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Abstract—This paper proposes a notion of parametric simula-
tion to link entities across a relational database D and a graph
G. Taking functions and thresholds for measuring vertex close-
ness, path associations and important properties as parameters,
parametric simulation identifies tuples t in D and vertices v in
G that refer to the same real-world entity, based on topological
and semantic matching. We develop machine learning methods
to learn the parameter functions and thresholds. We show that
parametric simulation is in quadratic-time, by providing such
an algorithm. Putting these together, we develop HER, a parallel
system to check whether (t, v) makes a match, find all vertex
matches of t in G, and compute all matches across D and G, all in
quadratic-time. Using real-life and synthetic data, we empirically
verify that HER is accurate with F-measure of 0.94 on average,
and is able to scale with database D and graph G.

I. INTRODUCTION

Consider a relational database D and a graph G from
different sources. Is it possible to determine whether a tuple t
in D and a vertex v in G refer to the same real-world entity?

The need for studying this is evident. While most business
data resides in relational databases, it is increasingly com-
mon to find graph-structured data, e.g., transaction graphs,
knowledge bases and social networks. It is often necessary
to correlate the data from different sources for extracting,
integrating and querying data in, e.g., data lakes [63].

However, it is hard to correlate data in relations and graphs.
It is “a longstanding challenge to the data management com-
munity” [39]. Unlike relational databases, real-life graphs may
not have a schema, and typically denote entities as vertices.
Even in the same graph, entities of the same “type” may have
different topological structures, and their properties are often
linked via paths, rather than annotated as direct attributes.

Example 1: Consider an enterprise procurement order placed
at an e-commerce company A. It contains the quantities and
specifications of the ordered items, along with information
on suppliers, brands, logistic, etc. While the formats of such
orders may vary across enterprises, the orders can be uniformly
expressed as relations, e.g., Tables I and II. As shown in Fig. 1,
company A maintains a knowledge graph G for the items it
carries. Consider the following three scenarios.

(1) Given ordered item t1 of Table I, company A wants to
check whether it is the item represented by vertex v1 in graph
G of Fig. 1. This is nontrivial. The specification of t1 comes
from catalogs/websites of suppliers, which may differ from the
information collected in G. Indeed, t1 and v1 have different
“topological structures”, e.g., “Dame Basketball Shoes D7” is
the value of item attribute of t1, while in G, it is represented
by two vertices v0 “Dame Basketball Shoes” and v8 “Dame
Gen 7”. Moreover, an attribute in a tuple may be encoded

by a path in G, e.g., the made in attribute “Can Duoc, VN”
of tuple b1 maps to a path (v15, v19, v9) in G, bearing edge
labels factorySite, isIn and isIn. Worse still, the attribute and
the edge labels on the path may not seem closely related.

(2) For item “Dame Basketball Shoes D7”, the procurement
managers want to find all matching items supplied by company
A, and buy the most cost effective one. This requires company
A to search the entire graph G to find the matches.

(3) To fulfill the order, company A needs to find all matches
from G of all the items that enterprise intends to order.

Cross checking also happens once a period of time, when
company A searches all matches across vertices in graph G
and all tuples from past orders collected in a large dataset D, to
accumulate information about items and orders, and improve
the performance of its item recommendation [49]. 2

Contributions & organization. We make an effort to link
entities across relations and graphs based on their semantics.

(1) System (Section II). We develop a system, denoted by HER
(Heterogeneous Entity Resolution), for linking entities in a re-
lational database D and a graph G. It converts D to a canonical
graph GD using W3C standard RDB2RDF [86], and supports
three modes. (a) SPair: users may enter pair (t, v) of a tuple
t ∈ D and a vertex v ∈ G. HER checks whether t and v make
a match, i.e., they refer to the same entity. (b) VPair: users may
ask for all vertices in G that match a given tuple t ∈ D. (c)
APair: one may also request HER to find all matches across D
and G. These modes correspond to cases (1)–(3) of Example 1.
In particular, VPair conducts real-time analysis as in, e.g., [88],
and APair is needed in fine-grained advertising [90].

(2) A new notion (Section III). Underlying HER is a notion of
parametric simulation. Given GD and G, it determines whether
a vertex ut in GD (denoting a tuple t in D) matches a vertex vg
in G. Since GD and G may have radically different topological
structures, it may not suffice to inspect only local features of
ut and vg . Hence parametric simulation recursively checks the
pairwise semantic closeness of descendants of ut and vg , by
embedding machine learning (ML) in topological matching.

More specifically, parametric simulation is inductively de-
fined to match (ut, vg) and their descendants. It maps paths in
GD to paths in G, to accommodate the semistructured nature
of graphs. It is parameterized by score functions to assess the
closeness of (a) vertices, (b) properties (descendants linked via
paths) of vertices, and (c) associations of pairwise matching
descendants of ut and vg . It decides that ut and vg match only
if an aggregate score is above predefined bounds.

(3) Learning parameters (Section IV). As parameters, we



item material color type brand qty
t1 Dame Basketball Shoes D7 phylon foam white Dame 7 b1 500
t2 Lightweight Running Shoes synthetic red DD8505 b1 100
t3 Mid-cut Basketball Shoes

Ultra Comfortable
phylon foam red null b2 200

TABLE I
RELATION item

name country manufacturer made in
b1 Addidas Originals Germany Addidas AG Can Duoc, VN
b2 Addidas Germany Addidas AG Long An, Vietnam

TABLE II
RELATION brand

define the score functions with BERT-based embedding and
metric learning models [73], [30], to quantify the semantic
similarity between labels. We select top-k “properties” of a
vertex via Long Short Term Memory (LSTM) network [58]
for a bound k. Bounds are decided by random search [19],
a trade-off between efficiency and accuracy. Moreover, HER
interacts with users to improve the parameter functions with
feedback, which employs triplet loss function [75] and major-
ity voting to make the fine-tuning robust.

(4) Complexity and algorithm (Section V). We show that para-
metric simulation takes quadratic time, as opposed to the
intractability of graph homomorphism and subgraph isomor-
phism (cf. [38]). To show this, we develop a quadratic-time
algorithm to determine whether a pair (ut, vg) makes a match.

(5) Parallel algorithms (Section VI). We also give algorithms
to compute all matches of a tuple t and all pairs of matches
across GD (i.e., D) and G with parametric simulation. We
show that both algorithms are in quadratic-time. We parallelize
these algorithms to scale with large databases and graphs.

(6) Empirical study (Section VII). Experimenting with six
real-life datasets and synthetic data, we find the following. On
average, (a) HER has F-measure= 0.94; it is 23.3% and 41.6%
more accurate than ML-based [36], [48], [62] and rule-based
[69] methods alone, respectively. (b) It is also 118 and 6 times
faster than ML-based and rule-based methods, respectively.
It takes 0.68ms to check whether a pair is a match across
databases D of 52M tuples and graphs G of 202M vertices
and edges with a single machine, and 107s to find all matches
across D and G using 16 machines. (c) It scales well with the
number n of processors. It is on average 3.2 times faster when
n varies from 4 to 16. These verify that integrating topological
matching and ML models is promising for entity linking.

Related work. We categorize the related work as follows.

Entity resolution (ER). ER has primarily been studied for
relational data that is specified by a schema (see [25] for a
survey). The state-of-the-art relational ER systems employ (1)
ML models, e.g., [50], [22] exploit graph embedding for ER;
and [48], [80], [62] propose ML-based ER architectures; (2)
transfer and active learning, e.g., [96], [47], learn ER models
that are transferable to new tasks; [71] learns ER rules via
active learning; [42], [24] employ active learning to adaptively
process ER workloads. Different from previous work, (a)
we study ER across relations and graphs, beyond merely on
relational data (e.g., [42], [22], [48]); and (b) “globally” assess
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Fig. 1. An e-commerce knowledge graph

the entity semantic closeness by recursively inspecting prop-
erties (descendants), while previous work considers only local
attributes or features of a single entity (e.g., [24], [96], [80]).

ER has also been studied for graphs, based on (1) rules,
e.g., keys [32] and graph differential dependencies [52]; (2)
ML models, e.g., [74] adopts unsupervised clustering and
matches vertices in the same cluster; [81] employs deep neural
networks; [31] and [97] make use of vertex embedding based
on heterogeneous skip-gram and co-occurrence; [89] encodes
edge information into graph embedding via interactions; [94]
exploits multi-view embedding and cross-data training; [64]
exploits triangle inequality for blocking, and conducts metric-
based ER; [43] aggregates value similarities via link condi-
tions; [44], [92], [51], [87] compute SimRank scores for vertex
matching; [77] aligns ontology via probability estimation.

There has also been work on heterogeneous ER [67], [69],
[53], [95], [79], [37]. However, their notions of heterogeneity
are quite different from ours. In [53], it means the (relational)
schema heterogeneity. [79] and [37] target heterogeneous net-
works with multiple typed objects and links. In [67], it comes
from loose schema binding. JedAI [69] considers various data
formats, e.g., RDF and CSV, by converting input entities into a
set of profiles in the form of name-value pairs, and then check-
ing labels and attributes as in [64]. While [95] links entities
in Web tables and knowledge bases, it takes only local infor-
mation (e.g., edit distance and vertex description) as features.

Unfortunately, none of the prior methods (e.g., [89], [94],
[77]) works well across relations D and graphs G. Relational
ER methods rely on schema information, and do not apply to
schema-agnostic graphs. In particular, entities are denoted as
vertices v in G, and its properties are linked from v via paths.
Relational methods do not explore such properties. To extend
these methods, one has to use joins to traverse paths and incur
cost way beyond quadratic time. Moreover, prior methods
explore only local properties, e.g., “local embeddings” [22],
[89] collect local information of neighbors within limited
hops. However, to accurately identify a tuple t in D and
a vertex v in G, one has to recursively check the pairwise
semantic closeness of important descendants of t and v.

Related to this work are also [82], [66], which map a cell
in a table to an entity in a knowledge base. However, their
settings differ from ours as follows: (1) we match tuples in
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database to vertices in graphs, rather than cells to vertices as in
SemTab; and (2) SemTab employ external query APIs or other
information from the Web, while we do not assume these.

This work differs from the prior work as follows. (a) We
study disjoint graph G and (canonical graph representation
of) database D, which are essentially heterogeneous. (b) We
propose parametric simulation that is beyond conventional ML
methods, and cannot be expressed as existing rules, since
(i) parametric simulation is recursively defined, beyond the
expressive power of first-order logic, and (ii) it “globally”
assesses the semantic closeness by recursively inspecting
properties (descendants), as opposed to checking attributes and
close neighbors of vertices as ML models. (c) Matches found
by parametric simulation are explainable, showing why two
vertices match based on matching vertex pairs and the accumu-
lated score. In contrast, embedding-based methods (e.g., [89]
and [94]) just train black-box model without explanation.

Graph simulation. Proposed for program analysis [61], this
notion has been extended to map edges to paths, e.g., bounded
[33] and strong simulation [57]. Other notions for graph
matching, e.g., subgraph isomorphism and homomorphism,
are too strong to match entities with different topological
structures; worse yet, they incur intractability (cf. [38]).

As will be seen in Section III, parametric simulation radi-
cally differs from graph (bounded, strong) simulation as fol-
lows. (1) It is parameterized with score functions and closeness
thresholds learned via ML models. Neither (aggregate) scores
nor ML models are used in (bounded, strong) simulation. (2)
It may map paths in one graph to paths in another. It does not
require every edge of u to find a match in G, to cope with
schemaless graphs in which missing links are common.

II. HETEROGENEOUS ENTITY RESOLUTION

We next outline HER (Heterogeneous Entity Resolution).

Preliminaries. We start with a review of basic notations.
Assume three infinite alphabets Υ, Θ and Φ, for relation
attributes, graph vertex labels and edge labels, respectively.
Relational databases. Consider a database schema R =
(R1, . . . , Rn), where Ri is a relation schema (A1, . . . , Ak),
and Ai ∈ Υ is an attribute. A relation of schema R is a set of
tuples with attributes Ai of R (i ∈ [1, k]). A database D of R
is (D1, . . . , Dn), where Di is a relation of Ri for i ∈ [1, n].

Graphs. We consider directed labeled graphs G = (V,E, L),
where (a) V is a finite set of vertices, (b) E ⊆ V ×V is a set
of edges, and (c) for each vertex v ∈ V (resp. edge e ∈ E),
L(v) (resp. L(e)) is a label in Θ (resp. Φ). The graphs encode
attributes (properties) as edges, like in RDF.
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Intuitively, edge labels of Φ typify predicates, and vertex
labels of Θ represent values. As will be seen in Section IV,
we treat labels of Φ and Θ with different ML models.

Architecture. As shown in Fig. 2, HER operates on a database
D of schema R and a graph G. It consists of five modules.

(1) RDB2RDF. This module converts D to a canonical graph
GD offline by, e.g., direct mapping of RDB2RDF [86], which
yields an 1-1 mapping fD from the tuples and their attributes
in D to the vertices and their edges in GD, respectively.

(2) Learn. It learns score functions and bounds, i.e., parameters
for parametric simulation. It also interacts with users to inspect
the matches, and improves the bounds based on feedback.

After these, users may issue requests in one of three modes.

(3) SPair. In this mode, users iteratively provide pairs (t, vg)
for tuples t in D and vertices vg in G. Given (t, vg), module
SPair first finds the vertex ut of GD denoting t, via mapping
fD. It then checks whether (ut, vg) makes a match via
parametric simulation. It returns true if so, and false otherwise.

(4) VPair. Users may enter a single tuple t. Module VPair
finds all pairs (t, vg) for all vertices vg∈G such that (ut, vg)
is a match, where ut is the vertex in GD that denotes tuple t.

(5) APair. Alternative, users may request to find all pairs (t, v)
that make matches for all tuples t ∈ D and vertices v ∈ G.

Here SPair, VPair and APair compute matches based on
parametric simulation, using the learned parameters. We will
define parametric simulation in Section III, learn parameters
in Section IV, and develop algorithms underlying SPair, VPair
and APair in Sections V and VI. The algorithms run on top
of GRAPE [35], [9], an open-source parallel graph engine.

RDB2RDF. We next present RDB2RDF. Several methods are
in place for converting relations to graphs, e.g., [59]. Here we
take RDB2RDF [85] for simplicity; HER allows user to plug
in other methods for representing relations as graphs.

Following direct mapping rules of RDB2RDF [20], for a
database schema R, we define a canonical mapping fD. Given
a database D of R, it returns a canonical graph GD = fD(D)
in which (1) each tuple t of relation schema R is mapped to
a unique vertex ut in GD labeled R; (2) each attribute A in
t is mapped to a unique vertex ut.A such that L(ut.A) is the
value of t.A and there is an edge (ut, ut.A) with label A in
GD; and (3) for each attribute A of a foreign key in tuple t
referencing another tuple t′, there exists an edge (ut, ut′) with
a pair (A, γ) of labels, where distinct γ indicates foreign key.

Example 2: Figure 3 shows the canonical graph GD con-
verted by canonical mapping fD from tuples t1 and b1 in
D, i.e., fD maps t1 and b1 to vertices u1 and u2 in GD,
respectively, and the foreign key is mapped to an edge from
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u1 to u2. Each attribute is mapped to a vertex with an edge
from u1 or u2, where the vertex label is its value and the edge
label is its name; e.g., “phylon foam” in t1 is mapped to u3
and attribute “material” is the edge label (see Fig. 3). 2

III. PARAMETRIC SIMULATION

We next introduce the notion of parametric simulation.
Given two graphs G1 = (V1, E1, L1) and G2 = (V2, E2, L2),
it is to identify their vertices that refer to the same entity.

Paths. We use the following notations.
A path ρ from a vertex v0 in G is a list ρ = (v0, v1, . . . , vl)

such that (vi−1, vi) is an edge in G for i ∈ [1, l]. The length
of ρ, denoted by len(ρ), is l, i.e., the number of edges on ρ.
A path is simple if vi 6= vj for i 6= j, i.e., a vertex appears on
ρ at most once. We consider simple paths in the sequel.

We refer to v2 as a child of v1 if (v1, v2) is an edge in E,
and as a descendant if there exists a path from v1 to v2. A
vertex is a called leaf if it has no children.

Parameters. To determine whether a vertex u0 in G1 matches
a vertex v0 in G2, parametric simulation inductively considers
the “closeness” of descendants of u0 and descendants of v0.

Given a descendant u′ of u0 (resp. v′ of v0) connected by
path ρ1 (resp. ρ2), we define score functions hv and hρ:

hv(u
′, v′) = Mv(L1(u′), L2(v′)) (1)

hρ(ρ1, ρ2) =
Mρ(L1(ρ1), L2(ρ2))

len(ρ1) + len(ρ2)
(2)

As will be seen in Section IV, Mv is a function that assesses
how close u′ and v′ are to each other, based on their labels
(types and values), andMρ inspects how close the association
of u′ to u0 and that of v′ to v0 is, based on the labels on
paths ρ1 and ρ2. Intuitively, the longer a path is, the weaker
the association is; hence Mρ(ρ1, ρ2) is divided by len(ρ1) +
len(ρ2). Both hv(u′, v′) and hρ(ρ1, ρ2) are in [0, 1].

Note that types (e.g., item and person) and values (e.g., red
and 500) are just labels of a node, and different nodes can have
the same types or values, i.e., type and value do not uniquely
identify a vertex in a graph like the tuple id in relational
database [72]. We do not use node id in our algorithms.

To identify u0 and v0 in practice, it often suffices to inspect
a small number of their important properties (descendants;
e.g., 18 in Section VII). In light of this, we adopt an ML-
based ranking function hr(·, ·) and a bound k such that given a
vertex u, hr(u, k) ranks the descendants of u and selects top-k
ones along with a path for each, which represent characteristic
features of u; similarly for hr(v, k) (see Section IV). Denote
by V kv the set of top-k descendants of v picked by hr(v, k).

Using hr(·, ·) is to strike a balance between the complexity
and accuracy of entity linking. Indeed, there are exponentially
many paths to descendants of u, and it is impractical to
enumerate them, especially when G1 or G2 is dense.

Example 3: Consider vertices u6 in canonical graph GD of
Fig. 3 and v8 in graph G of Fig. 1. The closeness of vertices
u6 and v8 is assessed by hv(u6, v8) =Mv(LD(u6), L(v8))=
Mv(Dame 7,Dame Gen 7). For paths ρ1=(u2, u9) in GD

Symbol Notation
R, D database D of schema R
GD RDB2RDF canonical graph of D

G = (V,E, L) labeled directed graph
hv , hρ, hr score functions hv , hρ and ranking function hr
σ, δ, k thresholds (vertex & path associations, # of properties)
V ku the top-k descendants picked by hr
S(u,v) lineage set of pair (u, v) of vertices
Π(u, v) match of (u, v) via parametric simulation

Γ(ut, vg) schema match pertaining to t and vg
TABLE III
NOTATIONS

and ρ2=(v10, v15, v19, v9) in G, their closeness is computed by
hρ(ρ1, ρ2) =Mρ(made in, (factorySite, isIn, isIn))/(1 + 3).

Let k=5. Function hr may select descendants item u10,
material u3, color u4, type u6 and brand u2 as properties
of u1 in GD. Similarly, it selects soleMadeBy v6, names v0,
brandName v10, typeNo v8 and hasColor v12 for v1 in G. 2

We use bounds σ for hv and δ for hρ to assess the closeness
of vertex labels and associations of labels on paths, respec-
tively. We will show how to determine σ, δ, k in Section IV.

Parametric simulation. Taking functions (hv, hρ, hr) and
thresholds (σ, δ, k) as parameters, parametric simulation is to
check whether (u0, v0) is a match, for u0 ∈ V1 and v0 ∈ V2.

Given (u0, v0), parametric simulation computes a binary
relation Π(u0, v0)⊆V1×V2 satisfying the following conditions:
(1) (u0, v0) ∈ Π(u0, v0); and
(2) for each pair (u, v) ∈ Π(u0, v0),

(a) hv(u, v) ≥ σ; and
(b) if u is not a leaf, then there exists a set S(u,v) of

(u′, v′) that is a partial injective (1-to-1) mapping
from V ku to V kv such that its aggregate score∑

(u′,v′)∈S(u,v)
hρ(ρ(u,u′), ρ(v,v′)) ≥ δ;

and for each (u′, v′) ∈ S(u,v), (u′, v′) ∈ Π(u0, v0).
Here ρ(u,u′) is the path selected by hr(u, k) for u′;
similarly for ρ(v,v′). We call S(u,v) a lineage set of (u, v).

We say that (u0, v0) is a match by simulation parameter-
ized with (hv, hρ, hr, σ, δ, k) if there exists such a nonempty
Π(u0, v0). There are possibly many such sets; to check
whether (u0, v0) makes a match, we only need to check the
existence of such a set, referred to as a witness of (u0, v0).

Intuitively, (u0, v0) is a match if (1) u0 and v0 are close
enough, measured by function hv based on their types and
values; (2) there exists a lineage set S(u0,v0) of pairwise match-
ing pairs (properties) such that their associations to (u0, v0) are
close enough, measured by the aggregated score with function
hρ; and (3) for a pair (u, v), S(u,v) is a set of pairs (u′, v′) such
that each important property u′ of u finds the “best” match
v′ if it exists (hence a partial 1-to-1 mapping) in terms of hρ
scores on paths found by hr. That is, (u0, v0) is a match if
their “values” and important properties are close enough.

Example 4: Let σ=0.7, δ=1.5 and k=5. Vertices u1 in Fig. 3
and v1 of Fig. 1 match by parametric simulation, as follows.

(1) Vertices u1 and v1 make a match since they carry the same
label, i.e., hv(u1, v1) = Mv(item, item)≥σ. Moreover, there
exists a lineage set S(u1,v1)={(u2, v10), (u3, v6), (u4, v12),
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(u6, v8), (u10, v0)} that has an aggregate score above δ. In-
tuitively, S(u1,v1) confirms that u1 and v1 have the same
material, color and brand, and similar names and types. We
will see how to compute Mv() and aggregate scores hρ() in
Section IV, and how to pick lineage sets in Section V.

Note that it is not necessary for all properties of u1 to find
a match in S(u1,v1), e.g., qty u5 has no match in G; in other
words, properties in S(u1,v1) suffices to match u1 and v1.

(2) To verify that S(u1,v1) is indeed a lineage set, inductive
checking is needed: (a) (u3, v6) is valid since they bear the
same label “Phylon foam”, and u3 is a leaf; similarly for
(u4, v12), (u6, v8) and (u10, v0); in contrast, (b) (u2, v10) has
to be verified inductively itself since u2 is not a leaf; a lineage
set is S(u2,v10) = {(u7, v20), (u8, v17), (u9, v9), (u11, v18)}.
(3) It confirms that pairs in S(u2,v10) match and S(u2,v10)

has aggregate score above σ, since u7 and v20 have similar
labels and u7 is a leaf; similarly for other pairs in S(u2,v10).
Intuitively, u2 and v10 have the same name and manufacture,
and carry similar country and made in attributes.

(4) At this point, (u1, v1) is confirmed a match, which is
witnessed by Π(u1, v1) = {(u1, v1)} ∪ S(u1,v1) ∪ S(u2,v10).

To check if (u1, v1) is valid, we (a) compare their labels via
ML model hv , (b) aggregate scores of their outgoing paths, and
(c) recursively check if their descendants (u2, v10) match; this
is needed for, e.g., cycle detection in transaction graphs [93]
for fraud detection [40], which cannot be detected by embed-
dings generated from random walks with bounded length [22].
These are key ingredients of parametric simulation. 2

It is shown that for any u0 ∈ G1 and v0 ∈ G2, there exists
a unique maximum Π(u0, v0) by simulation with parameters
(hv, hρ, hs, σ, δ, k) (see [16] for a proof). That is, parametric
simulation retains the uniqueness of graph simulation [61].

The notations of the paper are summarized in Table III.

IV. PARAMETER FUNCTIONS AND BOUNDS

We next present module Learn of HER. We show how to
learn parameters for parametric simulation, i.e., score functions
(hv, hρ), ranking function hr, thresholds (σ, δ) and bound k.

Given graphs G1=(V1, E1, L1) and G2=(V2, E2, L2), we
define functions (hv, hρ, hr) pertaining to u ∈ V1 and v ∈ V2.

Vertex model Mv . Function hv(u, v) = Mv(L1(u), L2(v))
takes two vertex labels as inputs, and returns their semantic
similarity. We implementMv(·, ·) with a sentence embedding
model [73], since it captures both sequential sentence infor-
mation, such as descriptions of a movie, and words in vertex
labels. The model takes string L1(u) (resp. L2(v)) as input,
and embeds it as a vector representation xu (resp. xv). The
semantic similarity between L1(u) and L2(v) is assessed by:

Mv(L1(u), L2(v)) = (|cos(xu, xv)|+ cos(xu, xv))/2,

where | · | is the absolute value, such that hv(u, v)∈[0, 1] and
cos(xu, xv) computes the cosine similarity between xu and xv .

Edge model Mρ. Different from Mv , Mρ takes as input
strings L1(ρ1) and L2(ρ2) of edge labels on paths, and

quantifies their similarity. It sends L1(ρ1) (resp. L2(ρ2)) to
embedding model BERT [30] that captures sequential informa-
tion of edge labels on paths, and gets its vector representation
xρ1 (resp. xρ2 ). A metric learning model compares xρ1 and
xρ2 , and outputs their similarity score in [0, 1]. For example,
Mρ obtains embedding vectors xρ1 and xρ2 of “made in” and
“(factorySite, isIn, isIn)” by using BERT, respectively, and the
learning model gives the similarity score of xρ1 and xρ2 .

We have to train the embedding and metric learning models
in Mρ instead of employing pre-trained NLP models, since
edge labels are often special relation tokens for predicates,
e.g., “/akt:has-author” in a publication graph [28]. More
specifically, (1) we construct a corpus C by randomly walking
in G and collecting edge labels on the paths. (2) We then pre-
train BERT model on C, driven by the unsupervised Masked
Language Model task [30]. This enables BERT to capture
sequential information in L1(ρ1) (resp. L2(ρ2)) and embed
it as vector xρ1 (resp. xρ2 ). (3) We jointly train the metric
learning and BERT models using annotated matching pairs
(ρ1, ρ2). Thus, BERT fine-tunes the embeddings of xρ1 and
xρ2 , and the learning model measures their semantic similarity.

An idealMv (resp.Mρ) scores similar pairs above 0.5 and
dissimilar ones below 0.5 [91]; this guides model training and
fine-tuning (see more details in Section VII).

Example 5: Consider the candidate match (u7, v20) in
the lineage set S(u2,v10) of Example 4. Its vertex similarity
is Mv(Germany,Germany)=1≥σ, and the closeness of the
association of u7 to u2 (represented by the path ρ1=(u2, u7))
and that of v20 to v10 (represented by the path ρ2=(v10, v20))
is measured by hρ(LD(ρ1), L(ρ2))=Mρ(LD(ρ1), L(ρ2))
/(len(ρ1) + len(ρ2)) = Mρ(country, brandCountry)/2 =
0.75/2 = 0.375. Here Mρ(country, brandCountry)=0.75 is
computed using the embedded vectors of strings “country”
and “brandCountry”. After considering all pairs in S(u2,v10),
we compute the sum of their associations to (u2, v10), and find
that the aggregate score is 1.6, which is greater than δ. 2

Remark. We employ Bert with fine-tuning as an exemplary
implementation. HER is open to other models in place of
Bert. Sentence Bert is adopted since it effectively embeds
long descriptions of entities, and performs well in fine-tuning
embeddings [78]. With Bert, HER achieves good accuracy (see
Section VII), since parametric simulation computes scores by
multiple matching paths, and a single failure of embedding-
based similarity measure has little impact on the result.

Ranking function hr. Given vertex v and bound k, function
hr returns top-k descendants of v together with a path for
each such descendant, representing important properties of v.
It works in two steps: (1) it selects a set of m paths from v
by using a language model Mr, where m is the number of
the children of v; and (2) it ranks the m paths by using a path
resource allocation (PRA) algorithm, and returns top-k ones.

(1) For each outward edge ei of v, function hr selects a path
ρi from v guided by language modelMr, and adds ρi to a set
P . For instance, starting at edge e1 from v to v1, hr initiates
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ρ1 = (v, v1), presents e1 to Mr, and obtains a list Ep1 of all
edges from v1 with their possibility of following “word” e1.
Then from all outward edges of v1, hr chooses an edge e2
from v1 to v2 with the highest possibility in Ep1 , appends v2
to ρ1 and feeds e2 toMr for predicted list Ep2 . The iteration
proceeds until (a)Mr returns the “stop signal”, i.e., the end of
sentence tag “<eos>”; (b) there is no outward edge to choose;
or (c) the path forms a cycle (it is then abandoned).

Here we use LSTM network as Mr since it can model the
semantics of labels on paths in knowledge graphs [54], [55],
[56]. Given an edge label, LSTM can generate a path following
the edge label with reasonable semantic meanings [58].

(2) Function hr ranks paths in P as follows. Given a path
ρ=(v0, v1, . . . , vl), we extend resource allocation [56] and pro-
pose PRA to measure whether ρ is a meaningful connection by

R(ρ) =

l−1∏
i=0

1

|ch(vi)|
,

where ch(vi) denotes the set of vi’s children. Intuitively, PRA
assumes that a resource “flows” from the starting vertex of a
path, and equally divides at each vertex in the middle. After
propagation, PRA quantifies the semantic association of ρ in
terms of the amount of resource that reaches vl from v0 via ρ.

Example 6: Taking v1 in Fig. 1 and k = 5 as input,Mr selects
paths starting from each outward edge of v1. For example,
given edge (v1, v10) with the edge label “brandName”, Mr

returns the end of sentence tag “<eos>”, which terminates
path selection; this is because the trained language model
prefers to select paths with fewer branches and stronger
semantic associations. Thus, it stops after v10, since v10 has
many descendants that will diverge and weaken the semantic
association of longer paths. Finally, it outputs path (v3, v13).

After picking 8 paths via modelMr (i.e., (v1, v0), (v1, v2),
(v1, v6), (v1, v8), (v1, v10), (v1, v11), (v1, v12) and (v1, v31)),
hr ranks them with PRA, drops (v1, v2), (v1, v11) and
(v1, v31) for low scores, and gets 5 descendants v0, v6, v8,
v10 and v12, with an associated path for each. 2

Training. We prepare training data forMr as follows. (1) For
each vertex v, we first find the set Vr of all reachable vertices
of v. Then we inspect the label of each vertex v′ in Vr and
remove those whose labels are machine codes, e.g., URL or
ID. This process is automatic as pre-trained embedding models
(e.g., GloVe [70]) recognize machine codes as unknown words.
(2) For each vertex v′ in Vr, we find all simple paths from v to
v′, quantify each by PRA and add the one with the maximum
value to the training dataset. This preparation process does
not take long, since we can practically collect enough paths
by clustering and inspecting representative entities only.

Thresholds σ, δ and bound k. The objective of selecting
σ, δ and k is to maximize F-measure (for accuracy) defined
with precision and recall. Here precision, recall and F-measure
are (1) the ratio of true matches to the matches returned, (2)
the ratio of true matches to the annotated matches, and (3)
2 · (precision · recall)/(precision + recall), respectively.

We choose σ, δ and k by random search [19], rather than
grid search that is computationally expensive for enumerating
all combinations of the three parameters. More specifically,
we construct a sampling validation set consisting of 15%
of all annotated vertex pairs (ut, vg) randomly taken from
GD and G, which participate in neither model training nor
testing. Then we evaluate the model on this validation set using
random combinations of σ, δ and k. We pick the values that
maximize the F-measure after limited number of trials.

Interaction and refinement. HER allows users to inspect and
annotate matching decisions. It collects false positive (FP) and
false negative (FN) pairs to refine Mv and Mρ. Given an FP
(resp. FN) feedback, we mark its vertex matches and path-path
matches as dissimilar (resp. similar) samples with similarity
score 0 (resp. 1) to fine-tune Mv and Mρ.

To handle false feedback, we demonstrate the results to mul-
tiple users and conduct majority voting to reduce noise, which
is a common practice for annotation quality control [46].
Moreover, we employ triplet loss function [75] to ensure robust
model fine-tuning, which has proven effective in suppressing
the negative influence of (possible) remaining false feedback.

Complexity. Once the training completes, it takes linear time
for hv and hρ to measure the similarity. It takes O(|V ||E|)
time for function hr to select top-k descendants and associated
paths for each vertex v in a graph G = (V,E, L).

V. PARAMETRIC SIMULATION ALGORITHM

We now show that parametric simulation is in quadratic-
time. As a proof, we develop such an algorithm for module
SPair of HER, denoted by ParaMatch. It takes functions
(hv, hρ, hr) and bounds (σ, δ, k) as parameters. Given a tuple
t ∈ D and a vertex vg in G, it checks whether (ut, vg) is a
match in O(|G||GD|) time, where GD is the canonical graph
of D, and ut is the vertex in GD denoting t via mapping fD.

Overview. ParaMatch is recursive. Given a pair (u, v) of
vertices, it finds a lineage set S(u,v) of top-k descendants
of u and v, and recursively checks pairs of the descendants.
For (u′, v′) ∈ S(u,v) that makes a match, it sums up the
associations between (u, v) and (u′, v′), and checks whether
the aggregate score reaches δ. It returns true if so. Otherwise
it backtracks and examines other lineage sets. It returns false
if no lineage set witnesses (u, v) as a match.

This is nontrivial. (1) When inspecting a pair (u1, v1), it has
to select top-k descendants of u1 and v1; special care has to be
taken to avoid picking the same vertex during repeated differ-
ent recursive calls. (2) Candidate matches (u1, v1) and (u2, v2)
may depend on each other, e.g., when they are in a strongly
connected component. This makes it tricky to backtrack and
decide when to return false (see [16] for an example).

To cope with these we employ two hashmap structures:

(1) ecache, to record V ku , the top-k selected descendants for
each vertex u, and avoid repeated descendant selection; and

(2) cache, to record the current states of candidate matches and
dependencies among candidates. For each candidate (u, v),
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cache[u, v] is a pair [ϕ,W], which is either [false, ∅] or [true,
W], whereW is a set of candidate matches, and ϕ is a Boolean
value indicating whether (u, v) is invalid (false) or valid (true)
under the condition that all candidates in W are valid.

Observe the following. (a) If (u, v) and (u′, v′) are in-
terdependent, (u, v) and (u′, v′) are marked [true,W1] and
[true,W2] in cache, respectively, and if (u′, v′) ∈ W1 and
(u, v) ∈ W2, then both (u, v) and (u′, v′) are matches by
the definition of parametric simulation. (b) We only need to
store matches for vertices of V ku in cache[u, v], i.e., |W| ≤ k;
moreover, the interdependence can be deduced from such W .

In addition, we adopt the following strategies.

(3) For each top-k descendant u′ of u, we sort the vertices
v′ in V kv in the descending order of the association between
(u′, v′) and (u, v). When we search a candidate match v′ for
u′, we follow the order in V kv . Intuitively, this helps us decide
earlier whether we may not get a lineage set with aggregate
score reaching δ and safely return false, since backtracking in
the descending order always yields smaller scores.

(4) When candidate match (u, v) is invalided, we first identify
candidates (u′, v′) that directly depend on (u, v), i.e., (u, v) ∈
cache[u′, v′].W . We then call ParaMatch to recheck whether
(u′, v′) is still valid. Observe that this suffices to deal with
interdependent candidates; indeed, if (u′, v′) is also invalid,
the candidates that indirectly depend on (u′, v′) are rechecked
when recursive ParaMatch backtracks.

Algorithm. Putting these together, we present ParaMatch in
Fig. 4. It returns true for vertices ut ∈ GD and vg ∈ G if ut
matches vg and false otherwise. It works in three steps.

(1) Initial stage (lines 1-11). ParaMatch starts with two steps.
(a) It first checks whether (u, v) can be a match by inspecting
their labels (line 1-2), and whether u is a leaf (line 3-4). (b) It
then constructs a set of candidate matches for each descendant
of u (lines 6-11). If the top-k descendants of u or v are stored
in ecache, it simply initializes V ku and V kv with ecache[u] and
ecache[v], respectively. Otherwise it calls function hr to pick
top-k descendants of u and v (lines 6-10). After these, it builds
a set lu′ of candidate matches for each descendant u′ of u
(i.e., v′ ∈ lu′ if v′ ∈ V kv and hv(u

′, v′)≥σ), and sorts lu′ in
the descending order of associations (line 11).

(2) Matching stage (line 12-27). At this stage, ParaMatch
inductively checks top-k descendants of u. At first, it adopts an
early termination strategy and checks whether the maximum
score among all possible lineages sets S(u,v) of (u, v) can
reach δ; if not, (u, v) is confirmed invalid and false is returned
(line 12-14); here v′j,1 is the vertex having the maximum hρ
score among all matches of u′j . Otherwise for each selected
descendant u′, it finds a candidate for u′, by checking V kv
following the descending order of lu′ (line 16). For a vertex v′

in lu′ , it first checks whether (u′, v′) has been validated. If so,
it directly uses the previous result. Otherwise, it checks (u′, v′)
by recursively calling ParaMatch (lines 17-19). If (u′, v′) is
valid, it accumulates its association to (u, v) in a variable sum,
and adds (u′, v′) to the setW (line 21). Then it checks whether

the value of sum reaches δ. If so, it marks (u, v) as [true,W]
and returns true (lines 22-23). Otherwise, it checks whether
we can find a match of u′ in the remaining vertices of lu′ such
that the maximum score can reach δ (lines 25-27).

(3) Cleanup stage (lines 28-32). ParaMatch performs neces-
sary cleanup to entries in cache after (u, v) is confirmed in-
valid. It first sets cache[u, v] to [false, ∅] (line 28), and then re-
runs ParaMatch to update stale cache entries that directly de-
pend on (u, v) (lines 29-31). Finally, it returns false (line 32).

Example 7: Recall Example 4. We show how ParaMatch
finds that items u1 and v1 make a match as follows.

(1) In the first stage, the hashmap is set: cache[u1, v1] =
[true, ∅]. The top-k descendants of u1 and v1 are selected by
hr: V ku1

={u2, u3, u4, u6, u10} and V kv1={v0, v6, v8, v10, v12}.
The sorted lists are lu2

= {v10}, lu3
= {v6}, lu4

= {v12},
lu6

={v8, v0} and lu10
={v0, v8} based on their label similarity.

(2) During the matching stage, matches are recursively iden-
tified for descendants of u1 (i.e., u2, u3, u4, u6 and u10).

(a) Since u3, u4, u6 and u10 are leaves, (u3, v6), (u4, v12),
(u6, v8) and (u10, v0) are valid (lines 3-4) during the re-
cursive calls. By now the aggregate score is below δ,
i.e., hρ(material, soleMadeBy)+hρ(color, hasColor)+hρ(type,
typeNo)+hρ(item, names)=1.4<δ. Thus, it checks (u2, v10).

(b) Vertex u2 has four outgoing edges: (u2, u7), (u2, u8), (u2,
u9) and (u2, u11). Hence ParaMatch is recursively called to
match u7, u8, u9 and u11 when processing (u2, v10). It finds
that (u7, v20), (u8, v17), (u9, v9) and (u11, v18) are matches.
Since their aggregate score hρ(country, brandCountry) +
hρ(manufacturer, belongsTo) + hρ(made in, factorSiteisIn) +
hρ(name, type) = 1.6 ≥ δ, (u2, v10) is confirmed to be a
match, and thus the hashmap is updated: cache[u2, v10] =
[true, {(u7, v20), (u8, v17), (u9, v9), (u11, v18)}].
(c) Now ParaMatch checks the aggregate score of descendant
matches of (u1, v1). It finds that hρ(material, soleMadeBy) +
hρ(color, hasColor) + hρ(type, typeNo) + hρ(item, IsA) +
hρ(brand, brandName)=1.87 ≥ δ. Thus, (u1, v1) is valid.
Then ParaMatch updates cache[u1, v1] = [true, {(u2, v10),
(u3, v6), (u4, v12), (u6, v8), (u10, v0)}], and returns true. 2

Analyses. Algorithm ParaMatch is correct and takes quadratic
time in the worst case, the same as graph simulation [41].
Indeed, (I) the algorithm takes O(|VD||ED|+|V ||E|) time
to select top-k descendants for each pair (u, v) (see Sec-
tion IV); and (II) checking whether (ut, vg)∈Π(ut, vg) takes
O(|VD||V |) time in the worst case, since the total number
of recursive calls is bounded. For (II), (a) there exist at most
O(|VD||V |) candidate matches; (b) for each (u, v), ParaMatch
is called at most k2 + 1 times, by the use of hashmap cache
and moreover, (i) the cleanup stage can only be called once for
each candidate in cache[u, v].W and (ii) |cache[u, v].W| ≤ k2;
(c) line 1 of Fig. 4 takes O(|VD||V |) times in total; and (d)
during each recursive call, all lines of Fig. 4 take O(1) time
except line 1 and recursive calls (line 16, lines 23-25). Thus
ParaMatch takes at most O((|VD|+|ED|)(|V |+|E|)) time.
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Input: GD = (VD, ED, LD), G = (V,E, L), (u, v) ∈ VD × V ,
and a set FP of functions hv, hρ, hr and parameters σ, δ, k.

Output: true if (u, v) is a match, and otherwise false.
1. if hv(u, v) < σ then /*initial stage*/
2. cache[u, v] := [false, ∅]; return false;
3. if u is a leaf then
4. cache[u, v] := [true, ∅]; return true;
5. cache[u, v] := [true, ∅]; W := ∅; sum := 0;
6. if u 6∈ ecache then
7. extract the set V ku of selected vertices of u; ecache[u]:=V ku ;
8. if v 6∈ ecache then
9. extract the set V kv of selected vertices of v; ecache[v]:=V kv ;
10. V ku := ecache[u]; V kv := ecache[v];
11. construct a sorted list lu′ = {v′ | v′ ∈ V kv ∧ hv(u′, v′) ≥ σ}

for each u′ ∈ V ku following descending order of hρ score;
12. MaxSco:=

∑
j hρ(ρ(u, u′j), ρ(v, v′j,1)); /*matching stage*/

13. if MaxSco < δ then
14. cache[u, v] := [false, ∅]; return false;
15. for each u′ ∈ V ku do
16. for each v′ ∈ lu′ in the order of lu′ do
17. if (u′, v′) ∈ cache then
18. match := cache[u′, v′].ϕ;
19. else match := ParaMatch(GD, G, (u

′, v′),FP);
20. if match then
21. sum += hρ(ρ(u,u′), ρ(v,v′)); W :=W ∪ {(u′, v′)};
22. if sum ≥ δ then
23. cache[u, v] := [true,W]; return true;
24. break;
25. MaxSco := MaxSco− hρ(ρ(u, u′), ρ(v, v′))

+hρ(ρ(u, u′), ρ(v, v′n))
26. if MaxSco < δ then
27. break;
28. cache[u, v] := [false, ∅]; /*cleanup stage*/
29. for each (up, vp) such that (u, v) ∈ cache[up, vp].W do
30. unset cache[up, vp];
31. ParaMatch(GD, G, (u

p, vp),FP);
32. return false;

Fig. 4. Algorithm ParaMatch

In contrast, bounded simulation and strong simulation take
O(|V |(|VD|+|ED|)(|V |+|E|)) time [33], [57].

Theorem 1: Given graphs (GD, G) and a pair (ut, vg) of
vertices for ut∈GD and vg∈G, ParaMatch takes O((|VD|+
|ED|)(|V |+|E|)) time to decide whether (ut, vg) is valid. 2

VI. COMPUTING ALL MATCHES

We now develop algorithms to compute (1) all matches
(ut, vg) for a given tuple t in database D (i.e., module VPair),
where ut is the vertex denoting t in the canonical graph GD
of D, and vg is a vertex in graph G, and (2) all matches across
GD and G (i.e., APair), based on parametric simulation.

We first develop algorithms for VPair and APair (Section
VI-A). We then parallelize these algorithms (Section VI-B).
We defer details and examples to [16] for the lack of space.

A. Algorithms for VPair and APair

VPair. We first present algorithm VParaMatch for VPair. It
takes functions (hv, hρ, hr) and bounds (σ, δ, k) as parameters,
and a tuple t ∈ D as input. It computes the set Π(ut) of
(ut, vg) based on parametric simulation for vg in G, defined as

Π(ut) = {(ut, vg) | vg ∈ G, Π(ut, vg) 6= ∅}.
As opposed to ParaMatch, vertex vg is not given as input.

Input: GD = (VD, ED, LD), G = (V,E, L), a vertex ut in GD ,
and a set FP of functions hv, hρ, hr and parameters σ, δ, k.

Output: The set Π(ut) of matches.
1. Π(ut) := ∅; C(ut) := ∅; initialize the hashmap cache;
2. for each vg ∈ V such that hv(ut, vg) ≥ σ do
3. add (ut, vg) ∈ C(ut);
4. sort matches (u, v) in C(ut) in increasing orders of degrees;
5. for each (u, v) ∈ C(ut) do
6. remove (u, v) from C(ut);
7. if (u, v) ∈ cache and cache[u, v].ϕ = true then
8. add (u, v) to Π(ut);
9. else match := ParaMatch(GD, G, (u, v),FP);
10. if match = true then
11. add (u, v) to Π(ut);
12. return Π(ut);

Fig. 5. Algorithm VParaMatch

A brute-force approach to computing Π(ut) is to run
ParaMatch for each (ut, vg) with hv(ut, vg) ≥ σ. It is, how-
ever, not very efficient. Hence we develop another algorithm.

Algorithm VParaMatch. As shown in Fig. 5, VParaMatch first
selects all vertices vg in G with hv(ut, vg)≥σ, and initializes a
set C(ut) with such candidates (ut, vg) (lines 2-3). It then sorts
the pairs in C(ut) following the increasing order of degrees
of vertices in C(ut) (line 4). Intuitively, starting from vertices
with smaller degrees, VParaMatch can find more candidate
matches to be valid or invalid earlier, and reduce runtime. After
that VParaMatch iteratively checks each (u, v) following its
order in C(ut) (lines 6-11). More specifically, it first checks
whether (u, v) had been confirmed valid (lines 7-8); if so, it
adds it to Π(ut). Otherwise, it calls ParaMatch on (u, v) to
verify its validity (lines 9-11). VParaMatch constructs inverted
indices [98] on critical information as blocking strategies; for
example, papers of the same year are in the same block.

APair. We next present AllParaMatch for APair. It computes
the set Π of all matches across database D and graph G:

Π = {(ut, vg) | ut ∈ GD, vg ∈ G, Π(ut, vg) 6= ∅},
where ut (resp. vg) is a vertex in GD (resp. G). As opposed
to ParaMatch and VParaMatch, none of ut and vg is input.

Algorithm AllParaMatch. Extending VParaMatch, the algo-
rithm initializes a set C of candidate pairs (ut, vg) across GD
and G, for all ut∈VD and vg∈V such that hv(ut, vg)≥σ. After
this, it works just like algorithm VParaMatch.

Analyses. Algorithms VParaMatch and AllParaMatch do not
increase the worst-case complexity bound of ParaMatch.
Intuitively, to check whether (ut, vg) ∈ Π(ut, vg), ParaMatch
may already check all u (resp. v) reachable from ut (resp. vg),
i.e., in the worst case, it checks all pairs across GD and G.

Corollary 2: VParaMatch finds all matches pertaining to a
vertex ut, and AllParaMatch computes Π across database D
and graph G, both in O((|VD|+|ED|)(|V |+|E|)) time. 2

B. Parallelization
When GD and G are large, quadratic-time could still be

expensive. To scale with large graphs, below we parallelize
AllParaMatch, denoted by PAllMatch. Algorithms ParaMatch
and VParaMatch can be parallelized along the same lines.
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Setting. We adopt the following parallel setting.

(1) Algorithms run with n shared-nothing workers P1, . . . , Pn,
under the Bulk Synchronous Parallel (BSP) model [84]. The
computation is divided into multiple supersteps.

(2) Graph GD is partitioned into n fragments FD1 , . . . , F
D
n

via edge-cut [21]. Each fragment FDi is defined as (V Di ∪
ODi , E

D
i , L

D
i ), where (a) (V1, . . . , Vn) is a partition of V D,

i.e., V D1 ∪ . . .∪V Dn =V and V Di ∩V Dj =∅ for any i 6=j; (b) ODi
is the set of border nodes that are not in V Di but have incoming
edges from vertices in V Di ; and (c) FDi is the subgraph of GD
induced by V Di ∪ODi . We will see that the vertices in ODi are
used to synchronize computation between fragments.

(2) Graph G is also partitioned into n fragments FG1 , . . . , F
G
n

via edge-cut [21], where FGi = (V Gi ∪OGi , EGi , LGi ). To reduce
communication cost, special care is taken such that for each
vertex u in fragment FDi , we assign all vertices v in G with
their adjacent edges to fragment FGi if (u, v) is a candidate,
i.e., hv(u, v)≥σ. This is done by using inverted indices.

Below we denote by Fi both fragments FDi and FGi .

Fixpoint computation. Given fragmented graphs GD and G,
PAllMatch computes Π in parallel. It adopts the fixpoint model
of GRAPE [35], [9]. It starts with a procedure PPSim at
each worker, and then iteratively runs procedure IncPSim to
incrementally refine the result, as follows (see [16] for details).

(1) PPSim. In the first superstep, each worker Pi starts by
setting cache[u, v′] as [true, ∅] for each border node v′ ∈ OGi
and each vertex u ∈ FDi , i.e., it assumes that border node v′

of FGi could match all vertices in FDi , due to the absence of
the data of v′ from local fragment Fi. Workers Pi then run
AllParaMatch to compute partial result R0

i in Fi, in parallel.

(2) Messages. To synchronize the workers, the newly deduced
invalid matches (u, v) (i.e., cache[u, v].ϕ is changed from true
to false in the last superstep) are exchanged as messages.
More specifically, for each v ∈ Vi, we define a status variable
v.status, which stores invalid matches (u, v) deduced. Initially,
v.status is ∅. Recall that border nodes v ∈ Oi are associated
with edges across different fragments. At the end of each
superstep, the changes to v.status of border nodes in Oi are
sent to other workers as messages, following the cross edges.

(3) IncPSim. Upon receiving message Mi, each worker Pi
incrementally refines partial result Rji of superstep j at Pi by
treating Mi as updates. More specifically, (a) it first initializes
a set U of invalid matches (u, v) ∈ Mi for border nodes
v ∈ Oi; that is, PAllMatch improves Rji by using the results
of other workers. (b) It then follows the cleanup stage of
ParaMatch; for each (u, v) ∈ U , it updates cache[u, v] to
be [false, ∅]; it then calls ParaMatch for all entries in cache
whoseW overlaps with U to re-check the affected candidates.

At the end of each superstep, each worker generates mes-
sages and communicates with other workers as in (2) above.

(4) Termination. The process proceeds until it reaches a fix-
point i.e., when Rr

∗

i =Rr
∗+1
i for all i∈[1, n] at some r∗. The

match Π is the union of all partial results, i.e., Π=∪i∈[1,n]Rr
∗

i .

Correctness. One can verify the following (see [16]).

Theorem 3: Given fragmented graphs GD and G as above,
PAllMatch correctly computes the match Π of (GD, G). 2

Remarks. (1) PAllMatch can work asynchronously. Under the
conditions of [34] we can show that PAllMatch correctly com-
putes Π under the adaptive asynchronous parallel model [34].

(2) IncPSim can be extended to incrementally link entities in
response to updates to D and G, in parallel.

(3) We adopt the fixpoint model of GRAPE to parallelize al-
gorithms in Section V, without developing parallel algorithms
starting from scratch. GraphScope [9], an open source version
of GRAPE, is efficient and popular at GitHub; hence building
HER atop GRAPE is within the reach of a large group of users.

(4) While blocking speeds up ER, it may miss matches when
matching entities are in different blocks. It alone does not fit
parametric simulation, which needs to recursively check de-
scendants that may be in different blocks. Hence we use data-
partitioned parallelism in place of blocking. For large datasets,
we construct inverted indices [98] on critical information (e.g.,
years of papers in DBLP for “blocking”; see also Section VII).

VII. EXPERIMENTAL STUDY

Using real-life and synthetic datasets, we experimentally
evaluated HER for its (1) accuracy, (2) efficiency, (3) scala-
bility and (4) the impact of user interactions on the accuracy.

Experimental Setting. We start with the setting.
Datasets. We used five real-life datasets shown in Table IV: (1)
UKGOV, a collection of Camden Council data (Commercial
Contracts, Parking Charges, Schools, Air Quality and Trees),
exported in CSV and RDF formats from the Web sites [83]. (2)
DBpediaP, subsets of DBPedia knowledge base about athletes
and politicians in relations [4] and graphs [5]. (3) DBLP,
publication data in relations [29] and graphs [28]. (4) IMDB,
movie data in relations [13] and graphs [12]. (5) FBWIKI,
consisting of (a) part of FreeBase knowledge graph [18] and
(b) entries of people extracted from the wikidata [15].

We also tested on the Cell-Entity Annotation (CEA) task
of SemTab 2020 challenge [45] that matches cells of tables
to entities in Wikidata knowledge graph. The “Tough Tables”
(2T) dataset [27], [26] from SemTab 2020 was used for this
test due to its high difficulty. External Wikidata query APIs are
allowed following the instructions of the SemTab challenge.

Based on the TPC-H data generator, we designed a graph
generator to produce synthetic graphs G, controlled by the
number of vertices (up to 36M) and edges (up to 305M),
with vertex labels drawn from a set of 1.1M words and edge
labels from a set of 100 words. We generated databases D
with 70 columns (i.e., edge labels in GD).

ML models. For Mv , we employed Sentence-bert [73], a
pre-trained sentence embedding model for its high accuracy.
For Mρ, we first constructed an edge label corpus (see
Section IV) for pre-training BERT [30], which contains 195K
labels in 1845 categories from all datasets. The pre-training
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Dataset |VD| |ED| |V | |E| Type
UKGOV 12.3M 11.9M 25.8K 76.9K public services
DBpediaP 2M 5.4M 4.8M 11.7M celebrity base
DBLP 36M 58.6M 15.9M 31M citation network
IMDB 7.5M 34.2M 2.3M 5.4M movies
FBWIKI 4.0M 7.4M 60.8M 362.2M knowledge base

2T 937K 742K 1.11M 3.68M semantic web

TABLE IV
DATASETS FOR EVALUATION

of the BERT-base takes 122.2min with 30 epochs. After that,
we utilized 50% of all match/mismatch pairs to train other
modules in Mρ, which takes 325.1s. The similarity model in
Mρ is implemented as a 3-layer neural network with width
1536, 256 and 1 in each layer. We adopted LSTM for ranking
modelMr with the default configuration in [11], except using
650 and 650 hidden units per layer. When collecting training
paths forMr, we took paths of at most 4 edges following [56]
since longer paths usually yield weaker associations. For all
datasets, we collected 118K paths as the training data forMr.

Evaluation. For accuracy tests (the F-measure, see Section IV),
we manually annotated 5000 matches (i.e., confirmed matches,
which are tuple-vertex pairs) as ground truth for all datasets,
assisted by a mapping provided by Google [7]. In addition,
we randomly sampled tuples and vertices and obtained 5000
mismatches, which were also manually verified. Thus, the
match/non-match ratio is 1. We used 50% of annotated pairs
in each dataset to train Mρ, 15% as validation sets to select
bounds σ, δ and k, and the rest for accuracy tests. For
efficiency and scalability evaluations, the default σ, δ and k
are set as 0.8, 2.1 and 20, respectively, unless stated otherwise.

Baselines. We used nine baselines. (1) MAGNN [37], a GNN-
based model that learns vertex embeddings for similarity,
with vertex attributes and meta-paths. We applied default
configuration of [37], with random parameter search using the
validation set. (2) Bsim, bounded simulation [33], based on
vertex labels and topological matching. (3) JedAI [68], a rule-
based ER toolkit implemented in Java. We configured JedAI
with the “budget- and schema-agnostic workflow”, including
rules of “character 4-grams with TF-IDF weights and cosine
similarity” [68]. This configuration “requires no parameter
fine-tuning” and has been verified highly effective for different
datasets [68]. (4) MAG [48] (Magellan), a state-of-the-art
ML-based system for ER on relations. We adopted its random
forest model with feature tables [10], and random parameter
search on validation set. MAG is mainly implemented in
Python, with functions optimized via C++. (5) DEEP [62],
a deep-learning-based ER Python package under Magellan,
configured with the best hybrid model snapshot and classifier
based on the validation set [6]. We compared with top-4
challengers on 2T dataset of SemTab 2020 [45]: MTab [65],
bbw [76], LP (LinkingPark) [23] and LexMa [82]. Since only
LexMa is open-source [14], we also tested and compared
with it on the five real-life tuple-vertex matching datasets.

The baselines represent (a) ML systems (MAGNN, MAG
and DEEP), (b) non-ML rule-based method (JedAI), (c) topo-
logical matching (Bsim), and (d) Web-based cell matching
(MTab, bbw, LP and LexMa). We did supervised training

F-measure HER MAGNN Bsim JedAI MAG DEEP LexMa
UKGOV 0.94 0.78 OM 0.76 0.84 0.87 0.03
DBpediaP 0.96 0.73 OM 0.64 0.95 0.91 0.01
DBLP 0.94 0.65 OM 0.53 0.57 0.66 0.34
IMDB 0.93 0.71 OM 0.62 0.65 0.72 0.01
FBWIKI 0.96 0.74 OM 0.79 0.86 0.89 0.13

F-measure HER MTab bbw LP LexMa
2T 0.615 0.907 0.863 0.81 0.587

TABLE V
ACCURACY (F-measure) ON TUPLE MATCHING AND CELL MATCHING

for ML models of MAGNN, MAG and DEEP with the same
training data as for HER. MAGNN and Bsim used RDB2RDF
to convert relations to graphs. In order for MAG and DEEP
to take vertex v from graph G as input, we took v along with
its 2-hop neighbors and flattened them into a tuple tv , i.e., we
packed v into tv with important features in its close neighbors
as commonly practiced by ER methods. Then we flattened G
into a relation DG. Given a tuple t in D and a vertex v in G, we
compared t with tv for SPair. Similarly, we conducted VPair
and APair to find matches of an input tuple t and all matches,
respectively. Bsim takes GD as a graph pattern and computes
its “match” in G for APair; however, it does not support SPair
and VPair since it is based on pattern matching. External Wiki-
data query API was used to construct graph G for 2T dataset.

For a fair comparison, we tested the baselines and HER with
a single machine using an Intel Xeon 2.5 GHz CPU and 192
GB memory, since only Bsim has a parallel solution among
the five baselines. We also tested the parallel scalability of
HER and Bsim on GRAPE [35], [9], using an HPC cluster of
up to 16 machines connected by 10 Gbps links; each machine
has an Intel Xeon 2.5 GHz CPU and 192 GB memory. Each
experiment was run 5 times and the average is reported here.

Experimental Results. We next report our findings.

Exp-1: Accuracy. We first tested the F-measure on all datasets
in Table IV. As shown in Table V, it is 0.94 for HER on
average (except for 2T dataset), consistently outperforming all
the baselines. Bsim ran out of memory (OM) for all datasets.

(1) HER is on average 31%, 22% and 17% more accurate
than MAGNN, MAG and DEEP, respectively; this shows that
parametric simulation is more accurate than using ML methods
alone, by embedding ML models in topological matching and
checking “global” properties. In particular, it quantifies entity
similarities better than meta-path-based measures (MAGNN).

(2) HER beats JedAI by 42% on average, justifying that link-
ing entities across relations and graphs needs both inductive
topological matching and ML models, beyond existing rules.

(3) LexMa fails to match tuples to entities, as it just considers
each cell value without semantic relations among them. Hence,
cells in the same tuple may be mapped to disconnected and
different entities. For example, a cell “London” in a tuple may
be mapped to different “London” (e.g., cities in UK, US and
Canada) in the graph. Given such “independent” cell matches
of one tuple, one can hardly decide to which entity the tuple
should be mapped, resulting in rather low precision.

As for the CEA task (cell matching), the accuracy of HER
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(b) Accuracy, varying δ
5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y 
(F

-m
ea

su
re

)

UKGOV
DBLP
IMDB

(c) Accuracy, varying k
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Fig. 6. HER accuracy and efficiency with varying parameters, HER scalability

on 2T is 0.615 (Table V), which is only higher than LexMa
(ranked the 4th in SemTab 2020 [2]). This is because the
main challenge of 2T is to correct its heavy misspelling and
typos before actual matching, and the top-3 challengers are all
assisted with specifically designed spell checkers that excel at
correcting such string noises. HER is developed for matching
tuples and entities, not for spell checking and cell matching.

Varying σ and δ. Fixing δ = 2.4, k = 20, we varied σ from
0.4 to 0.99, to study the impact of σ on F-measure with 3
datasets for which optimal parameters are close. As shown in
Fig. 6(a), F-measure first grows steadily when σ increases; it
reaches the peak and then drops sharply with larger σ. This
is because F-measure is the harmonic mean of precision and
recall and the threshold is a trade-off between them.

Fixing σ = 0.85, k = 20, we varied δ from 1 to 3. As shown
in Fig. 6(b), the impact of δ is similar for the same reason.

Varying k. Fixing δ=2.4 and σ=0.85, we varied bound k
on descendants from 5 to 25, to test the impact of k on
F-measure with the same datasets as above. As shown in
Fig. 6(c), F-measure first increases and then remains stable
after k reaches a value around 18. Both precision and recall in-
crease at the beginning since more properties (path-path pairs)
are inspected. However, when the pairs already accumulate

sufficient scores, increasing k no longer improves F-measure.

Exp-2: Efficiency. Over real-life datasets DBpediaP and
DBLP, we report in Table VI the efficiency of modes SPair and
VPair of HER versus their competitors, using a single machine
for fair comparison, since most of the baselines are not paral-
lel. The results on the other datasets are consistent (not shown).
As remarked earlier, Bsim supports neither modes. Since
SemTab challenges rely on external APIs whose efficiency
heavily depends on the Internet speed, SemTab baselines and
2T are omitted for a fair efficiency comparison.

SPair. Given a pair (t, vg), HER checks whether (t, vg) makes
a match in 0.03ms and 0.12ms on DBpediaP and DBLP,
respectively. On average it outperforms MAGNN, JedAI, MAG
and DEEP by 20.6, 288, 2262 and 5629 times, respectively.
That is, HER works well in the SPair mode.

VPair. Given a tuple t, VPair finds all its matching vertices
in 1.43s and 15.9s over DBpediaP and DBLP, respectively.
For a fair comparison, since HER firstly applies inverted
index to search for candidate matching pairs before parametric
simulation, we also supported the blocking step in JedAI,
MAG and DEEP, using person names in DBpediaP and author
names in DBLP to generate candidate tuple pairs before
matching. On average HER outperforms the four baselines
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by 199.7, 6.0, 44.7 and 110.7 times, respectively. Again, this
shows that the response time of VPair is reasonably short.

APair. We find the following. (a) On DBpediaP, it takes 93.4s
to convert data between relations and graphs, and 405.3s to
finish matching in the APair mode, while the other baselines
could not terminate within hours. (b) APair takes much longer
than SPair and VPair, although the three have the same worst-
case complexity. This is because APair has to check all can-
didates across GD and D. While we can run APair offline on
a single machine, we will see in Exp-3 that APair runs much
faster in parallel when given multiple processors. (c) Bounded
simulation Bsim takes much longer than HER and exceeds
memory limit even on small graphs, since it takes the entire
GD as a graph pattern and computes the maximum match. In
contrast, HER only checks vertices reachable from (ut, vg).

Exp-3: Scalability. We next evaluated the (parallel) scalability
using large real-life datasets and synthetic data.

Varying n. Taking the entire D and G as input, we varied the
number n of workers from 4 to 16 to test the parallel scalability
of HER. As shown in Figures 6(d)–6(g), on average APair
is 2.6, 3.4, 3.8 and 2.8 times faster on DBpediaP, FBWIKI,
DBLP and synthetic data (|GD| = 342M and |G| = 202M ),
respectively. The results are similar for SPair and VPair.

Synthetic data. Fixing n = 16, we tested APair mode using
large synthetic graphs, where |V | = 30M and |E| = 172M for
G, and |VD| = 36.5M and |ED| = 305.5M for GD. We also
tested SPair and VPair modes with n = 1 using the entire
synthetic data, which takes 0.68ms and 15.3s, respectively.

(1) Varying |GD|. Taking the entire G as input and varying the
size of GD, we tested the performance of HER. Figure 6(h)
shows that the execution time increases with larger |GD|. HER
takes 107s when |G|=202M and |GD|=342M.

(2) Varying |G|. Figure 6(i) reports results over the entire GD
by varying |G|. The results are consistent with Figure 6(h).

Varying k. Fixing n = 16 and varying k from 2 to 10 and 8
to 24 with different σ and δ, we studied the impact of k over
FBWIKI and DBLP, respectively. The values of k on FBWIKI
are smaller because each vertex has less descendants on
average. As shown in Figures 6(j) and 6(k) for APair, HER
takes longer as k increases, as expected. This is because with
larger k, more path-path pairs need to be inspected. Results
are consistent for SPair and VPair, and on other graphs.

Varying σ and δ. We tested the impact of thresholds σ and δ
with 16 machines. Varying σ from 0.75 to 0.95 with different
configurations of δ and k, as shown in Figures 6(l) and 6(m)
over DBpediaP and FBWIKI, respectively, APair takes less
time as σ increases. This is because more invalid match
candidates are removed in the early stage given higher σ;
this reduces candidate checking and accelerates the matching.
However, it takes longer as δ increases from 0.2 to 0.6 on
FBWIKI and from 1.6 to 4.8 on DBpediaP, with various
configurations of σ and k (see Figures 6(n) and 6(o)). The
reason for this is that in order to reach higher matching

DBpediaP DBLP
SPair VPair SPair VPair

HER 2.8× 10−5 1.4 1.2× 10−4 15.9
MAGNN 9.6× 10−4 357.1 8.3× 10−4 2374.3
Bsim NA NA NA NA
JedAI 1.3× 10−2 11.5 1.1× 10−2 62.0
MAG 1.0× 10−1 84.6 9.8× 10−2 480.5
DEEP 2.6× 10−1 209.8 2.5× 10−1 1188.2

TABLE VI
SEQUENTIAL EXECUTION TIME (S)

threshold δ, the algorithm needs to check more path-path pairs.
Note that the impact of varying δ for FBWIKI is smaller than
that for other datasets as its matching paths are much longer.

Results are consistent for SPair and VPair on other graphs.

Exp-4: Refinement. We next tested the impact of user in-
teraction on the accuracy, using UKGOV and IMDB. In each
round, 50 pairs were given to five users. The users inspected
them and annotated each pair either match or mismatch as
feedback. Then we applied majority voting to the feedback to
reduce the number of false annotations. These annotated pairs
are collected to fine-tune the ML models as outlined in Section
IV. As shown in Figure 6(p), F-measure goes up by 3% and
4% on UKGOV and IMDB, respectively, in the first round, and
5 rounds suffice for HER to reach 100% accuracy. Note that
the 100% accuracy is achieved since human feedback is used
to fine-tune the models and verify the matches. The results on
other datasets are consistent (not shown).

Summary. We find the following. (1) Except on 2T dataset,
HER is more accurate than ML-based and rule-based methods.
On average HER beats MAGNN, JedAI, MAG and DEEP by
31%, 42%, 22% and 17% in accuracy, respectively. (2) HER
performs the best in efficiency. When running in the VPair
mode with a single machine, it is 90 times faster than the
baselines on average. When |G|=202M and |GD|=342M,
SPair and VPair take 0.68ms and 15.3s with a single machine,
respectively, and APair takes 107s using 16 machines, while
all the baselines could not finish in hours. (3) HER scales
well with the processor number n. It is on average 3.2 times
faster when n varies from 4 to 16. (4) At most 5 rounds of
user interaction suffice to fine-tune the ML models in HER.

VIII. CONCLUSION

We have developed system HER to semantically link entities
across relational databases and graphs. We have proposed
parametric simulation that embeds ML in global topological
matching, and shown that it is in quadratic-time, the same
as relational entity resolution. We have also developed ML
models for learning parameters and parallel algorithms under-
lying HER. Our experimental study has shown that HER is
promising in terms of its accuracy, scalability and efficiency.

One topic for future work is to extend HER to other data
formats such as JSON, CSV and arrays. Another topic is to
employ HER to extract, integrate and query data of different
sources, which are open challenges to data lakes [63]. A third
topic is to query relations and graphs in SQL by semantically
extending the join operator of SQL via HER.
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Fig. 7. An example for rechecking

APPENDIX

A. The Uniqueness of Parametric Simulation

There exists a unique maximum Π(u0, v0) witnessing match
(u0, v0), i.e., Π′(u0, v0) ⊆ Π(u0, v0) for all possible Π′(u0, v0).
We refer to the maximum Π(u0, v0) as the match of (u0, v0) in
(G1, G2) by simulation with parameters (hv, hρ, hr, σ, δ, k).

Proposition 4: For graphs G1 and G2 and pair (u0, v0) for
u0 ∈ G1 and v0∈G2, there exists a unique maximum Π(u0, v0)
by simulation with parameters (hv, hρ, hs, σ, δ, k). 2

Proof: The existence of a match is ensured by Theorem 1.
While the set Π(u0, v0) of matches computed by algorithm
ParaMatch may not be maximum, we can always extend the
set Π(u0, v0) to a maximum one since the number of possible
matches are finite. That is, the maximum match always exists.

Below we show the uniqueness of the maximum match
by contradiction. Assume that there exist two distinct max-
imum matches Π1(u0, v0) and Π2(u0, v0). Let Π3(u0, v0) =
Π1(u0, v0)

⋃
Π2(u0, v0). Since Π1(u0, v0) and Π2(u0, v0) are

distinct, Π3(u0, v0) has a larger size than both Π1(u0, v0) and
Π2(u0, v0), i.e., Π1(u0, v0) ⊂ Π3(u0, v0) and Π2(u0, v0) ⊂
Π3(u0, v0). We next show that Π3(u0, v0) witnesses the match
(u0, v0), which contradicts that Π1(u0, v0) and Π2(u0, v0) are
maximum. Therefore, the maximum match is unique.

It remains to show that Π3(u0, v0) witnesses the match
(u0, v0). To this end, we prove that (1) (u0, v0) ∈ Π3(u0, v0);
and (2) for each pair (u, v) ∈ Π3(u0, v0), the two condi-
tions of parametric simulation (see Section III), denoted by
P(Π3(u0, v0), u, v), hold: (a) hv(u, v) ≥ σ; and (b) if u is
not a leaf, then there exists a set S3

(u,v) of (u′, v′) that is a
partial injective (1-to-1) mapping from V ku to V kv such that∑

(u′,v′,ei,ρ)∈S3
(u,v)

he(ei, ρ) ≥ δ, and for each pair (u′, v′)

∈ S3
(u,v), (u′, v′) ∈ Π3(u0, v0). To simplify the proof, we

define P(Π1(u0, v0), u, v) and P(Π2(u0, v0), u, v) similarly.

For (1), since both Π1(u0, v0) and Π2(u0, v0) witness the
match (u0, v0), we know that both (u0, v0) ∈ Π1(u0, v0)
and (u0, v0) ∈ Π2(u0, v0). From Π3(u0, v0) = Π1(u0, v0)⋃

Π2(u0, v0), we have that (u0, v0) ∈ Π3(u0, v0).

For (2), it suffices to show that given any (u, v) ∈ Π3(u0, v0),
condition P(Π3(u0, v0), u, v) holds. Since (u, v) ∈ Π3(u0, v0)
we have that (u, v) ∈ Π1(u0, v0) or (u, v) ∈ Π2(u0, v0). If
(u, v) ∈ Π1(u0, v0), the conditions for P(Π1(u0, v0), u, v)
hold. Because Π3(u0, v0) = Π1(u0, v0)

⋃
Π2(u0, v0), we can

verify that conditions for P(Π3(u0, v0), u, v) hold. Indeed, for
condition (a) we have that hv(u, v) ≥ σ, since the condition
for P(Π1(u0, v0), u, v) holds; for condition (b), since the con-

dition for P(Π1(u0, v0), u, v) holds, there exists a lineage set
S1
(u,v) with aggregate score that is at least δ; then we can

define the set S3
(u,v) as S1

(u,v), and verify that the condition
(b) holds. Therefore, the conditions for P(Π3(u0, v0), u, v)
hold. The proof for the case that (u, v)∈Π2(u0, v0) is similar.

Putting these together, the maximum match is unique. 2

B. Proof of Theorem 1

For the correctness of ParaMatch, we show that for any pair
(u, v), cache(u, v) = [true,W] if and only if (u, v) is valid and
W is a lineage set of (u, v) with the maximal aggregate score.
If this holds, we can construct a witness Π(u0, v0) for (u0, v0)
by taking union of all pairs (u, v) with cache(u, v)=[true,W].

(⇒) Assume that cache(u, v)=[true,W]. Consider the follow-
ing two cases. (a) When u is a leaf in GD, we have that
hv(u, v)≥σ (line 1); then (u, v) is valid and the lineage set
of (u, v) is ∅ by the definition of parametric simulation; in
this case, the empty set ∅ is the one with maximum score;
otherwise, (b) observe that ParaMatch searches the match of
u following the descending order of lu (line 16), and sets
cache(u, v)=[true,W] once the aggregate score ofW reaches
δ (line 22); therefore, (u, v) is valid and W is a lineage of
(u, v) with the maximum aggregate score.

(⇐) Assume that (u, v) is valid and W is a lineage set of
(u, v) with the maximum aggregate score. (i) If W is ∅, then
u is a leaf in GD and hv(u, v)≥σ (condition (b) of parametric
simulation in Section III). Thus cache(u, v)=[true, ∅] (line 4).
(ii) When W 6= ∅, as (u, v) is valid and ParaMatch searches
the match of u following the descending order of lu (line 16),
W will be finally identified by ParaMatch (line 23). 2

C. Example for the Challenges of Parametric Simulation

Given GD and G in Fig. 7, let σ=1, δ=0.1. Assume that
all edges are picked by hr, and are labeled with association
scores, e.g., 0.1 is the closeness between (u, v) and (u1, v1).

To check whether (u, v) is a match, one may want to first
recursively check whether (u1, v1) is a match; to do this we
in turn have to inspect candidates (u2, v2) and (u3, v3). Note
that (u1, v1) and (u2, v2) form a strongly connected compo-
nent and depend on each other. When checking (u2, v2), pair
(u1, v1) has to be examined again. Checking these directly
would be inefficient and may not even terminate.

To this end, we record the state of (u1, v1) and reuse it
to avoid repeated checking. We initialize the state of (u1, v1)
as true (i.e., a match) and rectify it when it is invalidated.
Note that rectification is necessary. Indeed, when (u1, v1) is
assumed true, (u2, v2) becomes true since u2 and v2 bear the
same label and the association between (u2, v2) and (u1, v1)
is 0.1 = δ. However, later on (u3, v3) is found a non-match
(i.e., false), since they have distinct labels; then the state of
(u1, v1) has to be changed to false. At this point, it is necessary
to “clean up” the true state of (u2, v2) that was deduced from
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Input: GD = (VD, ED, LD), G = (V,E, L), and a set FP
of functions hv, hρ, hr and parameters σ, δ, k.

Output: The set Π of matches.
1. Π := ∅; C := ∅; initialize the hashmap cache;
2. for each ut ∈ VD and vg ∈ V such that hv(ut, vg) ≥ σ do
3. add (ut, vg) ∈ C;
4. sort matches (u, v) in C in increasing orders of the degrees;
5. compute the set Π as VParaMatch;

Fig. 8. Algorithm AllParaMatch

the initial true of (u1, v1). The cleanup is a must since actually
none of (u2, v2), (u1, v1) and (u, v) makes a match.

To implement these we employ a hashmap structure cache,
to record both the current states of candidates and the depen-
dencies among candidate matches. For each candidate match
(u, v), cache[u, v] is a pair [ϕ,W], which is either [false, ∅]
or [true, W], indicating whether (u, v) is invalid or valid,
respectively. Here W is a set of candidate matches, and [true,
W] means that (u, v) is valid (i.e., denoted by true) under the
condition that all candidate matches in W are valid.

Using cache, we can get over the complications above as
follows. (a) We first record the states of candidates (u1, v1) and
(u2, v2) by setting cache[u1, v1]=[true,W1] and cache[u2, v2]
=[true,W2]=[true, {(u1, v1)}], respectively; here cache[u2, v2]
=[true, {(u1, v1)}] is to record the fact that the validity of
(u2, v2) depends on that of (u1, v1); note that we can directly
reuse these results during recursive calls; and (b) when (u1, v1)
is confirmed invalid, we need to clean up the state of (u2, v2),
since (u1, v1) ∈ W2 (i.e., (u2, v2) depends on (u1, v1)).

D. Schema Matches

In addition to entity matches, HER can compute schema
matches. Below we formulate schema matches and show how
to extend algorithm ParaMatch to compute schema matches.

When it comes to graph G = (V,E, L) and the canonical
graph GD = (VD, ED, LD) of a relational database D (Sec-
tion II), we can deduce what paths in G represent important
attributes A of a tuple t in D. If ut matches vg , we deduce a
set Γ(ut, vg) of pairs (e, ρ) using score function hρ, where e
is an edge from ut encoding attribute A, and ρ is a path from
vg , such that path ρ encodes e (see Section V). We refer to
Γ(ut, vg) as the schema matches pertaining to (t, vg).

Algorithm ParaMatch in Section V can be extended to
compute Γ(ut, vg), the schema matches pertaining to (ut, vg).

Observe the following. When ParaMatch returns true on
(ut, vg), we get cache(ut, vg) = [true,W], where W is a set
of pairwise matching properties of (ut, vg), i.e., it consists of
matches (u, v) for u ∈ V kut

and v ∈ V kvg , along with paths ρD
from ut to its top-k descendant u and ρG from vg to its top-k
descendant v. Paths ρD are computed by function hr and start
with an edge e from ut to its children (see Section IV). Here
e may represent an attribute A of tuple t denoted by ut, and
the attribute is encoded by a prefix ρe of ρG.

For each such attribute A of t, if it is denoted by such
an edge e, we deduce its “match” ρe from ρG as follows.
We use function Mρ (see Section IV) to pick ρe such that
Mρ(LD(e), L(ρe)) is the maximum among all prefixes of ρG.
The path ρe is a “match” of e (attribute A).

Note that when an attribute B of t is picked by hr as one
of the top-k properties, it may not find a match in G. This is
not surprising since graph G is heterogeneous from database
D and it is not guaranteed to contain all properties of each
entity in D. Moreover, if B is not picked by hr, it indicates
that B is not a very important property of the entity after all.

Example 8: Continuing with Example 7, when ParaMatch
terminates, schema matches Γ(u2, v10) is computed as follows.
Since cache[u2, v10]=[true,W] withW={(u7, v20), (u8, v17),
(u9, v9), (u11, v18)}, and u7, u8, u9 and u11 are children of u2,
we can identify the “matches” of edges (attributes) (u2, u7),
(u2, u8), (u2, u9) and (u2, u11) as follows.

(1) Edges (u2, u7), (u2, u8) and (u2, u11) in canonical graph
GD are mapped to edges (v10, v20), (v10, v17) and (v10, v18)
in graph G, respectively, since (u7, v20) ∈ W , (u8, v17) ∈ W ,
(u11, v18) ∈ W , and v20, v17 and v18 are children of v10.

(2) For edge e3 = (u2, u9), since (u9, v9) ∈W , e3 is mapped
to path ρG = (v10, v15, v19, v9). We check the prefixes of
ρG, i.e., ρ1 = (v10, v15), ρ2=(v10, v15, v19) and ρ3=(v10,
v15, v19, v9). Since Mρ(LD(e3), L(ρ1))=0.46, Mρ(LD(e3),
L(ρ2)) = 0.68 and Mρ(LD(e3), L(ρ3)) = 0.71, we know
that Mρ(LD(e3), L(ρ3)) is the maximum among all prefixes
of ρG, and hence add (e3, ρ3) to Γ(u1, v1). 2

E. Examples for Algorithm VParaMatch

Continuing with Example 1, given an item “Dame Basket-
ball Shoes D7” (tuple t1), module VPair is then triggered to
find all vertex matches of tuple t1 in G. Assuming the same
parameters hv, he, hr, σ, δ, k as in Example 7, VParaMatch
(1) first finds items (i.e., vertices) in G with names similar to
“Dame Basketball Shoes D7” (i.e., v1 and v3), and initializes
C(u1) with candidate matches (i.e., (u1, v1) and (u1, v3)). (2)
It then inspects candidates in C(u1) along the same lines as
Example 7, and returns (u1, v1).

We remark the following. (1) The verification starts from
(u1, v1) since v1 has the smaller degree than v3; it confirms
the validity of (u2, v10), which can be reused to verify other
candidate matches. One can verify that inspecting candidates
following the increasing degree order reduces comparisons.
When G is large, we group vertices in G using inverted in-
dices [98] on vertex attribute values for quick vertex search.
Given vertex u1 in GD, the candidate matching vertices in
G are v1 and v3. If we built inverted indices on the hasColor
attribute of items in G, we can quickly locate the most similar
vertex v1, since its color is “White”, which matches the color
of u1; while v3 has color “Red”, and then cannot match u1.
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F. Algorithm AllParaMatch

As shown in Fig. 8, AllParaMatch extends ParaMatch along
the same lines as VParaMatch. The only difference is in the
initialization phase (lines 2-3). That is, AllParaMatch initial-
izes a set C of candidate pairs (ut, vg) across GD and G,
ranging over all ut∈VD and vg∈V such that hv(ut, vg)≥σ.
Then it extends Π in the same way as in VParaMatch (line 5).

Example 9: Continuing with Example 1, the e-commerce com-
pany runs AllParaMatch offline after (hv, hρ, hr) and (σ, δ, k)
have been substantially improved, to identify items more ac-
curately. When the process is triggered, AllParaMatch first
finds all items from GD and G, i.e., u1 for t1 and u12 for
t3 (not shown) in GD, along with v1, v3, v21, v24 and v30 in
G. It initializes C with candidate pairs, e.g., (u1, v1), (u1, v3),
(u12, v1) and (u12, v3); note that (u1, v24) and (u12, v24) are
not in C due to the different labels of vertices. It then checks
candidates in C along the same lines as Example 7.

Note that (u1, v3) and (u12, v1) are invalid and are not in Π,
due to the difference between “Dame Basketball Shoes D7”
and “Mid-cut Basketball Shoes Ultra Comfortable”. That is,
AllParaMatch distinguishes “Basketball Shoes” (i.e., v2 in G)
denoted by v1 and the one denoted by v3. 2

Proof of Corollary 2. We only prove the correctness and com-
plexity of VParaMatch; AllParaMatch can be shown similarly.

(1) For the correctness, observe that the set C(ut) consists of
all possible candidates (lines 2-3) and VParaMatch verifies all
candidates in C(ut) along the same line as ParaMatch.

(2) For the complexity, the analysis is similar to the coun-
terpart for ParaMatch. Observe the following: (a) algorithm
VParaMatch takes O(|VD||ED|+|V ||E|) time to select top-k
descendants; (b) it takes O(|VD||V |) time to check whether
(ut, v)∈Π(ut, vg) for all candidates (ut, v) in C(ut); this is
because VParaMatch uses the hashmap cache, and each pair
(u, v) will be checked at most once; and (c) there exist at most
O(|VD||V |) pairs; note that although VParaMatch only identi-
fies all matches for a given vertex ut, in the worst case all pos-
sible candidates need to be verified. Therefore, VParaMatch
takes at most O((|VD|+|ED|)(|V |+|E|)) time. 2

G. Fixpoint computation

Given fragmented graphs GD and G, PAllMatch computes
matches Π in parallel. It adopts the fixpoint model of GRAPE
[35], [9], [8]. Under BSP, all workers perform APair on its
local data in parallel. At the end of each superstep, all workers
exchange messages, i.e., the changed status of border nodes.
By treating the messages as updates, all workers incrementally

refine their local matches in parallel. The process proceeds
until no more changes can be made. It can be formulated as
fixpoint computation in supersteps, as follows:

R0
i =PPSim(Fi, σ, δ, k), (3)

Rj+1
i = IncPSim(Rji , Fi, σ, δ, k,Mi). (4)

Here Rij denotes the partial result at worker Pi after j rounds
of computation; it consists of candidate matches identified
at fragment Fi; and (2) Mi is the message sent to Pi from
other workers. Algorithm PAllMatch starts with a procedure
PPSim at each worker, and then iteratively runs IncPSim to
incrementally refine the result, as shown in Section VI.

Proof of Theorem 3. This can be proved by constructing a
tree T to represent the dependencies among candidates.

The tree T . We start with the construction of T , where the
root is the given pair (u0, v0), and other nodes on T are candi-
date matches (u, v). The tree T is constructed top-down from
(u0, v0). Given any (u, v) in T , assume that cache[u, v] =
[true, {(u1, v1), (u2, v2), . . . , (un, vn)}]. Then we add (u1, v1),
(u2, v2), . . . , (un, vn) to T as the children of (u, v); intuitively,
the children of (u, v) witness the match (u, v). The construc-
tion stops when either u is a leaf in GD or a pair (u, v) has
been verified before, i.e., (u, v) has already appeared on the
path from the root (u0, v0). The tree T is finite, since there
exists at most O(|GD||G|) candidates, and each candidate can
appear at most twice on each path from the root (u0, v0).

By algorithm ParaMatch shown in Fig. 4, we can verify
that given a candidate (u0, v0), ParaMatch returns true if and
only there exists such a tree T rooted at (u0, v0).

Correctness. It suffices to show that for each pair (ut, vg),
sequential algorithm ParaMatch returns true if and only if
the parallel algorithm PAllMatch returns true.

Before showing this, we first establish a connection between
ParaMatch and PAllMatch. Assume that T is the tree con-
structed for (ut, vg) when ParaMatch runs on GD and G;
and T 1

i , T 2
i , . . . , T

mi
i are trees constructed when PAllMatch

runs on fragment Fi (i ∈ [1, n]); observe that T 1
i , T 2

i , . . . ,
Tmi
i may not be connected, since G and GD have been parti-

tioned via edge-cut. But due to the use of border nodes in ODi
(see Section VI), T can be obtained by merging T 1

i , T 2
i , . . . ,

Tmi
i (i ∈ [1, n]). Note that when PAllMatch terminates, the

cached values cache[u, v] in different trees T 1
i , T 2

i , . . . , T
mi
i

are consistent, since these values are synchronized during the
running of PAllMatch via messages (see Section VI).

Then the correctness can be verified as follows. ParaMatch
returns true if and only if T can be constructed from ParaMatch
if and only if T can be obtained by merging T 1

i , . . . , T
mi
i

(i∈[1, n]) if and only if PAllMatch returns true. 2
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F-measure GloVe 100d GloVe 200d GloVe 300d
DBpediaP 0.807 0.835 0.852
DBLP 0.881 0.902 0.915
IMDB 0.872 0.891 0.899

TABLE VII
ACCURACY OF HER WITH DIFFERENT EMBEDDINGS (F-measure)

H. Experimental Results on IMDB

We report the scalability and efficiency of HER in the APair
mode on IMDB in Figure 9. From the figure, we find the
following. (1) As the number n of workers increases from
4 to 16, APair becomes 2.3 times faster on IMDB (see Fig.
9(a)); and (2) Figures 9(b)-9(d) show the efficiency of APair
on IMDB with 16 workers and various parameter settings,
which show that larger k or δ increases the execution time
while larger σ decreases the matching time. These results are
consistent with those on the other datasets in Section VII.
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Fig. 9. HER scalability and efficiency on IMDB

I. Impact of Different Embeddings on HER Accuracy

In order to study the influence of different embeddings in
the vertex modelMv on HER matching accuracy, we replaced
the sentence Bert in Mv with a series of GloVe word em-
beddings [70] of different vector dimensions, and tested the
accuracy of HER accordingly. More specifically, given the pre-
trained GloVe embedding, we adopted the average embedding
vector of each word in a vertex attribute as the vertex sim-
ilarity measure, and tested the matching accuracy on IMDB,
DBLP and DBpediaP with the same HER parameter config-
uration. A series of four GloVe word embeddings pre-trained
on Wikipedia 2014 and Gigaword 5, with vector dimensions
of 100, 200 and 300, respectively, were employed [17]. The
reason for choosing these embeddings to compare is to control
other influencing factors such as training corpus and hyper-
parameter configurations, and leave the word similarity mea-
surement accuracy of an embedding (determined by the dimen-
sion of word embeddings since GloVe embedding with higher
dimensions have higher accuracy [70]) as the only varying
factor. The overall accuracy of 300-dimensional GloVe word
embedding on word analogy task of Mikolov et al. (a variety
of word similarity tasks) [60] is 71.7%, while that of 100-
dimensional embedding is 60.3% [70].

As shown in Table VII, the higher word similarity measure-
ment accuracy (i.e., higher dimensions of embeddings) is, the
higher matching accuracy HER can achieve. Thus, embeddings
with high word similarity measurement accuracy are desirable
for HER. This said, the accuracy gap between high and low
dimensional embeddings is quite small (at most 5% difference
in accuracy as shown in Table VII), which means that the
matching accuracy of HER is rather insensitive to the choice
of embeddings. This is because HER computes scores from
multiple matching paths, and a single failure of the embedding
similarity has little impact on the matching result.
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