GFDs subsume CFDs. The FDs

of [10] are defined as trees and assume a relational schema.
They do not support general topological constraints; simi-
larly for [23,49]. (3) We provide complexity bounds for GFD

analyses and parallel scalable algorithms for error detection
in graphs, which were not studied by the prior work.

Closer to this work is [14] on keys for graphs [14], which
differ from GFDs in the following. (1) Keys are defined
simply as a graph pattern Q[x], with a designated vari-
able x denoting an entity. In contrast, GFDs have the form
(Q[x̄], X → Y ), where x̄ is a list of variables, and X and
Y are conjunctions of equality atoms with constants and
variables in x̄. GFDs cannot be expressed as keys, just like
that relational FDs are not expressible as keys. Moreover,
keys of [14] are recursively defined to identify entities, while
GFDs are an extension of conventional FDs and are not recur-
sively defined. (2) Keys are defined on RDF triples (s, p, o),
while GFDs are defined on property graphs, e.g., social net-
works. (3) Keys are interpreted in terms of three isomorphic
mappings: two from subgraphs to Q, and one between the
two subgraphs. In contrast, GFDs needs a single isomorphic
mapping from a subgraph to Q. In light of the different
semantics, algorithms for GFDs and keys are radically dif-
ferent. (4) We study the satisfiability and implication for
GFDs; these classical problems were not studied for keys [14].

Inconsistency detection has been studied for relations (see
[15] for a survey), and recently for knowledge bases (linked
data) [23,32,35,37,42,45]. The methods for knowledge bases
employ either rules [23, 32, 35, 42, 45], or probabilistic infer-
ences [37]. (1) Datalog rules are used [42] to extract enti-
ties and detect inconsistent “facts”. SOFIE [45] maintains
the consistency of extracted facts by using rules expressed
as first-order logic (FO) formulas along with textual pat-
terns, existing ontology and semantic constraints. Pellet [35]
checks inconsistencies by using inference rules in description
logic (e.g., OWL-DL). Dependency rules are used to detect
inconsistencies in attribute values in semantic Web [32] and
RDF [23]. BigDansing [28] supports user-defined rules for
repairing relational data. To clean graph-structured entities,
it needs to represent graphs as tables and encode isomorphic
functions beyond relational query languages. (2) The infer-
ence method of [37] uses Markov logic to combine FO and
probabilistic graphical models, and detects errors by learn-
ing and computing joint probability over structures.

Our work differs from the prior work as follows. (1) GFDs
are among the first data-quality rules on (property) graphs,
not limited to RDF, by supporting topological constraints
with graph patterns. (2) GFDs aim to strike a balance be-
tween complexity and expressivity. Reasoning about GFDs is
much cheaper than analyzing FO formulas. (3) We provide
the complexity and characterizations for satisfiability and
implication of GFDs; these are among the first results for rea-
soning about graph dependencies in general, and about data
quality rules for graphs in particular. (4) We develop paral-
lel scalable algorithms for error detection and new strategies
for workload assignment, instead of expensive large-scale in-
ference and logic programming. These make error detection
feasible in large graphs with provable performance guaran-
tees, which are not offered by the prior work.

Parallel algorithms related to GFD validation algorithms are
(1) algorithms for detecting errors in distributed data [17,
18], and (2) algorithms for subgraph enumeration, subgraph
isomorphism and SPARQL [5,20,22,25,30,31,39,41,46].

(1) Algorithms of [17, 18] (incrementally) detect errors in
(horizontally or vertically) partitioned relations based on
CFDs. The methods work on relations, but do not help GFDs



that require subgraph isomorphism computation. Indeed,
our algorithms are radically different from those of [17,18].

(2) Closer to this work are parallel algorithms for subgraph
enumeration [5, 30, 36, 41]. (a) MapReduce algorithms are
proposed via conjunctive multi-way join operations [5] and
decomposed edge joins [36]. The strategy is effective for
triangle counting [47]. (b) To reduce excessive partial an-
swers for general patterns, a MapReduce solution in [30]
decomposes a pattern into twin twigs (single edge or two
incident edges), and adopts a left-deep-join strategy to join
multiple edges as stars. To cope with skewed nodes, the
neighborhoods of high-degree nodes are partitioned, repli-
cated and distributed. Decomposition strategies are used to
reduce MapReduce rounds and I/O cost. (c) A BSP frame-
work is developed in [41] via vertex-centric programming. It
adopts an online greedy strategy to assign partial subgraphs
to workers that incur minimum overall workload, and opti-
mization strategies to reduce subgraph instances.

(3) A number of parallel algorithms are developed for sub-
graph isomorphism [39,46] and SPARQL queries [20,22,25,
31]. Twig decomposition is used to prune the intermediate
results and reduce the latency in Trinity memory cloud [46].
The in-memory algorithm of [39] parallelizes a backtracking
procedure by (a) evenly distributing partial answers among
threads for local expansion, and (b) copying the partial an-
swers to a global storage for balanced distribution in the
next round. Hash-based partitioning, query decomposition
and load balancing strategies are introduced for parallel
SPARQL on RDF [20, 25]. Query decomposition and plan
generation techniques are studied in [22], which avoid com-
munication cost by replicating graphs. Optimization tech-
niques for multi-pattern matching are provided in [31], by
extracting common sub-patterns. Many of these techniques
leverage RDF schema and SPARQL query semantics, which
are not available for GFDs and general property graphs.

This work differs from the prior work in the following.
(a) GFD validation in distributed graphs is a bi-criteria
optimization problem, to balance workload and minimize
communication cost, with combined complexity from sub-
graph enumeration of disconnected patterns and dependency
checking in fragmented graphs. It is more challenging than
graph queries studied in the prior work. (b) We introduce a
workload assignment strategy for the intractable optimiza-
tion problem, with approximation bounds, instead of treat-
ing workload balancing and communication cost minimiza-
tion separately [30, 41]. (c) We warrant parallel scalability,
which is not guaranteed by the prior algorithms.
On the other hand, this work can benefit from prior

techniques for fast parallel subgraph matching and listing,
e.g., query decomposition strategies [22, 30, 46] and multi-
thread in-memory algorithm [39], for local error detection at
each worker. We have adopted the optimization techniques
of [31], and will incorporate others into GFD tools.

(4) There has also been work on characterizing the effective-
ness of parallel algorithms, in terms of communication costs
of MapReduce algorithms [6], constraints on MapReduce
computation/communication cost (MRC [27], MMC [48]
and SGC [38]), and the polynomial fringe property of re-
cursive programs [4]. We adopt the notion of parallel scal-
ability [29], which measures speedup by parallelization over
multiple processors, in terms of both computation and com-
munication costs. It is for generic parallel algorithms not
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Figure 1: Graphs

limited to MapReduce. A parallel scalable algorithm guar-
antees to scale with large graphs by adding processors. How-
ever, parallel scalability is beyond reach for certain graph
computations [19]. We show that GFD validation is parallel
scalable, by providing such algorithms.

Static analyses. Over relations, the satisfiability and impli-
cation problems are known to be in O(1) and linear time for
FDs, NP-complete and coNP-complete for CFDs, O(1) time
and PSPACE-complete for inclusion dependencies (INDs), re-
spectively. The validation problem is in PTIME for FDs,
CFDs and INDs (cf. [3, 15]). We show that for GFDs on
graphs, validation, satisfiability and implication for GFDs

are coNP-complete, coNP-complete and NP-complete, re-
spectively. As will be seen in Section 4, the complexity of
GFDs comes from the interactions between graph patterns
(subgraph isomorphism); it is not inherited from CFDs.

2. PRELIMINARIES
We start with a review of basic notations.

Graphs. We consider directed graphs G = (V,E, L, FA)
with labeled nodes and edges, and attributes on its nodes.
Here (1) V is a finite set of nodes; (2) E ⊆ V ×V is a set of
edges; (3) each node v in V (resp. edge e in E) carries label
L(v) (resp. L(e)), and (4) for each node v, FA(v) is a tuple
(A1 = a1, . . . , An = an), where ai is a constant, Ai is an
attribute of v written as v.Ai = ai, carrying the content of v
such as properties, keywords, blogs and rating, as found in
social networks, knowledge bases and property graphs.

Example 2: Three graphs are depicted in Fig. 2: (a) G1

is a fragment of a knowledge graph, where each flight entity
(e.g., flight1) has id (with value val = DL1), departure city
(Paris), destination (NYC), and departure and arrival time;
each node has attribute val (not shown) for its value; (b) G2

records fake accounts; each account has an attribute is fake

that is “true” if the account is fake, and “false” otherwise;
an account may post blogs that contain keywords (e.g., blog
p5 has attribute keyword = “free prize”), and may like other
blogs; and (c) G3 depicts a country entity and its capital,
carrying attribute val (not shown) for their values. ✷

We review two notions of subgraphs.

◦ A graph G′ = (V ′, E′, L′, F ′
A) is a subgraph of G =

(V,E, L, FA), denoted by G′ ⊆ G, if V ′ ⊆ V , E′ ⊆ E,
and for each node v ∈ V ′, L′(v) = L(v) and F ′

A(v) =
FA(v); similarly for each edge e ∈ E′, L′(e) = L(e).

◦ We say that G′ is a subgraph induced by a set V ′ of
nodes if G′ ⊆ G and E′ consists of all the edges in G
whose endpoints are both in V ′.

Graph patterns. A graph pattern is defined as a directed
graph Q[x̄] = (VQ, EQ, LQ, µ), where (1) VQ (resp. EQ) is a
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Figure 2: Graph patterns

set of pattern nodes (resp. edges), (2) LQ is a function that
assigns a label LQ(u) (resp. LQ(e)) to each pattern node
u ∈ VQ (resp. edge e ∈ EQ), (3) x̄ is a list of variables such
that its arity ||x̄|| is equal to the number |VQ| of nodes, and
(4) µ is a bijective mapping from x̄ to VQ, i.e., it assigns a
distinct variable to each node v in VQ. For x ∈ x̄, we use
µ(x) and x interchangeably when it is clear in the context.
In particular, we allow wildcard ‘ ’ as a special label.

Example 3: Figure 2 depicts six graph patternsQ1–Q6: (1)
Q1 specifies two flight entities, where µ maps x to a flight,
x1–x4 to its id, departure city, destination, departure time

and arrival time, respectively; similarly for y and y1–y5; (2)
Q2 depicts a country entity with two distinct capitals; (3)
Q3 shows a generic is a relationship, in which two nodes are
labeled wildcard ‘ ’; (4) Q4 depicts two tuples of relation R
represented as vertices in a graph, labeled with R; (5) Q5

shows a blog entity z including photo y, and z is described
by a status x; and (6) Q6 specifies relationships between
accounts x, x′ and blogs y1, . . . , yk and z1, z2, where x and
x′ both like k blogs, x′ posts a blog z1 and x posts z2. ✷

Graph pattern matching. We adopt the conventional
semantics of matching via subgraph isomorphism. A match
of pattern Q in graph G is a subgraph G′ = (V ′, E′, L′, F ′

A)
of G that is isomorphic to Q, i.e., there exists a bijective
function h from VQ to V ′ such that (1) for each node u ∈ VQ,
LQ(u) = L′(h(u)); and (2) e = (u, u′) is an edge in Q if and
only if e′ = (h(u), h(u′)) is an edge in G′ and LQ(e) = L′(e′).
In particular, LQ(u) = L′(h(u)) always holds if LQ(u) is ‘ ’,
i.e., wildcard matches any label to indicate generic entities,
e.g., is a in Q3 of Example 3; similarly for edge labels.
We also denote the match as a vector h(x̄), consisting of

h(x) (i.e., h(µ(x))) for all x ∈ x̄, in the same order as x̄.
Intuitively, x̄ is a list of entities to be identified by Q, and
h(x̄) is such an instantiation in G, one node for each entity.

Example 4: A match of Q1 of Example 3 in G1 of Fig. 2
is h1: x 7→ flight1, y 7→ flight2, x3 7→ NYC, y3 7→ Singapore,
and similarly for the other variables in Q1.
When k = 2, a match of Q6 in G2 is h2: (x

′ 7→ acct3, x 7→
acct4, y1 7→ p3, y2 7→ p4, z1 7→ p7, z2 7→ p8). ✷

The notations of this paper are summarized in Table 1.

symbols notations
G graph (V,E, L, FA)

Q[x̄] graph pattern (VQ, EQ, LQ, µ)
ϕ,Σ GFD ϕ = (Q[x̄], X → Y ), Σ is a set of GFDs

h(x̄) |= X → Y a match h(x̄) of Q satisfies X → Y

ΣQ a set of GFDs of Σ embedded in pattern Q

Vio(Σ, G) all the violations of GFDs Σ in graph G

t(|Σ|, |G|) sequential time for computing Vio(Σ, G)
T (|Σ|, |G|, n) parallel time for Vio(Σ, G), using n processors

W (Σ, G) workload for computing Vio(Σ, G)
PV(ϕ) a pivot vector (z̄, c̄Q) of GFD ϕ

w = 〈v̄z, Gz̄〉 work unit (v̄z : candidate; Gz̄ : neighbors of v̄z)

Table 1: Notations

3. GFDS: SYNTAX AND SEMANTICS
We now define functional dependencies for graphs (GFDs).

GFDs. A GFD ϕ is a pair (Q[x̄], X → Y ), where

◦ Q[x̄] is a graph pattern, called the pattern of ϕ; and
◦ X and Y are two (possibly empty) sets of literals of x̄.

Here a literal of x̄ has the form of either x.A = c or x.A =
y.B, where x, y ∈ x̄, A andB denote attributes (not specified
in Q), and c is a constant. We refer to x.A = c as a constant
literal, and x.A = y.B as a variable literal.

Intuitively, GFD ϕ specifies two constraints:

◦ a topological constraint imposed by pattern Q, and
◦ attribute dependency specified by X → Y .

Recall that the “scope” of a relational FD R(X → Y ) is
specified by a relation schema R: the FD is applied only
to instances of R. Unlike relational databases, graphs do
not have a schema. Here Q specifies the scope of the GFD,
such that the dependency X → Y is imposed only on the
attributes of the vertices in each subgraph identified by Q.
Constant literals x.A = c enforce bindings of semantically
related constants, along the same lines as CFDs [16].

Example 5: To catch the inconsistencies described in Ex-
ample 1, we define GFDs with patterns Q1–Q6 of Fig. 2.

(1) Flight: GFD ϕ1 = (Q1[x, x1-x5, y, y1-y5], X1 → Y1),
whereX1 is x1.val = y1.val, and Y1 consists of x2.val = y2.val
and x3.val = y3.val. Here val is an attribute for the content
of a node. By Q1, x1, x2 and x3 denote the flight id, depart-
ing city and destination of a flight x, respectively; similarly
for y1, y2 and y3 of entity y. Hence GFD ϕ1 states that for all
flight entities x and y, if they share the same flight id, then
they must have the same departing city and destination.

(2) Capital: GFD ϕ2 = (Q2[x, y, z], ∅ → y.val = z.val). It is
to ensure that for all country entities x, if x has two capital
entities y and z, then y and z share the same name.

(3) Generic is a: GFD ϕ3 = (Q3[x, y], ∅ → x.A = y.A). It
enforces a general property of is a relationship: if entity y
is a x, then for any property A of x (denoted by attribute
A), x.A = y.A. Observe that x and y in Q3 are labeled with
wildcard ‘ ’, to match arbitrary entities. Along the same
lines, GFDs can enforce inheritance relationship subclass.

In particular, if x is labeled with bird, y with penguin, and
A is can fly, then ϕ3 catches the inconsistency described in
Example 1: penguins cannot fly but are classified as bird.

(4) FDs and CFDs. Consider an FD R(X → Y ) over a re-

lation schema R [3]. When an instance of R is represented
as a graph in which each tuple is denoted by a node labeled
R, we write ϕ4 = (Q4[x, y], X

′ → Y ′). Here Q4 consists of
two vertices x and y denoting two tuples of R, X ′ consists of



x.A = y.A for all A ∈ X, and Y ′ includes x.B = y.B for all
B ∈ Y . Note that ϕ4 is defined with variable literals only.

Using constant literals, GFDs can express CFDs [16]. For
instance, R(country = 44, zip → street) is a CFD defined on
relation R, stating that in the UK, zip code uniquely deter-
mines street [16]. It can be written as GFD ϕ′

4 = (Q4[x, y],
X ′ → Y ′), where X ′ consists of x.country = 44, y.country =
44, and x.zip = y.zip, and Y ′ is x.street = y.street.
As another example, CFD R(country = 44, area code =

131 → city = Edi) states that in the UK, if the area code of
a city is 131, then the city is Edi [16]. It can be expressed
as a GFD ϕ′′

4 = (Q′′
4 [x], X

′′ → Y ′′), where Q′′
4 consists of

a single node x labeled R, and X ′′ includes x.country = 44
and x.area code = 131, while Y ′′ is x.city = Edi.

(5) Blogs: ϕ5 = (Q5[x, y, z], ∅ → x.text = y.desc). It states
that if entities x, y and z satisfy the topological constraint
of Q5 depicted in Fig. 3, then the annotation of status x of
blog z must match the description of photo y included in z.

(6) Fake account: ϕ6 = (Q6[x, x
′, y1, . . . , yk, z1, z2], X6 →

Y6), where X6 includes x′.is fake = true, z1.keyword = c,
z2.keyword = c, and Y6 is x.is fake = true; here c is a constant
indicating a peculiar keyword. It states that for accounts x
and x′, if the conditions in X6 are satisfied, including that
x′ is confirmed fake, then x is also a fake account. ✷

Semantics. To interpret GFDs, we use the following no-
tations. Consider a GFD ϕ = (Q[x̄], X → Y ). Consider a
match h(x̄) of Q in a graph G, and a literal x.A = c. We say
that h(x̄) satisfies the literal if there exists attribute A at the
node v = h(x) and v.A = c; similarly for literal x.A = y.B.
We denote by h(x̄) |= X if h(x̄) satisfies all the literals in
X; similarly for h(x̄) |= Y . Here we write h(µ(x)) as h(x),
where µ is the mapping in Q from x̄ to nodes in Q.

A graph G satisfies GFD ϕ, denoted by G |= ϕ, if for all
matches h(x̄) of Q in G, if h(x̄) |= X then h(x̄) |= Y . We
write h(x̄) |= X → Y if h(x̄) |= Y whenever h(x̄) |= X.

Observe the following. (1) For a literal x.A = c in X,
node h(x) does not necessarily have attribute A. If h(x) has
no attribute A, h(x̄) trivially satisfies X → Y . This allows
us to accommodate the semi-structured nature of graphs.
(2) In contrast, when x.A = c is in Y and h(x̄) |= Y , then
h(x) must have attribute A by the definition of satisfaction
above; similarly for x.A = y.B. (3) When X is ∅, h(x̄) |= X
for any match h(x̄) of Q in G; similarly for Y = ∅.

Example 6: Consider GFDs ϕ1, ϕ2 and ϕ6 of Example 5
and G1, G2, G3 of Fig. 2. One can verify the following.

(a) G1 6|= ϕ1. Indeed, the match h1 given in Example 4
satisfies X1 since h1(x1).val = h1(y1).val, but it does not
satisfy Y1 since h1(x3).val 6= h1(y3).val. Similarly, G2 6|= ϕ6,
as witnessed by match h2 of Example 4. Note that there are
other matches of Q6 in G2 that satisfy X6 → Y6, e.g., when
we map x′ 7→ acct1 and x 7→ acct2, However, G2 |= ϕ6 only
if all matches of Q6 in G2 satisfy X6 → Y6.

(b) G3 |= ϕ2 since there exists no match of Q2 in G3: the
country in G3 has a unique capital, and trivially satisfies ϕ2.

Observe the following: (a) entities in the same match of
Q may be far apart; e.g., flight1 and flight2 are disconnected
from each other; and (b) X → Y is imposed only on matches
of Q (satisfying its topological constraint), e.g., ϕ2. ✷

We say that a graph G satisfies a set Σ of GFDs if for all
ϕ ∈ Σ, G |= ϕ, i.e., G satisfies every GFD in Σ.

Special cases. GFDs subsume the following special cases.

(1) As shown by ϕ4, ϕ
′
4 and ϕ′′

4 in Example 5, relational FDs
and CFDs are special cases of GFDs, when tuples in a relation
are represented as nodes in a graph. In fact, GFDs are able
to express equality-generating dependencies (EGDs) [3].

(2) A GFD (Q[x̄], X → Y ) is called a constant GFD if X
and Y consist of constant literals of x̄ only. It is called a
variable GFD if X and Y consist of variable literals only.
Intuitively, constant GFDs subsume constant CFDs [16], and
variable GFDs are analogous to traditional FDs [3].

In Example 5, ϕ1-ϕ5 are variable GFDs, ϕ′′
4 and ϕ6 are

constant GFDs, while ϕ′
4 is neither constant nor variable.

(3) GFDs can specify certain type information. For an entity
x of type τ , GFD (Q[x], ∅ → x.A = x.A) enforces that xmust
have an A attribute, where Q consists of a single vertex
labeled τ and denoted by variable x. However, GFDs cannot
enforce that x has a finite domain, e.g., Boolean.

4. REASONING ABOUT GFDS
We next study the satisfiability and implication problems

for GFDs. These are classical problems associated with any
class of data dependencies. Our main conclusion is that
these problems for GFDs are no harder than for CFDs.

4.1 The Satisfiability Problem for GFDs
A set Σ of GFDs is satisfiable if Σ has a model; that is,

a graph G such that (a) G |= Σ, and (b) for each GFD

(Q[x̄], X → Y ) in Σ, there exists a match of Q in G.
The satisfiability problem for GFDs is to determine, given

a set Σ of GFDs, whether Σ is satisfiable.

Intuitively, it is to check whether the GFDs are “dirty”
themselves when used as data quality rules. A model G of
Σ requires all patterns in the GFDs of Σ to find a match in
G, to ensure that the GFDs do not conflict with each other.

Over relational data, a set Σ of CFDs may not be satisfi-
able [16]. The same happens to GFDs on graphs.

Example 7: Consider two GFDs defined with the same
pattern Q7 depicted in Fig. 3: ϕ7 = (Q7[x], ∅ → x.A = c)
and ϕ′

7 = (Q7[x], ∅ → x.A = d), where c and d are distinct
constants. Then there exists no graph G that includes a τ
entity v and satisfies both ϕ7 and ϕ′

7. For if such a node v
exists, then by ϕ7, v has an attribute A with value c, while
by ϕ′

7, v.A must take a different value d, which is impossible.

As another example, consider GFDs ϕ8 = (Q8[x, y, z], ∅ →
x.A = c) and ϕ9 = (Q9[x, y, z, w], ∅ → x.A = d) for distinct
c and d, where Q8 and Q9 are shown in Fig. 3. One can
verify that each of ϕ8 and ϕ9 has a model, when taken alone.
However, they are not satisfiable when put together. Indeed,
if they have a model G, then there must exist isomorphic
mappings h and h′ from Q8 and Q9 to G, respectively, such
that h(x) = h′(x) = v for some node v in G. Then again, v
is required to have attribute A with distinct values. ✷

As shown in Example 7, GFDs defined with different graph
patterns may interact with each other. Indeed, Q8 and Q9

are different, but ϕ8 and ϕ9 can be enforced on the same
node, since Q8 is isomorphic to a subgraph of Q9. This
tells us that the satisfiability analysis has to check subgraph
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Figure 3: Graph patterns in GFDs

isomorphism among the patterns of the GFDs, which is NP-
complete (cf. [34]). In light of this, we have the following.

Theorem 1: The satisfiability problem is coNP-complete
for GFDs. ✷

One might think that the problem would become simpler if
Σ consists of constant GFDs only (see Section 3), or when all
patterns in Σ are acyclic directed graphs (DAGs). However,
the complexity bound is rather robust.

Corollary 2: The satisfiability problem is coNP-complete
for constant GFDs that are defined with DAG patterns. ✷

The complexity of GFDs is not inherited from CFDs. In-
deed, the satisfiability analysis of CFDs is NP-hard only un-
der a schema that enforces attributes to have a finite do-
main [16], e.g., Boolean, i.e., when CFDs and finite domains
are put together. In contrast, graphs do not come with a
schema; while GFDs subsume CFDs, they cannot specify fi-
nite domains. That is, the satisfiability problem for GFDs is
already coNP-hard in the absence of a schema.

The upper bound proofs are nontrivial. It needs the fol-
lowing notations and a lemma.

(1) A pattern Q′ = (V ′
Q, E

′
Q, L

′
Q, µ

′) is embeddable in Q =
(VQ, EQ, LQ, µ) if there exists an isomorphic mapping f
from (V ′

Q, E
′
Q) to a subgraph of (VQ, EQ), preserving node

and edge labels. If Q′ is embeddable in Q via f , then for
any GFD ϕ′ = (Q′[x̄′], X ′ → Y ′) defined with Q′, (Q[x̄],
f(X ′) → f(Y ′)) is an embedded GFD of ϕ′ in Q, where f(X ′)
substitutes f(x′) for each x′ in X ′; similarly for f(Y ′). Here
again we use variable x and node µ(x) interchangeably.

(2) For a pattern Q and a set Σ of GFDs, a set ΣQ of GFDs
is said to be embedded in Q and derived from Σ if for each
φ ∈ ΣQ, the pattern of φ is Q, and moreover, there exists
ϕ ∈ Σ such that φ is an embedded GFD of ϕ in Q.

(3) For a set ΣQ of GFDs embedded in the same pattern Q,
we define a set enforced(ΣQ) of literals inductively as follows:

◦ if (Q[x̄], ∅ → Y ) is in ΣQ, then Y ⊆ enforced(ΣQ), i.e.,
all literals of Y are included in enforced(ΣQ); and

◦ if (Q[x̄], X → Y ) is in ΣQ and if all literals of X can
be derived from enforced(ΣQ) via the transitivity of
equality atoms, then Y ⊆ enforced(ΣQ).

As an example of transitivity, if x.A = c and y.B = c are
in enforced(ΣQ), then X.A = y.B ∈ enforced(ΣQ). Intu-
itively, enforced(ΣQ) is a set of equality atoms that have to
be enforced on a graph G that satisfies Σ (and hence ΣQ).
One can verify that given ΣQ, enforced(ΣQ) can be com-

puted in polynomial time (PTIME) along the same lines as
how closures for traditional FDs are computed (see, e.g., [3]).
We say that ΣQ is conflicting if there exist (x.A, a) and

(x.A, b) in enforced(ΣQ) such that a 6= b.

(4) A set Σ of GFDs is conflicting if there exist a pattern Q
and a set ΣQ of GFDs that are embedded in Q and derived
from Σ, such that ΣQ is conflicting.

Conflicting GFDs characterizes the satisfiability of GFDs.

Lemma 3: A set Σ of GFDs is satisfiable if and only if Σ
is not conflicting. ✷

Proof of Theorem 1. Based on the lemma, we develop an
algorithm that, given a set Σ of GFDs, returns “yes” if Σ is
not satisfiable, i.e., the complement of GFD satisfiability. (a)
Guess (i) a set Σ′ ⊆ Σ, (ii) a pattern Q such that Q carries
labels that appear in Σ and |Q| is at most the size of the
largest pattern in Σ, and (iii) a mapping from the pattern of
each GFD in Σ′ to Q. (b) Check whether the mappings are
isomorphic to subgraphs of Q. (c) If so, derive the set ΣQ

of GFDs embedded in Q from Σ′ and the guessed mappings.
(d) Check whether ΣQ is conflicting; if so, return “yes”. The
algorithm is correct by Lemma 3. It is in NP as steps (b), (c)
and (d) are in PTIME. Thus GFD satisfiability is in coNP.

The lower bound is verified by reduction from subgraph
isomorphism to the complement of the satisfiability prob-
lem. The reduction uses constant GFDs defined with DAG

patterns only, and hence proves Corollary 2 as well. ✷

Tractable cases. We next identify special cases when the
satisfiability analysis can be carried out efficiently.

Corollary 4: A set Σ of GFDs is always satisfiable if one
of the following conditions is satisfied:

◦ Σ consists of variable GFDs only, or
◦ Σ includes no GFDs of the form (Q[x̄], ∅ → Y ).

It is in PTIME to check whether Σ is satisfiable if Σ consists
of GFDs defined with tree-structured patterns only, i.e., if for
each GFD (Q[x̄], X → Y ) in Σ, Q is a tree. ✷

4.2 The Implication Problem for GFDs
We say that a set Σ of GFDs implies another GFD ϕ,

denoted by Σ |= ϕ, if for all graphs G such that G |= Σ, we
have that G |= ϕ, i.e., ϕ is a logical consequence of Σ.

We assume w.l.o.g. the following: (a) Σ is satisfiable,
since otherwise it makes no sense to consider Σ |= ϕ; and (b)
X is a satisfiable set of literals, where ϕ = (Q[x̄], X → Y ),
since otherwise ϕ trivially holds. We will see that these do
not increase the complexity of the implication problem.

The implication problem for GFDs is to determine, given
a set Σ of GFDs and another GFD ϕ, whether Σ |= ϕ.

In practice, the implication analysis helps us eliminate
redundant data quality rules defined as GFDs, and hence,
optimize our error detection process by minimizing rules.

Example 8: Consider a set Σ of two GFDs (Q8[x, y, z],
x.A = y.A → x.B = y.B) and (Q9[x, y, z, w], x.B = y.B →
z.C = w.C). Consider GFD ϕ11 = (Q9[x, y, z, w], x.A =
y.A → z.C = w.C), where patterns Q8 and Q9 are given in
Fig. 3. One can verify that Σ |= ϕ11. ✷

The implication analysis of GFDs is NP-complete. In con-
trast, the problem is coNP-complete for CFDs [16].

Theorem 5: The implication problem for GFDs is NP-
complete. ✷

As suggested by Example 8, to decide whether Σ |= ϕ, we
have to consider the interaction between their graph pat-
terns even when ϕ and all GFDs in Σ are variable GFDs, and
when none of them has the form (Q[x̄], ∅ → Y ). Thus the
implication analysis of GFDs is more intriguing than their
satisfiability analysis, in contrast to Corollary 2.

Corollary 6: The implication problem is NP-complete for
constant GFDs alone, and for variable CFDs alone, even



when all the GFDs are defined with DAG patterns and when
none of them has the form (Q[x̄], ∅ → Y ). ✷

To prove these, consider a set Σ of GFDs and a GFD ϕ =
(Q[x̄], X → Y ). We define the following notations.

(1) We assume that ϕ is in the normal form, i.e., when Y
consists of a single literal x.A = y.B or y.B = c that is not a
tautology x.A = x.A. This does not lose generality. Indeed,
if Y consists of multiple literals, then ϕ is equivalent to a
set of GFDs (Q[x̄], X → l), one for each literal l ∈ Y . If Y
is ∅ or a tautology, then Σ |= ϕ trivially holds.

(2) For a set ΣQ of GFDs embedded in Q, we define a set
closure(ΣQ, X) of literals inductively as follows:

◦ X ⊆ closure(ΣQ, X), i.e., all literals of X are in it; and
◦ if (Q[x̄′], X ′ → Y ′) is in ΣQ and if all literals of X ′ can

be derived from closure(ΣQ, X) via the transitivity of
equality atoms, then Y ′ ⊆ closure(ΣQ, X).

Note that closure(ΣQ, X) differs from enforced(ΣQ) only in
the base case: the former starts with a given setX of literals,
while the latter uses X from GFDs with ∅ → X.
Along the same lines as closures of relational FDs [3], one

can verify that closure(ΣQ, X) can be computed in PTIME.

(3) Recall that Y is a literal by the normal form defined
above. We say that Y is deducible from Σ and X if there
exists a set ΣQ of GFDs that are embedded in Q and derived
from Σ, such that Y ∈ closure(ΣQ, X).

We characterize the implication analysis as follows.

Lemma 7: For ϕ = (Q[x̄], X → Y ) and a set Σ of GFDs,
Σ |= ϕ if and only if Y is deducible from Σ and X. ✷

The proof of the lemma is an extension of its relational
FD counterpart (see [3] for relational FDs).

Proof of Theorem 5. For the upper bound, we give an
algorithm for deciding Σ |= ϕ as follows. (a) Guess a set
Σ′ ⊆ Σ, and a mapping from the pattern of each GFD in Σ′

to the pattern Q of ϕ. (b) Check whether the mappings are
isomorphic to subgraphs of Q. (c) If so, derive the set ΣQ

of GFDs embedded in Q from Σ′ and the guessed mappings.
(d) Check whether Y ∈ closure(ΣQ, X); if so, return “yes”.
The algorithm is in NP since steps (b), (c) and (d) are in
PTIME. Its correctness follows from Lemma 7.
When the assumption about the satisfiability of Σ and X

in ϕ is lifted, the algorithm can be extended with two initial
steps: (i) check whether Σ is not satisfiable in NP; if so,
return “invalid”, and otherwise continue; (ii) check whether
X is satisfiable, in PTIME; if so, continue; otherwise return
“yes”. The extended algorithm is still in NP. That is, the
assumption does not increase the complexity bound.
The lower bound is verified by reduction from a variant of

subgraph isomorphism, which is shown NP-complete. The
reduction uses constant GFDs only or variable CFDs only, all
defined with DAGs. Thus it also proves Corollary 2. ✷

Tractable cases. An efficient special case is as follows.

Corollary 8: The implication problem is in PTIME for
GFDs defined with tree-structured patterns. ✷

5. INCONSISTENCY DETECTION
As an application of GFDs, we detect inconsistencies in

graphs based on the validation analysis of GFDs. Our main
conclusion is that while the validation problem for GFDs is

intractable, it is feasible to efficiently detect errors in real-life
graphs by means of parallel scalable algorithms.

5.1 GFD Validation and Error Detection
Given a GFD ϕ = (Q[x̄], X → Y ) and a graph G, we say

that a match h(x̄) of Q in G is a violation of ϕ if Gh 6|= ϕ,
where Gh is the subgraph induced by h(x̄). For a set Σ of
GFDs, we denote by Vio(Σ, G) the set of all violations of
GFDs in G, i.e., h(x̄) ∈ Vio(Σ, G) if and only if there exists
a GFD ϕ in Σ such that h(x̄) is a violation of ϕ in G. That
is, Vio(Σ, G) collects all entities of G that are inconsistent
when the set Σ of GFDs is used as data quality rules.

The error detection problem is stated as follows:

◦ Input: A set Σ of GFDs and a graph G.
◦ Output: The set Vio(Σ, G) of violations.

Its decision problem, referred to as the validation prob-
lem for GFDs, is to decide whether G |= Σ, i.e., whether
Vio(Σ, G) is empty. The problem is nontrivial.

Proposition 9: Validation of GFDs is coNP-complete. ✷

Proof: We show that it is NP-hard to check, given G and Σ,
whether G 6|= Σ, by reduction from subgraph isomorphism.
For the upper bound, we give an algorithm that returns
“yes” if G 6|= Σ: (a) guess a GFD (Q[x̄], X → Y ) from Σ
and a mapping h from Q to a subgraph of G; (b) check
whether h is isomorphic; (c) if so, check whether h(x̄) |= X
but h(x̄) 6|= Y ; if so, return “yes”. This is in NP. ✷

In contrast, validation is in PTIME for FDs and CFDs, and
errors can be detected in relations by two SQL queries that
can be automatically generated from FDs and CFDs [16].
That is, error detection is more challenging in graphs.

A sequential algorithm. We give an algorithm that, given
a set Σ of GFDs and a graph G, computes Vio(Σ, G) with a
single processor. It is denoted as detVio and works as follows.
(1) It starts with Vio(Σ, G) = ∅. (2) For each (Q[x̄], X → Y )
in Σ, it enumerates all matches h(x̄) of Q in G, and checks
whether h(x̄) 6|= X → Y ; if so, it adds h(x̄) to Vio(Σ, G).

The cost of detVio is dominated by enumerating matches
h(x̄) of Q[x̄] in Σ. It is exponential and prohibitive for big G.

5.2 Parallel Scalability
Is error detection feasible in large-scale graphs? Our an-

swer is affirmative, by using parallel algorithms to compute
Vio(Σ, G). To characterize the effectiveness of paralleliza-
tion, we adopt a notion of parallel scalability [29]. Denote by

◦ W (Σ, G) the workload, i.e., the necessary amount of
work needed to compute Vio(Σ, G) for any algorithm;

◦ t(|Σ|, |G|) the running time of a “best” sequential algo-
rithm to compute Vio(Σ, G), i.e., among all such algo-
rithms, it has the least worst-case complexity; and

◦ T (|Σ|, |G|, n) the time taken by a parallel algorithm to
compute Vio(Σ, G) by using n processors.

An error detection algorithm is parallel scalable if

T (|Σ|, |G|, n) =
c ∗ t(|Σ|, |G|)

n
+ (n|Σ||W (Σ, G)|)l,

such that c∗t(|Σ|,|G|)
n

≥ (n(|Σ||W (Σ, G)|)l when n ≤ |G| as
found in practice, where c and l are constants. It reduces
running time when n gets larger. Intuitively, such an algo-
rithm guarantees that for a (possibly large) graph G, the
more processors are used, the less time it takes to compute
Vio(Σ, G). Hence it makes error detection feasible.



Workload model. To characterize the cost of error detec-
tion, we first introduce a model to quantify its workload.
We start with notions. Consider a GFD ϕ = (Q[x̄], X →

Y ), where (Q1, . . . , Qk) are (maximum) connected compo-
nents of Q. Consider z̄ = (z1, . . . , zk), where for i ∈ [1, k],
zi is a variable in x̄ such that µ(zi) is a node in Qi, where µ
is the mapping from variables to nodes in Q (see Section 2).
We fix a z̄, referred to as the pivot of ϕ, by picking zi with
the minimum radius in Qi, where the radius is the longest
shortest distance between µ(zi) and any node in Qi. We use
PV(ϕ) to denote ((z1, c

1
Q), . . . , (zk, c

k
Q)), referred to as the

pivot vector of ϕ, where ciQ is the radius of Qi at µ(zi).

Observe the following. (a) By the locality of subgraph
isomorphism, for any graph G, match h(x̄) of Q in G, and
any node v = h(x) for x ∈ x̄, v is within ciQ hops of some

h(zi). (b) Vector PV(ϕ) can be computed in O(|Q|2) time,
where Q is much smaller than G in real life. (c) Pattern Q
typically has 1 or 2 connected components, and 99% of the
components have radius at most 2 [21]. Hence in PV(ϕ), the
arity ||z̄|| and each radius ciQ are typically 1 or 2.

Example 9: For GFDs of Example 5, PV(ϕ1), PV(ϕ2),
PV(ϕ4) and PV(ϕ6) are ((x, 1), (y, 1)), ((x, 1)), ((x, 0), (y, 0))
and ((x, 3)), respectively (see Fig. 2); in particular, we take
account x as a pivot of Q6; similarly for ϕ3 for ϕ5. ✷

A work unit w for checking ϕ in a graph G is characterized
by an one-to-one mapping σ from z̄ to nodes in G, where z̄
is the pivot in PV(ϕ), such that for each zi ∈ z̄, σ(zi) and
µ(zi) share the same label, i.e., σ(zi) is a candidate of µ(zi).
More specifically, w = 〈v̄z, Gz̄〉, where (a) v̄z = σ(z̄); and
(b) Gz̄ is the fragment of G that includes, for each zi ∈ z̄,
the ciQ-neighbor of σ(zi), i.e., the subgraph of G induced by

all the nodes within ciQ hops of σ(zi). Intuitively, Gz̄ is a
data block in G that has to be checked to validate ϕ.
We refer to v̄z as a pivot candidate for ϕ in G.

The workload W (ϕ,G) for checking ϕ in G, denoted by
W (ϕ,G), is the set of work units 〈v̄z, Gz̄〉 when v̄z ranges
over all pivot candidates of ϕ in G. The workload W (Σ, G)
of a set Σ of GFDs in G is

⋃
ϕ∈Σ W (ϕ,G).

Observe the following. (a) To validate GFD ϕ in a graph
G, it suffices to enumerate matches h(x̄) of Q in data block
Gz̄ of each work unit of ϕ, by the locality of subgraph iso-
morphism. That is, we enumerate in small Gz̄ instead of
in big G. (b) The sequential cost t(|Σ|, |G|) is the sum of

|Gz̄|
|Σ| for all Gz̄’s that appear in W (Σ, G). (c) The size

|W (Σ, G)| is at most |G|k, where k is the maximum arity of
z̄ in all PV(ϕ) of ϕ ∈ Σ. As argued earlier, typically k ≤ 2.
Hence |W (Σ, G)| is exponentially smaller than t(|Σ|, |G|).
(d) For a match h(x̄), checking whether h(x̄) |= X → Y
takes O((|X| + |Y |)log(|X| + |Y |)) time, and |X| + |Y | ≤
|ϕ|. Since the size |ϕ| of ϕ is much smaller than |G|, W (ϕ,G)
suffices to assess the amount of work for checking ϕ in G.

Challenges. Computing Vio(Σ, G) is a bi-criteria optimiza-
tion problem. (a) Workload balancing, to evenly partition
W (Σ, G) over n processors; it is to avoid “skewed” parti-
tions, i.e., when a processor gets far more work units than
others, and hence, to maximize parallelism. (b) Minimiz-
ing data shipment, to reduce communication cost, which is
often a bottleneck [4]. When a graph G is fragmented and
distributed across processors, to process a work unit w =
〈v̄z, Gz̄〉, we need to ship data from one processor to another

to assembleGz̄. The cost, denoted by CC(w), is measured by
cs ∗ |M |, where cs is a constant and M is the data shipped.

Parallel scalable error detection. We tackle these chal-
lenges in the following two settings, which are practical par-
allel paradigms as demonstrated by [22]. We show that par-
allel scalability is within reach in these settings.

Replicated G. Graph G is replicated at each processor [22].
We study error detection with replicated G (Section 6.1), to
balance workload W (Σ, G) over n processors such that the
overall parallel time for computing Vio(Σ, G) is minimized.

Theorem 10: There exists a parallel scalable algorithm that
given a set Σ of GFDs and a graph G replicated at n pro-

cessors, computes Vio(Σ, G) in O( t(|Σ|,|G|)
n

+ |W (Σ, G)|(n+
log |W (Σ, G)|)) parallel time. ✷

Partitioned G. When G is partitioned across processors,
data shipment in inevitable. We study error detection with
partitioned G (Section 6.2), with bi-criteria objective to (a)
minimize data shipment and (2) balance the workload.

Theorem 11: There exists a parallel scalable algorithm that
given a set Σ of GFDs, a partitioned graph G and n pro-

cessors, computes Vio(Σ, G) in O( t(|Σ|,|G|)
n

+ n|W (Σ, G)|2

log|W (Σ, G)|+ |Σ||W (Σ, G)|) parallel time. ✷

6. PARALLEL ALGORITHMS
We next develop parallel scalable algorithms for error de-

tection in the settings given above, as proofs of Theorems 10
and 11 in Sections 6.1 and 6.2, respectively. Such algorithms
make it feasible to detect errors in large-scale graphs. We
should remark that there exist other criteria for measuring
the effectiveness of parallel algorithms (see Section 1).

6.1 Parallel Algorithm for Replicated Graphs
We start with an algorithm in the setting when G is repli-

cated at each processor. In this setting, the major challenge
is to balance the workload for each processor. The idea is
to partition workload W (Σ, G) in parallel, and assign (ap-
proximately) equal amount of work units to n processors.

Algorithm. The algorithm is denoted as repVal and shown
in Fig. 4. Working with a coordinator Sc and n proces-
sors S1, . . . , Sn, it takes the following steps. (1) It first esti-
mates workload W (Σ, G), and creates a balanced partition
Wi(Σ, G) of W (Σ, G) for i ∈ [1, n], by invoking a parallel
procedure bPar (line 1). It then sends Wi(Σ, G) to proces-
sor Si (line 2). (2) Each processor Si detects its set of local
violations, denoted by Vioi(Σ, G), by a procedure localVio in
parallel (line 3), which only visits the data blocks specified
in Wi(Σ, G). (3) When all processors Si return Vioi(Σ, G),
Sc computes Vio(Σ, G) by taking a union of all Vioi(Σ, G)
(lines 4-5). It then returns Vio(Σ, G) (line 6).

We next present procedures bPar and localVio.

Workload balancing. Procedure bPar balances workload
in two phases: estimation and partition, in parallel.

Workload estimation. Procedure bPar first estimates work-
load W (Σ, G) in parallel, following the three steps below.

(1) At coordinator Sc, for each GFD ϕ ∈ Σ, bPar constructs
a pivot vector PV(ϕ) = (z̄, c̄Q). It then balances the com-
putation for workload estimation at n processors as follows.



Algorithm repVal

Input: A set Σ of GFDs, coordinator Sc, n processors S1, . . . , Sn,
a graph G replicated at each processor

Output: Violation set Vio(Σ, G).

1. bPar(Σ, G); /*balance workload in parallel*/
/*executed at coordinator Sc*/
2. send Wi(Σ, G) to processor Si;
3. invoke localVio(Σ,Wi(Σ, G)) at each processor Si for i ∈ [1, n];
4. if every processor Si returns answer Vioi(Σ, G) then
5. Vio(Σ, G): =

⋃
i∈[1,n] Vioi(Σ, G));

6. return Vio(Σ, G);

Procedure localVio(Σ,Wi(Σ, G))
/*executed at each processor Si in parallel*/
1. set Vioi(Σ, G) := ∅;
2. for each w = 〈vz̄ , |Gz̄ |〉 ∈ Wi(Σ, G) for GFD ϕ ∈ Σ do
3. enumerate matches h(x̄) by accessing Gz̄ ;
4. for each h(x̄) such that h(x̄) 6|= X → Y do
5. Vioi(Σ, G):= Vioi(Σ, G) ∪ {h(x̄)};
6. return Vioi(Σ, G);

Figure 4: Algorithm repVal

(a) For each variable z in the pivot z̄, it extracts the fre-
quency distribution of candidates C(µ(z)), i.e., those nodes
inG that have the same label as µ(z). This can be supported
by statistics of G locally stored at Sc.

(b) For each PV(ϕ) = ((z1, c
1
Q), . . . , (zk, c

k
Q)) and each zi,

it evenly partitions candidates C(µ(zi)) into m sets, for a
predefined number m. More specifically, it derives an m-
balanced partition Rµ(zi) = {r1, . . . , rm} of value ranges of
a selected attribute of C(µ(zi)), such that the number of
candidates in C(µ(zi)) whose attribute values fall in each
range rj is even. This is done by using e.g., precomputed
equi-depth histogram (e.g., [33]). It then constructs a set M
of messages of the form 〈PV(ϕ), rz〉, where ϕ is a GFD, rz =
〈rz1 , . . . rzk 〉, and each rzi ∈ Rµ(zi) is a range of C(µ(zi)) for

zi. Removing duplicates, M contains at most mk messages
for ϕ, where k ≤ 2 in practice (see Section 5).

(c) The set M is evenly distributed to n processors; each

processor Si receives a subset Mi of about
|M|
n

messages.

Example 10: Consider GFD ϕ1 of Example 5, where
PV(ϕ1) = ((x, 1), (y, 1)) (i.e., k = 2). Consider graph G
including 9 flights flight1–flight9. For n = 3 = m, proce-
dure bPar balances the estimation W (ϕ1, G) as follows.

(1) It determines a 3-range partition Rflight for flight entities
as e.g., {[flight1, flight3], [flight4, flight6], [flight7, flight9]}, for
both µ(x) and µ(y), based on attribute µ(x).val and µ(y).val.

(2) It yields a set M of 6 messages 〈PV(ϕ1), (rflight, r
′
flight)〉

after removing duplicates (since the two connected compo-
nents in Q1 (Fig. 2) of ϕ1 are isomorphic, (PV(ϕ1), ri, rj)
and (PV(ϕ1), rj , ri) are duplicates for ranges ri and rj).

It then evenly distributes M to 3 processors, e.g., S1

receives M1 = {〈PV(ϕ1), ([flight1, flight3], [flight1, flight3])〉,
〈PV(ϕ1), ([flight1, flight3], [flight4, flight6])〉}. ✷

(2) Procedure bPar then identifies work units at each pro-
cessor Si, in parallel. For each message 〈PV(ϕ), rz〉 in Mi,
Si finds (a) all pivot candidates vz̄ of z̄ such that for each
zi ∈ z̄, its candidate vz̄[zi] in vz̄ has attribute value in the
range rzi ∈ rz; and (b) the ciQ-neighbors Gz̄ for each vz̄.

Each processor Si then sends a message M ′
i to the coor-

dinator Sc. Here M ′
i is a set of 〈vz̄, |Gz̄|〉, each encoding a

pivot candidate and the size of the data block for a unit.

Note that |Gz̄| is sent, not Gz̄. Moreover, Si keeps track of
Gz̄ to facilitate local error detection (to be seen shortly).

Example 11: For 〈PV(ϕ1), ([flight1, flight3], [flight1, flight3])〉,
processor S1 finds 3 candidates {flight1, flight2, flight3} in
the range [flight1, flight3], and their 1-hop neighbors. These
yield vz̄[x] as (flighti, flightj) (i ∈ [1, 3], j ∈ [1, 3], and i < j
to remove duplicates) and correspondingly, 3 work units
encoded with |Gz̄|, where |Gz̄| is the total size of the 1-hop
neighbors of flighti and flightj in vz̄[x]. For example, a unit
w1 is 〈(flight1, flight2), 22〉, where Gz̄ for w1 is graph G1 in
Fig. 2, which has 22 nodes and edges in total. ✷

(3) Procedure bPar, at the coordinator Sc, collects a set
of messages 〈vz̄, |Gz̄|〉 from all the processors, denoted by
W (Σ, G). It encodes the set of work units to be partitioned.

Workload partition. This gives rise to a load balancing prob-
lem. An n-partition W of W (Σ, G) is a set of n pair-wisely
disjoint work unit sets {W1(Σ, G), . . . ,Wn(Σ, G)}, such that
W (Σ, G) =

⋃
i∈[1,n] Wi(Σ, G). It is balanced if the cost

t(|Σ|,Wi(Σ, G)), estimated as the sum of |Gz̄|
|Σ| for all Gz̄ in

Wi(Σ, G)), is approximately equal. The load balancing prob-
lem is to find a balanced n-partition W for a given W (Σ, G).

Refer to the largest cost incurred at a processor as the
makespan of the parallel processing. The load balancing
problem is “equivalent to” makespan minimization [7], by

setting the capacity of each processor as t(|Σ|,|G|)
n

, via PTIME

reductions. The problem is intractable, but approximable.

Proposition 12: (1) The load balancing problem is NP-
complete. (2) There is a 2-approximation algorithm to find
a balanced workload partition in O(n|W (Σ, G)|+ |W (Σ, G)|
log |W (Σ, G)|) parallel time for given Σ, n and W (Σ, G). ✷

Given W (Σ, G), procedure bPar computes a balanced n-
partition with a greedy strategy, following an approximation
algorithm of [7] for makespan minimization. (1) It first as-
sociates a weight |G(z̄)| with each work unit w = 〈vz̄, |Gz̄|〉.
It then sorts all the work units, in descending order of the
weights. With each processor it associates a load, initially 0.
(2) It greedily picks a work unit w with the smallest weight
and a processor Si with the minimum load, assigns w to
Si and updates the load of Si by adding the weight of w.
(3) The process proceeds until all work units are distributed.
This yields a 2-approximation algorithm, by approximation-
factor preserving reduction to its counterpart of [7].

Example 12: Suppose that coordinator Sc receives 9 work
units {w1, . . . , w9} in total, with estimated size {22, 22, 26,
26, 30, 30, 24, 28, 28}, respectively. The greedy assignment
strategy of bPar generates a 3-partition of the work units
as {{w1, w3, w9}, {w2, w4, w5}, {w6, w7, w8}}, with balanced
block sizes as 76, 78, 82, respectively. Then Sc assigns the
3 partitions to processors S1, S2, S3, respectively. ✷

Local error detection. Upon receiving the assigned
Wi(Σ), procedure localVio computes the local violation set
Vioi(Σ, G) at each processor Si in parallel. For each work
unit 〈vz̄, |Gz̄|〉 ∈ Wi(Σ, G) for GFD ϕ, it (a) enumerates
matches h(x̄) of the pattern in ϕ such that h(x̄) includes vz̄,
by only accessing Gz̄, and (b) checks whether h(x̄) |= X →
Y of ϕ. It collects in Vioi(Σ, G) all violations detected, and
sends Vioi(Σ, G) to coordinator Sc at the end of the process.

Example 13: Consider GFD ϕ1 = (Q1[x̄], X1 → Y1) (Ex-
ample 5) and work unit w1 (Example 11) assigned to proces-



sor S1. Procedure localVio inspects G1 (Fig. 2) for w1, and
finds a match h1(x̄) of Q1 in G1, where h1 is given in Ex-
ample 4. As shown there, h1(x̄) 6|= X1 → Y1. Thus localVio

adds h1(x̄) to Vio1(Σ, G). Similarly, S1 processes w3 and w9

assigned to it, and finally returns Vio1(Σ, G) to Sc. ✷

Proof of Theorem 10. By the locality of subgraph isomor-
phism, procedure bPar identifies all work units, and localVio

computes all violations. From these the correctness of repVal
follows. For the complexity, one can verify the following: (a)

procedure bPar estimates W (Σ, G) in O( |W (Σ,G)|
n

) parallel
time, by using a balanced partition; the partitioning takes
O(n|W (Σ, G)| + |W (Σ, G)| log |W (Σ, G)|) time [7]; and (b)

procedure localVio takes O( t(|Σ|,|G|)
n

) parallel time, via a bal-
anced workload partition. Thus repVal has the complexity
stated in Theorem 10 and is parallel scalable. ✷

6.2 Algorithm for Fragmented Graphs
Graph G may have already been fragmented and dis-

tributed across n processor, especially when it is too costly
to replicate G at each processor. In this setting, we have a
bi-criteria error detection problem. Given a set Σ of GFDs
and a fragmented graph G, it is to compute Vio(Σ, G) in
parallel, such that (1) the communication cost is minimized,
and (2) the workload for n processors is balanced.
Consider a fragmentation (F1, . . . , Fn) of G(V,E, L, FA)

such that (a) each Fi(Vi, Ei, L, FA) is a subgraph of G, (b)⋃
Ei = E and

⋃
Vi = V , and (c) Fi resides at processor

Si (i ∈ [1, n]). Assume w.l.o.g. that the sizes of Fi’s are
approximately equal. Moreover, Fi keeps track of (a) in-
nodes Fi.I, i.e., nodes in Vi to which there exists an edge
from another fragment, and (b) out-nodes Fi.O, i.e., nodes
in another fragment to which there is an edge from a node
in Vi. We refer to nodes in Fi.I or Fi.O as border nodes.

Algorithm. We provide an error detection algorithm for
fragmented G, denoted as disVal. It differs from repVal in
workload estimation and assignment, and in local error de-
tection, to minimize communication and computation costs.
Algorithm disVal works with a coordinator Sc and n pro-

cessors S1, . . . , Sn. (1) It first estimates and partitions work-
load W (Σ, G) via a procedure disPar, such that the workload
Wi(Σ, G) at each Si is balanced, with minimum communica-
tion cost. (2) Each processor Si uses a procedure dlovalVio

to detect local violation Vioi(Σ, G), in parallel, with data
exchange. (3) Finally, Vio(Σ, G) =

⋃
i∈[1,n] Vio(Σi, G).

We next present procedures disPar and dlovalVio.

Bi-criteria assignment. Procedure disPar extends its
counterpart bPar by supporting (a) workload estimation
with communication cost, and (b) bi-criteria assignment.

Workload estimation. Procedure disPar estimates W (Σ, G)
at each Si in parallel. For each pivot vector PV(ϕ) =
((z1, c

1
Q), . . . , (zk, c

k
Q)) and each zl in z̄, it finds (a) local can-

didates C(µ(zl)) of µ(zl) in Fi, (b) the clQ-neighbors Gz̄[zl]
for each candidate of C(µ(zl)), and (c) border nodes Bz̄[zl]
from Gz̄[zl] to some nodes in Gz̄[zl]. It encodes partial work

unit wϕ as 〈vz̄, |Gz̄|, Bz̄〉, where (i) vz̄ is a pivot candidate of

z̄ in Fi; if C(µ(zl))=∅, vz̄[zj ] takes a placeholder ⊥; (ii) |Gz̄|
is the list of |Gz̄[zl]|; and (iii) Bz̄ is the list of border nodes
Bz̄[zl], for all zl ∈ z̄, indicating“missing data”. Each Si then
sends a message Mi to coordinator Sc, with all units, along
with the sizes of c-neighbors of border nodes in Fi.I, where
c ranges over the radius of patterns Q in Σ.

Upon receiving Mi’s, disPar builds W (ϕ,G), the set of
complete work units at Sc. A work unit 〈vz̄, |Gz̄|, Bz̄〉 is
added to W (ϕ,G) if for each zl ∈ z̄, vz̄[zl] is a candidate
viz̄[zl] from a unit wi

ϕ of Mi such that viz̄[zl] 6= ⊥, |Gz̄| is the

sum of |Gi
z̄[zl]| (extracted from |Gi

z̄|), and Bz̄ is the union

of Bi
z̄[zl] (extracted from Bi

z̄), for all i ∈ [1, n] and ϕ ∈ Σ.
That is, disPar assembles viz̄[zl] into work units. It also marks
|Gi

z̄[zl]| and Bi
z̄[zl] with its source wi

ϕ.

Workload assignment. The bi-criteria assignment problem is
to find an n-partition ofW (Σ, G) intoWi(Σ, G) for i ∈ [1, n],
such that (a) Wi(Σ, G) is balanced, and (b) its communica-
tion cost CCi is minimized, where CCi denotes the amount
of data that needs to be shipped to processor Si if Wi(Σ, G)
is assigned to Si. It should ensure that for each pivot can-
didate vz̄, there exists a unique unit 〈vz̄, |Gz̄|, Bz̄〉 in all of
Wi(Σ, G), i.e., the candidate is checked only once.

Cost CCi is estimated as follows. For each 〈vz̄, |Gz̄|, Bz̄〉
in Wi(Σ, G) and each zl ∈ z̄, define CCvz̄ [zl] to be the sum
of (a) |Gj

z̄[zl]| if j 6= i, i.e., G
j
z̄[zl] has to be fetched from

fragment j; (b) |G(cl
Q
,b)| for each border node vb ∈ Bz̄[zl],

which also demands data fetching. These are identified by
using the sources wi

ϕ recorded above. Let CCvz̄ be the sum
of CCvz̄ [zl] for all zl ∈ z̄. Then CCi is the sum of all CCvz̄

for candidates vz̄ in Wi(Σ, G). Care is taken so that each
data block is counted only once for CCi.

While bi-criteria assignment is more intriguing than load
balancing, it is within reach in practice via approximation.

Proposition 13: (1) The bi-criteria assignment problem is
NP-complete. (2) There exists a 2-approximation algorithm
to find a balanced workload assignment with minimized com-
munication cost in O(n|W (Σ, G)|2 log(|W (Σ, G)|)) time. ✷

Extending a strategy for makespan minimization [43], pro-
cedure disPar computes an n-partition of W (Σ) (after unit
grouping) into Wi(Σ, G), sent to processor Si for i ∈ [1, n].

Local error detection. Upon receiving Wi(Σ, G), proce-
dure dlovalVio computes local violations Vioi(Σ, Fi) at pro-
cessor Si, by selecting the following evaluation schemes.

Prefetching. For a work unit w = 〈vz̄, |Gz̄|, Bz̄〉, it first
fetches Gz̄ and G(c,b) for Fi.O nodes in Bz̄ from other frag-
ments. It ensures that each node (edge) is retrieved only
once. After the data is in place, it detects errors locally as
in localVio to compute Vioi(Σ, Fi).

Partial detection. We can also ship partial matches instead
of data blocks. The idea is to estimate the size of partial
matches via graph simulation [19] from pattern Q[x̄] in a
GFD ϕ to Fi. If the number of partial matches is not large, Si

exchanges such matches with other processors in a pipelined
fashion, and updates Vioi(Σ, Fi) as soon as a complete match
can be formed from partial ones.

For a unit w ∈ Wi(Σ, G) for GFD ϕ at Si, procedure
dlovalVio selects a strategy that incurs smaller (estimated)
communication cost CC(w) (see Appendix for the estima-
tion of CC(w)). Intuitively, dlovalVio decides to process each
unit either locally or at a remote processor, whichever incurs
smaller data shipment.

Our algorithms also support optimization strategies for
skewed graphs and workload reduction (see Appendix).

We verify Theorem 11 by showing that disVal is correct
and has the desired complexity, similar to Theorem 10.
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(h) Varying ||Σ|| (Pokec)
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(i) Varying |Q| (Pokec)
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(j) Varying n (DBPedia)
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Figure 5: Performance evaluation

7. EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we experimentally

evaluated (1) the parallel scalability, (2) workload partition,
(3) communication costs, (4) scalability of our algorithms,
and (5) the effectiveness of GFDs for error detection.

Experimental setting. We used three real-life graphs: (a)
DBpedia, a knowledge graph [1] with 28 million entities of
200 types and 33.4 million edges of 160 types, (b) YAGO2,
an extended knowledge base of YAGO [44] with 3.5 million
nodes of 13 types and 7.35 million edges of 36 types, (c)
Pokec [2], a social network with 1.63 million nodes of 269
different types, and 30.6 million edges of 11 types. We re-
moved meaningless nodes and labels for a compact represen-
tation. We then inserted new edges by repeatedly derefer-
encing HTTP URIs over a set of sampled entities to further
enlarge DBpedia (resp. YAGO2), to 12.3 million (resp. 3.2
million) entities and 32.7 million (resp. 7.1 million) edges.

We also developed a generator to produce synthetic graphs
G = (V,E, L, FA) following the power-law degree distribu-
tion. It is controlled by the numbers of nodes |V | (up to
50 million) and edges |E| (up to 100 million), with L drawn
from an alphabet L of 30 labels, and FA assigning 5 at-
tributes with values from an active domain of 1000 values.

GFDs generator. We generated sets Σ of GFDs (Q[x̄], X →
Y ), controlled by (a) ||Σ||, the number of GFDs, and (b)
|Q|, the average size of graph patterns Q in Σ, with 1 or 2
connected components. For each real-life graph, (1) we first
mined frequent features, including edges and paths of length
up to 3. We selected top-5 most frequent features as “seeds”,
and combined them to form patterns Q of size |Q|. (2) For
each Q, we constructed dependency X → Y with literals

composed of the node attributes. We generated 100 GFDs

on each real-life graph in this way. For synthetic graphs, we
generated 50 GFDs with labels drawn from L.

Algorithms. We implemented the following, all in Java: (1)
sequential algorithm detVio (Section 5), (2) parallel algo-
rithm repVal (Fig. 4), versus its two variants (a) repran, which
randomly assigns work units to processors, and (b) repnop,
which does not support optimization strategies (multi-query
processing [31] and workload reduction; see Appendix), and
(3) parallel algorithm disVal (Section 6.2), versus its two
variants disran and disnop similar to their counterparts in (2).

We deployed the algorithms on Amazon EC2 c4.2xlarge
instances, each is powered by an Intel Xeon processor with
2.6GHz. We used up to 20 instances. Each experiment was
run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Parallel scalability. We first evaluated parallel
algorithms repVal and disVal, versus their variants. Fixing
|Q|=5 and ||Σ||=50, we varied the number n of processors
from 4 to 20. We replicated and fragmented G for repVal and
disVal, respectively. Figures 5(a), 5(b) and 5(c) report their
performance on real-life DBpedia, YAGO2 and Pokec, re-
spectively. We find the following. (1) Both repVal and disVal

substantially reduce parallel time when n increases: they are
on average 3.7 and 2.4 times faster for n from 4 to 20, re-
spectively. These validate Theorems 10 and 11. (2) Both
repVal and disVal outperform their variants: repVal (resp.
disVal) is on average 1.9 and 1.4 times (resp. 1.5 and 1.3
times) faster than repnop and repran (resp. disnop and disran),
respectively. These verify the effectiveness of our optimiza-
tion and load balancing techniques. (3) Algorithm repVal is
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Figure 6: Scalability: Varying |G| (synthetic)

faster than disVal, since it requires no data exchange by trad-
ing with replicated G. (4) Both repVal and disVal work well
on large real-life graphs. For example, repVal (resp. disVal)
takes 156 (resp. 326) seconds on YAGO2 with 20 processors.
In contrast, sequential algorithm detVio does not terminate
on any of the three graphs within 6000 seconds. On average
parallel graph replication (not shown) takes 21.3, 89 and 75
seconds for YAGO2, DBpedia and Pokec, respectively. The
replication is performed once and is reused for all queries.

Exp-2: Workload complexity. We next evaluated the
impact of the complexity of GFDs on workload estimation
and partition, by varying ||Σ||, the number of GFDs, and |Q|,
the average pattern size. We fixed n = 16.

Varying ||Σ||. Fixing |Q| = 5, we varied ||Σ|| from 50 to

100. As shown in Figures 5(d), 5(f) and 5(h) on DBpe-
dia, YAGO2 and Pokec, respectively, (a) all the algorithms
take longer time over larger Σ, as expected, and (b) repVal
(resp. disVal) behaves better than repran and repnop (resp.
disran and disnop), by balancing workload and minimizing
communication. However, detVio does not terminate within
120 minutes on any of the three graphs when ||Σ|| ≥ 80.

Varying |Q|. Fixing ||Σ|| = 50, we varied |Q| from 2 to

6. As shown in Figures 5(e), 5(g) and 5(i), all the algo-
rithms take longer over larger |Q|, due to larger work units.
However, repVal (resp. disVal) outperforms repnop and repran
(resp. disnop and disran) in all the cases, for the same rea-
sons given above. Again, detVio does not terminate in 120
minutes when |Q| ≥ 6 on all the three graphs.

Exp-3: Communication cost. In the same setting as
Exp-1, we evaluated the total communication cost (mea-
sured as parallel data shipment time) of disVal, disran
and disnop over the three datasets, reported in Figures 5(j),
5(k) and 5(l), respectively. We omit repVal since it does not
require data exchange. We find the following: (a) the total
amount of data shipped (not shown) is far smaller than the
size of the underlying graphs; this confirms our estimate of
communication costs (Sections 5 and 6); (b) the communica-
tion cost takes from 12% to 24% of the overall error detection
cost when n changes from 4 to 20; this is one of the reasons
why adding processors does not always reduce parallel run-
ning time [19], since using more processors introduce more
data exchange among different processors; and (c) although
more data is shipped with larger n, the communication time
is not very sensitive to n due to parallel shipment.

Exp-4: Synthetic G. We also evaluated the performance
of algorithm disVal over large synthetic graphs of 50M nodes
and 100M edges. We only tested the setting when G is
partitioned, due to limited storage capacity for replicated G.

Fixing n = 16, we varied |G| from (10M, 20M) to (50M,
100M). As shown in Fig. 6, (1) all the algorithms take longer
time over larger |G|, as expected; (2) error detection is fea-

Figure 7: Real-life GFDs

sible in large graphs: disVal takes 21 minutes when |G| =
(50M, 100M); (3) disVal is on average 1.9 and 1.5 times faster
than disran and disnop, respectively; this is consistent with
the results on real-life graphs; and (4) sequential algorithm
detVio does not run to completion when |G| ≥ (30M, 60M)
within 120 minutes with one processor.

Exp-5: Effectiveness. To demonstrate the effectiveness
of GFDs in error detection, we show in Fig. 7 three real-life
GFDs and error caught by them. Another set of experiments
is reported in Appendix, comparing with other methods.

GFD 1 is (Q10[x̄], ∅ → x.val = c ∧ y.val = d) for distinct
c and d, (i.e., x.val = c ∧ y.val = d is false, stating that
a person x cannot have y as both a child and a parent. It
catches inconsistency in YAGO2 shown in Fig. 7.

GFD 2 is (Q11[x̄], ∅ → y.val = y′.val), stating that an entity
cannot have two disjoint types (with no common entities). It
identifies an inconsistency at the “schema” level of DBpedia
that contradicts a disjoint relationship.

GFD 3 is (Q12[x̄], ∅ → z.val = z′.val). It ensures that if a
person is the mayor of a city in a country z, and is affiliated
to a party of a country z′, then z and z′ must be the same
country. It detects an error in YAGO2 that associates dif-
ferent countries with New York city (NYC) and Democratic
Party, witnessed by the mayor of NYC.

Summary. From the experimental results we find the fol-
lowing. (1) Error detection with GFDs is feasible in real-life
graphs, e.g., repVal (resp. disVal) takes 156 (resp. 326) sec-
onds on YAGO2 with 20 processors. (2) Better still, they
are parallel scalable, with response time improved by 3.7
and 2.4 times, respectively, when the number of processors
increase from 4 to 20. (3) Our optimization techniques im-
prove the performance of repnop and disnop by 1.9 and 1.5
times, respectively; and workload balancing improves repran
and disran by 1.4 and 1.3 times, respectively. (4) GFDs are
capable of catching inconsistencies in real-world graphs.

8. CONCLUSION
The work is a first step towards a dependency theory for

graphs. We have proposed GFDs, established complexity
bounds for their classical problems, and provided parallel
scalable algorithms for their application. Our experimental
results have verified the effectiveness of GFD techniques.

One topic for future work is to develop effective algorithms
for GFD discovery in real-life graphs. Another topic is to pro-
vide a sound and complete axiom system for GFDs, along the
same lines as Armstrong’s axioms for relational FDs [3]. A
third topic is to re-investigate the satisfiability and implica-
tion problems for GFDs in the presence of types and other
semantic constraints commonly found in knowledge bases.
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Appendix
Optimization Strategies
We next present optimization strategies employed by our
algorithms.

Skewed graphs. Real-life graphs, e.g., social networks,
may exhibit skewed distribution, i.e., most nodes have few
neighbors while a small fraction of nodes are adjacent to a
large fraction of the edges. Such skewed distribution may
lead to a small number of large data blocks Gz̄, and hence
skewed workload.

Procedures bPar and disPar can readily adapt to skewed
graphs, by applying a replicate and split strategy for large
Gz̄. (a) We set a threshold θ for |Gz̄|. (b) For work units
w with Gz̄ exceeding θ, we replicate w with the same z̄, but
split Gz̄ to subgraphs with size at most θ. (c) The original w
is replaced by these new units. For these units, localVio and
dlovalVio detect errors in Gz by shipping partial matches
rather than data blocks.

We experimentally evaluated dlovalVio over skewed
graphs. We generate synthetic graphs G controlled by skew

measuring the “skewness” of G, quantified as a ratio |Gdm|
|Gdm′ |

,

where |Gdm| (resp. |Gdm′ |) is the average size of top 10%
smallest (resp. largest) d-hop neighbors of the nodes inG (we
set d=3). It estimates the unbalance degree of data block
sizes of work units. The smaller skew, the more unbalanced.
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Figure 8: The impact of skewed graphs

Fixing |G| = (10M, 20M) and n = 16, we varied skew

from 0.1 to 0.02. Figure 8 shows that all the algorithms
deteriorate when skew gets smaller (“more skewed”), due to
unbalanced workload, as expected. However, disVal is more
“robust”to skew: its running time only grows 1.7 times when
G becomes 5 times more “skewed”, as opposed to 2.0 times
by disran and 2.2 by disnop. This verifies the effectiveness of
our “replicate and split strategy”.

Multi-query processing. There has been work on opti-
mizing muilti-pattern matching by extracting common sub-
patterns [31]. Algorithm repVal and disVal use some of
the techniques, e.g., pattern containment and sub-pattern
scheduling, to process common sub-patterns in Σ, and to
remove redundant work units (e.g., Example 10).

Workload reduction. The implication analysis of GFDs
can help us further reduce workload. Given a set Σ of GFDs,
if Σ \ {ϕ} |= ϕ, we can safely remove ϕ from Σ without im-
pacting Vio(Σ, G). As shown in Theorem 5, the implication
problem is intractable. Nonetheless, it is in PTIME if the
patterns in Σ are trees (Corollary 8), and moreover, there
are heuristic algorithms to conduct the analysis efficiently.

Compared with Other Approaches

GFDs vs. other models. We evaluated the effectiveness of
GFDs for error detection with YAGO2, by comparing with
(a) the extension of CFDs to RDF [23], referred to as GCFDs,
and (b) BigDansing [28]. Since the complete set of “true”
errors in YAGO2 is unknown, we sampled a set of entities.
For each sampled entity x, we randomly injected noise (with
probability 2%, 2690 errors in total) into YAGO2 as sug-
gested by [50]: (a) attribute inconsistency, by changing the
value of an attribute x.A; (b) type inconsistency, by revis-
ing the type of x; and (c) representational inconsistency, by
revising the value of either x.A or x′.A if x.A=x′.A and x
and x′ are of the same type. Denote the set of entities with
noise as Vio, we define the precision (resp. recall) of an error

detection method A as |Vio∩Vio(A)|
|Vio(A)|

) (resp. |Vio∩Vio(A)|
|Vio|

, where

Vio(A) denotes the inconsistent entity set detected by A.

We constructed (1) a set Σ of 10 GFDs on YAGO2 with
frequent patterns that match a fraction of sampled entities
and with constants from the original values before noise in-
jection; and (2) a set of 7 GCFDs over sampled entities fol-
lowing [23], including all GFDs in Σ with conjunctive paths
(GCFDs do not allow general graph patterns). (3) We hard-
coded the GFDs as user-defined functions for each GFD in
Σ, as BigDansing does not support subgraph isomorphism.

We report the running time and accuracy of these methods
in Fig. 9, with n = 16 on YAGO2 extended with noise. We
find that (a) GFDs has higher accuracy (91%) than GCFDs,



model recall prec. time

GFD 0.91 1.0 131s

GCFD 0.57 1.0 106s
BigDansing 0.91 1.0 609s

Figure 9: Running time and accuracy

since it catches inconsistencies with general patterns not ex-
pressible by GCFDs; (b) it takes comparable time for GFDs

and GCFDs; and (c) BigDansing is 4.6 times slower, because
it had to cast subgraph isomorphic testing as relational joins.
It reports the same accuracy as our algorithm since it hard-
coded the same set Σ of GFDs.

Real-world GFDs. Observe the following about the GFDs

depicted in Fig. 7.

GFD 1 is not expressible as (a) a GCFD since Q10 is a cyclic

pattern, or (b) a CFD or denial constraint (DC) of BigDans-
ing, since otherwise it gets false negative if subgraph isomor-
phism is not enforced.

GFD 2 is not expressible as GCFD, CFD or DC for the same
reason as GFD 1.

GFD 3 is is not expressible as GCFD although Q12 is a tree,
since GCFD cannot do the test z.id = z′.id; similarly for CFD
and DC of BigDansing.

Summary. From the experimental results we can see the
following. (1) GFDs are more accurate than GCFDs in er-
ror detection. (2) BigDansing requires users to code GFDs

and subgraph isomorphism, and is 4.6 times slower than our
algorithm.


