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ABSTRACT
Schema matching predictors assess the quality of schema
matchers in the absence of an exact match. We propose
MCD (Match Competitor Deviation), a new diversity-based
predictor that compares the strength of a matcher confi-
dence in an attribute pair correspondence with respect to
other correspondences that involve either attribute. We also
propose to use MCD as a regulator to optimally control a
balance between Precision and Recall and use it towards
1 : 1 match (combining it with a similarity measure that is
based on solving a maximum weight bipartite graph match-
ing (MWBM)) and 1 : n match (combining it with a matcher
called Max-Delta). While optimizing the latter combination
is straightforward, optimizing the former combined measure
is known to be an NP-Hard problem. Therefore, we propose
an approximation to an optimal match by efficiently scan-
ning multiple possible matches. Using a thorough empirical
study over several benchmark real-world datasets, we show
that MCD outperforms other state-of-the-art predictors. We
also show that the proposed schema matching algorithms
significantly outperform existing schema matchers.

1. INTRODUCTION
The research in the area of schema matching [3] and

related areas (e.g., ontology alignment [10]) has focused
for many years on the identification of high quality
matchers, automatic tools for identifying correspondences
among database attributes. Initial heuristic attempts (e.g.,
COMA [6]) were followed by theoretical grounding (e.g.,
see [12, 3]). Recently, the use of predictors to assess the
quality of schema matchers in the absence of an exact match
was proposed [33] and implemented in tools for dynamic en-
semble weight setting and process matching [38].
Prediction is performed on a similarity matrix, in which

for each pair of attributes, one of each schema, an automatic
matcher provides a measure of similarity. In this work we
propose MCD, a new predictor that is based on compar-

ing the strength of a matcher confidence in a pair corre-
spondence (ai, bj) with respect to other attribute correspon-
dences that involve either ai or bj . Such a predictor mea-
sures the diversity in similarity among attribute pairs, inter-
preting high diversity as a better differentiator among true
and false attribute correspondences. Our empirical eval-
uation indicates that MCD outperforms any other schema
matching predictor in the literature so far.

The practical implication of such a finding is that pairs
with high MCD values are likely to be part of a correct
schema match. We show, both formally and empirically,
that MCD serves as a regulator to control optimally a bal-
ance between Precision and Recall. Therefore, we propose
a method for combining MCD with two known matchers.
The first is based on solving a maximum weight bipartite
graph matching (MWBM), aiming at 1 : 1 match tasks. The
second is Max-Delta [6], which returns a top-value list of cor-
respondences for each matrix row and is particularly useful
in 1 : n matching tasks.

In this work we also tackle the challenge of identifying a
match that maximizes similarity. While optimizing the lat-
ter combination is straightforward, optimizing the combined
measure of MCD and MWBM is known to be an NP-Hard
problem. Therefore, we propose building an optimal match
by efficiently scanning multiple possible matches, using the
Cross-Entropy (CE) Method [31].

Using a thorough empirical study over real-world dataset
benchmarks, we show that MCD outperforms state-of-the-
art predictors andMCD-based matching selection algorithms
significantly outperform baseline methods.

To summarize, our contribution is threefold. We propose:
(1) a new predictor, MCD, and show its dominance over the

state-of-the-art;
(2) two MCD-based methods, improving on both 1 : 1 and

1 : n selection methods; and
(3) a new method for efficiently scanning a match space.
The rest of the paper is organized as follows. We start with
preliminaries, where we introduce the similarity matrix as a
basic data model for schema matching (Section 2). Section 3
introduces MCD and discusses its properties. Two MCD-
based methods are presented in Section 4, followed by an
empirical evaluation (Section 5). We conclude with related
work (Section 6) and concluding remarks (Section 7).

2. PRELIMINARIES: SCHEMA MATCHING
We now present a model for schema matching, based

on [12]. Matching problems match two members of the
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problem domain (schemata) by aligning their components
(attributes). Therefore, let S, S′ be two schemata with at-
tributes {a1, a2, . . . , an} and {b1, b2, . . . , bm}, respectively.
During the matching process, attribute features are uti-

lized to deduce similarity. For example, attribute labels are
used to perform string-based comparison. A matching algo-
rithm is expected to eventually output a list of correspon-
dences between attributes. This list is often conceptualized
as a similarity matrix.

Definition 1. let S = S × S′ be the set of all possi-
ble correspondences between attributes of S and S′, then
M(S, S′) is an n×m similarity matrix over S. Mi,j (typi-
cally a real number in [0, 1]) represents a degree of similarity
between the i-th and j-th attributes of S and S′, respectively.

M(S, S′) is a binary similarity matrix if for all 1 ≤ i ≤ n

and 1 ≤ j ≤ m, Mi,j ∈ {0, 1}. A (possibly binary) similar-
ity matrix is the output of the matching process. For any
matched schema pair (S, S′), the power-set Σ = 2S is the
set of all possible matches between this pair. We denote a
match by σ ∈ Σ and its cardinality by |σ|.
As an example, consider Table 1, which presents two sim-

ilarity matrices for two simplified database schemata, with
four and three attributes, respectively. We interpret bi-
nary similarity matrices as representing a match, where a
value of 1 signifies attribute pairs that are part of a match.
Therefore, the match that is represented by Table 1(bottom)
is σ = 〈(cardNum, clientNum), (city, city), (checkInTime,
checkInDate)〉, and its cardinality is |σ| = 3.
Matching is often a stepped process in which different

algorithms, rules, and constraints are applied. Several clas-
sifications of matching steps have been proposed over the
years. Following Gal and Sagi [14], we separate matchers
into those that are applied directly to the problem (first-
line matchers – 1LMs) and those that are applied to the
outcome of other matchers (second-line matchers – 2LMs).
1LMs receive two schemata and return a similarity matrix.
2LMs receive a similarity matrix and return a similarity ma-
trix. Among the 2LMs, we term decision makers those that
return a binary matrix as an output. Using Table 1 once
more, Table 1(top) may be the outcome of a 1LM, while
Table 1(bottom) is the outcome of a 2LM decision maker,
which enforces a 1 : 1 matching.
For the sake of illustration, three of the 1LMs we use

in our empirical evaluation are discussed next. The Term
algorithm [12] compares attribute names using, e.g., edit
distance and soundex, to identify syntactically similar at-
tributes. To achieve better performance, names are prepro-
cessed using several techniques originating in IR research. A
WordNet-based algorithm [30, 16] uses abbreviation expan-
sion and tokenization methods to generate a set of words
for each attribute from its name. The resultant sets are
compared with the average of their Jiang-Conrath similar-
ity [18] used as the attribute similarity value. Finally, we
also use the Token Path algorithm from Auto-Mapping Core
(AMC) [26], which integrates node-wise similarity with struc-
tural information by comparing the syntactic similarity of
the full paths from the root to a node.
Two state-of-the-art 2LMs, namely MWBM and Max-

Delta are now shortly described for illustration purposes.
MWBM generates a match of a size min(n,m) by solv-

ing a maximum weight bipartite graph matching problem.

S1 −→ cardNum city arrival Day checkIn Time

↓ S2

clientNum 0.84 0.32 0.32 0.30
city 0.29 1.00 0.33 0.30
checkInDate 0.34 0.33 0.35 0.64

S1 −→ cardNum city arrival Day checkIn Time

↓ S2

clientNum 1 0 0 0
city 0 1 0 0
checkInDate 0 0 0 1

Table 1: Top: a similarity matrix example. Bottom:
a binary similarity matrix example, representing a
possible match

In the bipartite graph, nodes in each side of the graph rep-
resent attributes of one of the schemata, and the weighted
edges represent the similarity measures between attributes.
MWBM aims at maximizing the overall match confidence
and its objective is given by:

QMWBM(σ,M) =
∑

(i,j)∈σ

Mi,j (1)

Known algorithms, e.g., [15] provide the output of the
MWBM matcher. Parallel implementations of MWBM ex-
ist, which provide an optimal match in O(min(n,m)2.5).

Max-Delta is a simple heuristic for selecting matrix entries
(i, j) to consist of a match σ given 1LM similarity matrix
M . Max-Delta is employed by many matching systems, e.g.,
COMA 3.0 [23] and AMC [26]. Given a Delta value (e.g.,
0.1), Max-Delta calculates a value δi for each row i = 1, . . . , n
of the similarity matrix. The match result σ is constructed
by selecting those entries (i, j) from each matrix row with
confidence values Mi,j that are at most δi below the max-
imum value in that row (maxi). Formally, an entry (i, j)
is selected for the match σ iff the following condition holds:
Mi,j ≥ maxi − δi, where maxi = maxj=1...,mMi,j and δi is
a proportion of row “variance,” given by:

δi = Delta×

(

maxi −
1

m

m
∑

j=1

Mi,j

)

(2)

The Max-Delta heuristic assumes 1LM results are well cor-
related with their quality. Thus, high valued entries are
assumed to be better match candidates than low valued en-
tries. Applying the selection rule row by row ensures good
coverage (recall) of the target schema. On the other hand,
limiting the results to the top-valued entries per row, aims
at better precision.

3. MATCH COMPETITOR DEVIATION
Schema matching predictors assess the quality of the

matching outcome without any knowledge of the exact
match [33]. Such prediction can be based on either internal
properties of the similarity matrix or by a distance measure
from some “ideal” form of solution. Predictors should be
applied to tasks with different requirements of granularity,
from predicting match quality for a single attribute pair,
to match quality of a schema pair. Predictors should be
able to predict different qualities, putting more emphasis,
for example, on Precision or on Recall. Quality of predic-
tors is measured by its correlation with match Precision or
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Recall, and a good correlation should be statistically signifi-
cant when tested over a substantial number of schema pairs
and stable over varying datasets and schema matchers.
Match Competitor Deviation (MCD) is a new predictor,

which measures the diversity of a match σ ∈ Σ that was de-
termined by some 2LM, given a similarity matrix M . Infor-
mally, match diversity is captured by measuring how much
each matrix entry (i, j) ∈ σ, selected by a 2LM, deviates (in
terms of match confidence) from other competing entries
(i, l); l 6= j or (l, j); l 6= i in the similarity matrix M .
More formally, deviation is captured by measuring the dif-

ference between entry (i, j) ∈ σ confidence Mi,j and that of
a mean entry, µi,j , defined as the average confidence among
entries that share the same matrix row i or column j (in-
cluding entry (i, j)), as follows:

∆i,j = (Mi,j − µi,j)
2
, (3)

where:

µi,j =
1

n+m− 1

(

n
∑

l=1

Ml,j +
m
∑

l=1

Mi,l −Mi,j

)

(4)

For a given similarity matrix M (generated by some 1LM)
and a match σ ∈ Σ (generated by some 2LM), the MCD
predictor evaluates the quality of the match according to
the average (scaled) deviation, as follows:

QMCD(σ,M) =

√

1

|σ|

∑

(i,j)∈σ

∆i,j (5)

Therefore, the main principle of the MCD predictor is to
evaluate the ability of a 2LM to pick entries for the match
that deviate as much as possible from their competitor en-
tries. Such deviation may be attributed to the ability of
a 2LM to choose diverse entries, rather than just consider
each entry’s confidence independently.
As we shall demonstrate in Section 5.3, theMCD predicted

value is highly correlated with the actual match quality, as
would be judged by a human assessor.

3.1 The importance of match diversity
A notable drawback of the MWBM matcher is that matrix

entries (i, j) are selected independently of the similarity
of other entries that compete on the same match selection
spot. To illustrate how detrimental such a drawback may
be, consider the following example similarity matrix that
may be produced by some 1LM:

M =





0.9 0.1 0.9
0.1 0.1 0.1
0.9 0.1 0.9





Seeking a 1 : 1 match, σ∗ is the match with the optimal
QMWBM(σ

∗,M) = 1.9 value, as would be returned by the
MWBM matcher. When maximizing QMWBM(σ,M), entry
(2, 2) is included in σ∗, which may turn out to be risky, hav-
ing a reasonable chance of being incorrect. The reason for
that is two-fold. First, the selected entry itself is of low con-
fidence. Second, the alternatives have the same confidence
level, which may hint that the 1LM could not distinguish
well between entry (2, 2) and its competitors.
Such a problem in entry selection can be detected by mea-

suring the diversity of the match according to the MCD pre-
dictor. In this example, ∆2,2 = 0 and when maximizing

Algorithm 1 MCD

1: input: M(n,m)
2: for (i, j) ∈ M do
3: ∆i,j := (Mi,j − µi,j)

2

4: end for
5: k := min (n,m)
6: σ∗ := ∅
7: for p = 1, . . . , k do
8: σ := MWBM(∆, p)
9: if QMCD(σ,M) > QMCD(σ

∗,M) then
10: σ∗ := σ

11: end if
12: end for
13: return σ∗

QMCD(σ,M) according to Eq. 5 the inclusion of entry (2, 2)
in σ∗ is avoided, which may result in a match with a better
precision. While there is some possible chance for loss in
match recall, such possibility is minimized, since the entry
that was eliminated had a very low confidence.

3.2 MCD optimization
Algorithm 1 describes an efficient solution for finding a

match σ ∈ Σ (either 1 : 1 or 1 : n) with an optimal MCD
value given any 1LM’s similarity matrix M as an input. The
algorithm makes use of an auxiliary algorithmMWBM(M,p)
that returns the maximum weight match givenM , where the
required match size |σ| = p is fixed [28].

The algorithm starts by creating the ∆ matrix using Eq. 3
(lines 2-4). Then, it iteratively finds an optimal solution
for MWBM(∆, p) [28] for p = 1, ...,min(n,m), keeping the
match with maximum QMCD(·,M) (lines 7-12).

Theorem 1. For any similarity matrix M , Algorithm 1
correctly finds a match σ ∈ Σ that maximizes QMCD(σ,M).

Proof. Let σ be the match returned at Step 8.
MWBM(∆, p) returns σ = argmaxσ∈Σ||σ|=lQMWBM(σ,∆),
by definition. Let σ′ ∈ Σ such that |σ′| = p. We have
that:

QMCD(σ,M) =

√

1

p

∑

(i,j)∈σ

∆i,j (Eq. 5)

=

√

1

p
QMWBM(σ,∆) (Line 8 and Eq. 1)

≥

√

1

p
QMWBM(σ′,∆) By MWBM optimality

=

√

1

p

∑

(i,j)∈σ′

∆i,j (Eq. 1)

= QMCD(σ
′
,M) (Eq. 5)

Since the algorithm maintains the optimal match for every
possible fixed match size p (lines 9-10), we are guaranteed
that the returned matching σ∗ (Line 13) is optimal.

Predictors provide a unique value for each similarity matrix
entry and as such, can serve as schema matchers by them-
selves. Unfortunately, as will be illustrated in the next sec-
tion, their role as schema matchers may not be better than
any other schema matcher in the literature. However, the
ability to assess the quality of a match is useful in deciding
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which correspondences to include in and which to exclude
from a match. Therefore, we introduce in this work a novel
way of using predictors. In addition to using them for pre-
diction, we use them as regulators, tuning the abilities of
schema matchers towards better decision making.

4. SCHEMA MATCHING USING MCD AS A
REGULATOR

In this section, we show how schema matching can be done
with MCD as a regulator, tuning the task towards Precision
or Recall. We focus on two schema matchers as represen-
tatives of 1 : 1 and 1 : n matching tasks. The bulk of the
discussion is devoted to the regulation of MWBM, which
is shown to be a hard problem. We start by showing the
optimality tradeoff of MCD and MWBM (Section 4.1). Sec-
tions 4.2 and 4.3 are devoted to presenting and optimizing
MCD as a regulator for MWBM. Finally, Section 4.4 presents
the enhancement of Max-Delta with MCD.

4.1 MCD vs. MWBM Optimality Tradeoff
While an algorithm for finding an optimal match exists for

each of the two match objectives, namely MWBM (Eq. 1)
and MCD (Eq. 5), the optimization of each objective sepa-
rately may violate the optimality of the other.

Proposition 1. Let M be a similarity matrix and σ ∈ Σ:
QMWBM(σ,M) ≥ QMCD(σ,M)

Proof.
∑

(i,j)∈σ

Mi,j ≥

√

∑

(i,j)∈σ

M2
i,j

≥

√

∑

(i,j)∈σ

(Mi,j − µi,j)
2

≥

√

1

|σ|

∑

(i,j)∈σ

(Mi,j − µi,j)
2

Using Proposition 1 we conclude that, given a similarity
matrixM , the maximization ofMCD objective may basically
violate the maximization of MWBM objective. Given σ′ ∈ Σ
and σ′′ ∈ Σ the optimal match for the MWBM and the MCD
objectives, respectively. Then, the following holds:

QMWBM(σ
′
,M) ≥ QMWBM(σ

′′
,M) (MWBM optimality)

≥ QMCD(σ
′′
,M) (Proposition 1)

≥ QMCD(σ
′
,M) (MCD optimality)

Given a matrix M , let σ, σ′ ∈ Σ be matches that max-
imize QMCD(·,M) and QMWBM(·,M), respectively. We de-
fine an MWBM ratio of optimality as the ratio between the
scores MWBM assigns to the optimal MCD and MWBM

matches ( QMWBM(σ,M)
QMWBM(σ′,M)

). Lower ratios indicate worse perfor-

mance of MCD in terms of MWBM. Proposition 2 provides
an upper-bound on the MWBM ratio of optimality, demon-
strating that the maximization of MCD objective may yield
bad (problem size factor) performance with respect to the
MWBM objective.

Proposition 2.

QMWBM(σ,M)

QMWBM(σ′,M)
≤

1

min(n,m)

Proof. Consider the following (symmetric) similarity ma-
trix instance:

M
′ =











1 ǫ · · · ǫ

ǫ ǫ · · · ǫ
...

...
. . .

...
ǫ ǫ · · · ǫ











The optimal score of MCD match σ over M ′ is
QMWBM(σ,M) = 1, while the optimal score of MWBM match
σ′ over M ′ is QMWBM(σ

′,M) = 1 + (min(n,m)− 1)ǫ. Since
ǫ ∈ [0, 1], the worst MWBM ratio of optimality is gained
when ǫ = 1, having

QMWBM(σ,M
′) =

1

min(n,m)
QMWBM(σ

′
,M

′)

and hence

QMWBM(σ,M)

QMWBM(σ′,M)
≤

1

min(n,m)

4.2 MCD-based match regularization
The selection of a match σ ∈ Σ that exhibits both high

match confidence and selection diversity is formally captured
by the following bi-objective problem:

max
σ∈Σ

{QMWBM(σ,M),QMCD(σ,M)} (6)

As was demonstrated above, the optimality of each one
of the objectives may violate the optimality of the other.
Therefore, any optimal solution to this problem may be de-
fined in terms of Pareto optimality [8], which formally cap-
tures the tradeoff among the two objectives.

Definition 2 (Pareto Optimal Match). Given a
similarity matrix M , match σ ∈ Σ is a Pareto optimal
solution to the bi-objective optimization problem (Eq. 6) if
for any other match σ′ ∈ Σ one of the following holds:

QMWBM(σ,M) ≤ QMWBM(σ
′
,M) ⇒ QMCD(σ,M) > QMCD(σ

′
,M),

or

QMCD(σ,M) ≤ QMCD(σ
′
,M) ⇒ QMWBM(σ,M) > QMWBM(σ

′
,M).

Instead of solving the bi-objective problem we combine
both objectives using their weighted power mean:

Q(σ,M) = QMCD(σ,M)βQMWBM(σ,M)1−β
, (7)

where β ∈ [0, 1] is a regularization parameter that controls
the relative importance of each of the two objectives. Higher
β indicates a higher preference towards diverse entry selec-
tion over match confidence, and visa versa.

Proposition 3. Given a similarity matrix M and some
β ∈ [0, 1], let σ ∈ Σ be a match that maximizes Q(σ,M)
in Eq. 7, then σ provides a Pareto optimal solution to the
bi-objective problem defined in Eq. 6.

Proof. Let M be a given similarity matrix and σ ∈ Σ
be a match that maximizes Q(σ,M). Let σ′ ∈ Σ be
some other match. Without loss of generality, assume that
QMWBM(σ,M) < QMWBM(σ

′,M) for some β ∈ [0, 1], from the
monotonicity of the power function it follows that:
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QMWBM(σ,M)1−β
< QMWBM(σ

′
,M)1−β (8)

From the fact that Q(σ,M) ≥ Q(σ′,M), combined with
Eq. 8, we get that:

QMCD(σ,M)β > QMCD(σ
′
,M)β .

Again from the monotonicity of the power function we get
that: QMCD(σ,M) > QMCD(σ

′,M). Therefore, σ is a Pareto
optimal match.

By solving Eq. 7 rather than Eq. 6, we still maintain
Pareto optimality (Proposition 3), using β to decide on
where on the Pareto curve we prefer to be. In Section 5
we show that Q(σ,M) is highly correlated with matching
quality (in terms of Precision, Recall, and F1). Therefore,
maximizing Q(σ,M) increases matching quality as well.

4.3 Cross-Entropy Based Optimization
The maximization of the combined bi-objective Q(σ,M),

as well as its original bi-objective version in Eq. 6 is NP-
Hard [1, 8]. Therefore, we next propose an efficient solution
that can produce an approximate Pareto-optimal match,
which captures the tradeoff encoded in the bi-objective op-
timization problem and effectively explores the match space
Σ. We now describe the details of a novel 2LM, termed
Cross-Entropy Schema Matcher (CESM for short). CESM is
an unsupervised schema matcher that utilizes Q(σ,M)
(Eq. 7) as a proxy for match quality prediction. There-
fore, the CESM matcher’s goal is to find a match σ ∈ Σ
that (approximately) maximizes Q(σ,M). We utilize a ran-
domized optimization approach, namely the Cross-Entropy
(CE) Method, a Monte Carlo (randomized) combinatorial
optimization technique for solving hard problems. We start
by providing some motivation behind the usage of the CE
Method, where we focus on its novel application to schema
matching (Section 4.3.1). We then introduce the CESM
matcher (Section 4.3.2).

4.3.1 From match quality optimization to rare event
estimation

The basic idea behind the CE Method, which we make use
of in this work, is that finding an optimal solution to a (de-
terministic) hard problem may be casted into an equivalent
rare-event (stochastic) estimation problem as follows.
Given similarity matrix M , assume that γ∗ is the best

match quality (according to Q(σ,M)) that may be obtained
by some optimal match (solution) σ∗ ∈ Σ, that is:

γ
∗ = Q(σ∗

,M) = max
σ∈Σ

Q(σ,M) (9)

As a starting point, we associate with the optimization
problem in Eq. 9 a meaningful estimation problem [31]. To
this end, let Σ ∼ f(v) denote a random match over Σ that
is distributed according to some pdf f(v) with parameter v.
For a given parameter v we now associate with Eq. 9 the
problem of estimating

l(γ) = Pv(Q(Σ,M) ≥ γ) = Ev(δ[Q(Σ,M)≥γ]), (10)

where Pv is the probability measure under f(v), and Ev de-
notes the corresponding expectation operator. δ[θ] denotes
the Kronecker-delta (indicator) function, receiving the value
of 1 if the condition expressed by θ is satisfied, else 0. The es-
timation problem in Eq. 10 is termed the associated stochas-
tic problem (ASP) of Eq. 9 [31].

Unfortunately, a direct calculation of l(γ) in Eq. 10 would
require a full enumeration of Σ, which is commonly unprac-
tical due to its size. One possible (and näıve) way to esti-
mate the event likelihood captured by l(γ) is to use a simple
Crude Monte Carlo (CMC) estimator [32] as follows:

l̂CMC(γ) =
1

N

N
∑

i=1

δ[Q(σi,M)≥γ], (11)

where σi ∈ Σ are i.i.d random matches drawn from f(v).
We wish to find an estimator such that l(γ)=l(γ∗). How-

ever, the original optimization problem in Eq. 9 is NP-Hard
and we actually need to estimate the likelihood of the oc-
currence of a rare-event, i.e., the probability that we have
obtained at least one of the matches σ∗ ∈ Σ that have an
optimal match quality γ∗. Therefore, in most cases, random
match samples σi yields δ[Q(σi,M)≥γ∗] = 0, requiring a very
large sample size N to obtain a reliable estimate [32].

The CE Method, to be presented herein, provides a more
computationally efficient way to estimate l(γ∗). We briefly
explain the main idea behind the CE Method, setting basic
intuition about the approach we take. Full details of the CE
Method solution are provided in [31].

The CE Method is based on an importance sampling ap-
proach [32]. Using this approach, the optimal reference pa-
rameter v∗ ∈ V may be learned and the event given by
{Q(Σ,M) ≥ γ∗} may be efficiently estimated. Using v∗, a
single match σ∗ ∈ Σ may be then sampled from the corre-
sponding f(v∗) to provide an (approximate) optimal solu-
tion with maximum match quality Q(σ∗,M).

The CEMethod uses an iterative two-step approach. First,
observe that for a given quality performance level γ ≪ γ∗

(e.g., γ = 0) we can find a reference parameter vγ ∈ V under
which the event {Q(Σ,M) ≥ γ} is no longer rare. That is,

l(γ) = Pvγ (Q(Σ,M) ≥ γ) ≥ ρ (12)

for some large enough ρ (e.g., ρ = 0.01).
Starting from some initial reference parameter v0 (e.g.,

one with maximum entropy), in each iteration t the CE
Method learns a new pair 〈vt, γt〉 using the previously learned
reference parameter vt−1 for which the event {Q(Σ,M) ≥
γt} is not rare anymore and its probability is at least ρ. To
this end, in each iteration the CE Method first samples ran-
dom matches σi ∈ Σ according to f(vt−1) and finds a new
performance level γt in which at least ρ of the samples have
performance higher or equal to γt. Such γt can be easily
estimated by first sorting the performances Q(σi,M) in as-
cending order and taking γt to be the (1−ρ)-quantile of the
list. The learning of the new reference parameter vt, there-
fore, is based on the ρ-best performing samples (termed the
“elite sample” [31]), each has at least γt match quality.

The CE Method shall, therefore, iteratively attempt to
improve the learned reference parameter vt such that γt
gradually increases towards the unknown optimal perfor-
mance γ∗. It halts once γt can no longer improve.

Finally, the derivation of the next reference parameter
vt is based on a solution (using importance sampling) to a
Cross Entropy minimization problem, where the “distance”
between f(vt) of the unknown (“better”) vt parameter and
the one with the previously learned parameter vt−1, f(vt−1)
is being minimized.
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As a common practice, instead of updating the parameter
vt−1 to vt directly, similarly to many other learning meth-
ods, we use a smoothed updating procedure in which:

v
t = λv

t + (1− λ)vt−1
, (13)

where λ ∈ [0, 1] is the smoother [31].
The details of the formal derivation of the CE optimal ref-

erence parameter are described in details in the Appendix B.
The CE Method has been shown to converge to the opti-
mal solution with probability 1 within finite number of it-
erations [21]. Practically, as shall be demonstrated in our
evaluation in Section 5, the CE Method only explores a rel-
atively tiny fraction of the match space Σ, hence, proving
to be an effective optimization tool for our need.

4.3.2 Cross Entropy Schema Matcher
Having introduced the intuition behind the CE Method,

we now describe its application to schema matching. Re-
call that our aim is to find a match σ ∈ Σ that maximizes
the overall predicted match quality Q(σ,M). Using the CE
Method, the optimization problem has been reduced to the
problem of finding an optimal reference parameter, under
which the likelihood of finding some match σ∗ ∈ Σ with an
optimal performance Q(σ∗,M) may be efficiently estimated.

Algorithm 2 Cross Entropy Schema Matcher

1: input: similarity matrix M,N, ρ, λ
2: initialize:
3: for i = 1, . . . ,m; j = 1, . . . , n do
4: v0

i,j = 1
2

5: end for
6: t = 1
7: loop
8: Randomly draw N matches σ ∈ Σ using vt−1

9:
−→
Σl = sortl=1,...,N (Q (σl,M))

10: γt = quantile1−ρ(
−→
Σl)

11: for i = 1, . . . , n; j = 1, . . . ,m do

12: vt
i,j :=

∑N
l=1 δ[Q(σl,M)≥γt]δ[(i,j)∈σl]∑N

l=1
δ[Q(σl,M)≥γt]

13: vt
i,j :=λvt−1

i,j +(1−λ)vt
i,j

14: end for
15: if γt converged then
16: stop and return random match σ∗ sampled from f(vt)
17: else
18: t := t + 1
19: end if
20: end loop

Algorithm 2 describes the implementation of the CE
Method for schema matching (denoted CESM hereinafter).
The algorithm relies on a utility algorithm (Algorithm 3)or
sampling random matches in Σ, whose details are given in
Appendix A.
Algorithm 2 gets as an input the similarity matrix M , and

three configuration parameters, namely, the match sample
size N to be drawn on each iteration t, ρ the minimum event
{Q(Σ,M) ≥ γt} occurrence likelihood, and λ the smoother.
The three configuration parameters control the learning rate
of the algorithm. For example, as will be shown in Section 5,
smaller λ values typically result in a slower convergence.
The algorithm starts with a maximum entropy setting,

where each matrix entry (i, j) has the same likelihood in the
initial parameter vector v0 to be selected (or rejected) as
part of a match σ ∈ Σ (lines 3-4).
In each iteration t = 1, 2, . . . (lines 7-20) the algorithm

draws N random matches, σl, according to the previously

learned reference parameter vector vt−1 (line 8). Next, sam-

pled matches σl are sorted in ascending order in
−→
Σl according

to their relative performance level Q(σl,M) (line 9). Next,
γt, the minimum performance level in which the likelihood
of the event {Q(Σ,M) ≥ γt} is at least ρ, is estimated by
taking γt to be the (1− ρ)-quantile of the (ordered) perfor-

mances in
−→
Σl (line 10). Lines 11-13 update the likelihood

of choosing each matrix entry (i, j) for a match, vti,j , based
on the relative number of matches in the current iteration
t sample with Q(σl,M) ≥ γt that consists of entry (i, j).
The details of the exact derivation of vt are provided in Ap-
pendix B. This value is smoothed with the parameter vector
that was learned in the previous iteration vt−1.

The algorithm runs until some convergence criterion is
satisfied. In this work, the algorithm halts if γt has not
changed for several consecutive iterations [31]. Finally, the
algorithm returns a single match σ ∈ Σ, sampled from the
distribution having the final reference parameter vt.

4.4 Max-Delta with MCD Regulation
We conclude this section by demonstrating how the cor-

relation of MCD with high quality entries (Section 5.3), can
be utilized to improve 1 : n schema matching. To examine
this premise, we modify the Max-Delta 2LM utilizing MCD
prediction for 1 : n match regulation.

The underlying assumption of Max-Delta is that higher
valued matrix entries are more likely to be correct than lower
ones. Thus, a similarity matrix entry’s confidence value is
used to predict its actual quality. As Sagi and Gal pointed
out [33], using better correlated entry predictors may lead
to improved results. Therefore, we substitute Mi,j in Eq. 2
with ∆i,j (Eq. 3), resulting in the following equation:

δi = Delta×

(

maxi −
1

m

m
∑

j=1

∆i,j

)

(14)

where maxi = maxj=1...,m∆i,j . Those entries with higher
predicted values (up to δi from the maximum predicted
value) are selected. Therefore, an entry (i, j) is now se-
lected for the match σ iff the following condition holds:
∆i,j ≥ maxi − δi. Max-Delta is suitable for 1 : n match-
ing as it allows more than one match per matrix row.

Delta, in some sense, is the equivalent of β, where the
last regulates the decisions made by MWBM. A higher Delta
value potentially allows more entries to enter the match and
thus caters to Recall. A lower value provides a more strict
entry selection rule, and thus, caters more to Precision.

5. EMPIRICAL EVALUATION
The empirical evaluation ofMCD, CESM, andMax-Delta is

now described. We first outline our evaluation setup (Sec-
tion 5.1) and methodology (Section 5.2). In Section 5.3,
MCD is being evaluated as a predictor, examining its abil-
ity to predict the quality of both a single similarity matrix
entry and a full matrix. For a single entry, we evaluate
whether the predictor can differentiate between true and
false matches by consistently assigning a higher score to the
former. For a full matrix, predictor values are expected to
correlate well with standard quality measures (Precision and
Recall). Next, the potential of using MCD for enhancing the
decisions of MWBM and Max-Delta is being demonstrated.
To this end, in Section 5.4, the quality of the proposed CE-
Method based Schema Matcher CESM is evaluated. We also
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Matcher System Type
Term Ontobuilder [25] Syntactic
Token Path AMC [26] Syntactic
WordNet [30, 16, 29] ORE Semantic

Table 2: 1LMs used in the evaluation

analyze the impact of different tuning of CESM parameters
on its performance. Finally, in Section 5.5, we evaluateMCD
enhancement of the decisions of the Max-Delta 2LM that
produces a 1 : n match.

5.1 Setup
Evaluations were performed using a Dell Inc. PowerEdge

R720 server. with a 20 true cores (40 virtual cores) In-
tel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz CPU, 128GB
RAM (8x16GB), and a CentOS 6.4 operating system with
x86 64 Kernel:2.6.32-358.6.2.el6.x86 64. In terms of soft-
ware, we use Java(TM) SE Runtime Environment (build
1.8.0 45-b14) and MySQL 5.5.32.
Three schema matching tools were used for our experi-

ments, two research tools (ORE and COMA) and one indus-
trial (AMC), as detailed next. The Ontobuilder Research
Environment1 (ORE) allows researchers to run match-
ing experiments using various matchers on a collection of
datasets and evaluate the outcome using various quality
measures. Table 2 details the ORE’s 1LMs (whose details
are given in Section 2) used for the evaluation. CESM is
evaluated against maximum weighted bipartite graph match
(MWBM) [15] and stable marriage (SM) of Marie and
Gal [22], using a known algorithm for solving a problem
of finding a matching between two sets of elements given an
ordering of preferences for each element. We also evaluate
against Dominants [12] (first used by [37] and also dubbed
later as harmony [20]), which selects correspondences that
dominate all other entries in their row and column. Two ad-
ditional match selection rules were used, prevalent in many
matching systems (see, e.g. [6]): Threshold(ν), which selects
entries (i, j) such that Mi,j ≥ ν and Max-Delta, which was
described in detail in Section 4.4.
Auto-Mapping Core (AMC) [26] is a tool, developed by

SAP Research, which provides an infrastructure and a set of
algorithms to establish correspondences between two busi-
ness schemata. We use one of the algorithms of AMC (Token
Path), embedded in ORE, in our experiments.
We also compare against a state-of-the-art schema match-

ing research tool, COMA 3.0, which has three 2LM decision
makers, namely threshold(t), maxDelta(d), and maxN(n).2

These can be combined by setting more than one of the
parameters t,d,n to a non-negative value.
A parallel version of CESM was implemented in Java (JRE

8) by parallelizing its match sampling step [11] (Line 8 of
Algorithm 2), sorting (Line 9), and the loop of updating vti,j
(lines 11-14). Following previous recommendations for the
CE Method [31, 21], CESM free parameters defaults were
fixed as follows: N = 10, 000, ρ = 0.01 and λ = 0.3. The
bi-objective regularization parameter was varied with β ∈
{0.1, 0.2, . . . , 0.9}.

1https://bitbucket.org/tomers77/
ontobuilder-research-environment/wiki/Home
2http://sourceforge.net/p/coma-ce/mysvn/HEAD/tree/
coma-project/coma-engine/src/main/java/de/wdilab/
coma/matching/Selection.java

Match
Dataset #Schemas #Attr #Pairs type
Web-forms 147 10-30 247 1 : 1
Thalia 44 6-17 18 1 : 1
Purchase
Order 10 50-400 44 1 : n
University
Applications 16 50-150 182 1 : n

Table 3: Datasets

Table 3 details the datasets we used in the experiments.
For each dataset, we detail the number of schemas it con-
tains, its size (in terms of attributes), and the number of
schema pairs. The exact match of two of the datasets is
1 : 1 while for the other two it is 1 : n.

The Web-forms [13] dataset contains schemas that were
automatically extracted from Web forms using the Onto-
Builder extractor. Exact matches for each schema pair was
manually crafted by several judges. The Thalia dataset3

is a publicly available dataset of relational database tables
representing University course catalogs from computer sci-
ence departments around the world. The Purchase Order
dataset [19] contains XML documents describing purchase
orders extracted from various systems and matched into
pairs. Finally, the University Applications dataset [33] con-
tains university application forms from various US univer-
sities, collected as part of the NisB project4 and converted
into XML Schema Definition (XSD) format.

5.2 Evaluation Measures
Following the method described by Sagi and Gal [33],

correlation of matrix level predictors is measured using the
Pearson product-moment correlation coefficient (Pearsons’s
r). Entry level prediction evaluation is performed by calcu-
lating the Goodman and Kruskal’s gamma (GK-Gamma for
short) correlation. GK-Gamma is a rank correlation mea-
sure, used to measure the correlation between matrix values
predicted by entry predictors’ and the actual (binary) val-
ues of an exact match produced by human assessors. For
a binary quality measure (match / no match), GK-Gamma
counts the number of concordant (Nc) and discordant (Nd)
pairs. In concordant pairs, the prediction values are aligned
with the actual result and, thus, the true entry was predicted
higher than the false entry. For discordant pairs, the situa-
tion is reversed and the predictor falsely predicted a higher
score for the false entry (ties are ignored). The measure
value is given by the following equation:

G =
Nc −Nd

Nc +Nd

(15)

A good entry predictor can separate well true and false
matches by consistently assigning lower values to false
matches than to true matches and, thus, has a value of GK-
Gamma closer to 1.0.

2LM performance is evaluated using binary Precision (P),
Recall (R), and their harmonic F1-Score. MCD-based 2LM
are compared with other 2LMs using the Robustness Index
(RI) of the former. Robustness Index is calculated by as-
signing a score of 1 for each schema pair 〈S, S′〉 where the
MCD-based 2LM improved over the (existing) baseline 2LM

3http://www.w3.org/wiki/TaskForces/
CommunityProjects/LinkingOpenData/THALIATestbed
4http://www.nisb-project.eu/
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and −1 to each pair where the result was worsened, and av-
eraging over all pairs. Thus, RI spans [−1.0, 1.0] where 1.0
and −1.0 indicate an improvement and a decline in perfor-
mance over all pairs, respectively.
Finally, we also measured performance in terms of run-

time (comparing time until convergence of CESM and
COMA) and number of iterations.

5.3 MCD Prediction
In this experiment we evaluate MCD’s role as a predictor

for various match quality measures. We begin by evaluating
MCD (Eq. 5) as a matrix level predictor. We then evaluate
MCD as an entry level predictor using ∆i,j (Eq. 3).

5.3.1 MCD-based matrix quality prediction
We evaluate MCD as a matrix predictor together with

seven other predictors, six of which were previously sug-
gested[33] and the seventh adopted from [5]. We describe
these predictors briefly. BMM and LMM are obtained by
first “flattening” the similarity matrix M into a vector with
n ·m entries, each vector entry uniquely corresponds to one
entry value of matrixM . Then, BMM and LMMmeasure the
cosine similarity between that vector and an “ideal” (simi-
larity) vector that is constructed from it. LMM constructs
an ideal vector that has a single 1-valued entry per matrix
row and BMM constructs the “closest” binary vector [33].
Max, STDEV, and Avg all calculate the measure they are
named after for each matrix row and average the values
over n, the number of similarity matrix rows. For example,
Max(M) = 1

n

∑n

i=1 maxi, where maxi = maxj=1,...,m Mi,j .
Dominants counts the number of matrix entries which are
the largest in their respective row and column, dividing the
result by the number of matrix rows. Finally, LC is an
attribute-level measure, designed to use a given matrix row
and a selection over it to compute the difference between
the average similarity of selected and unselected attributes.
We convert LC to a matrix level predictor by averaging over
row scores.
Prediction was performed over 960 matrices generated by

running all 1LMs of Table 2 on 90 different schema pairs ran-
domly sampled from three datasets: Web-forms, Purchase
Order and University. Using the similarity matrix produced
by each 1LM, the following 2LMs were run: Max-Delta with
Delta = 0.1, Threshold(ν = 0.5), MWBM, and SM.

Predictor P Correlation R Correlation
BMM .379** .206**
LMM .246** .338**
Max .180** .506**
STDEV .124** .630**
Avg .565** .077**
Dominants .429** .039
LC .425** .048
MCD .568** -.002

Table 4: Pearson’s r correlation to Precision (P) and
Recall (R) of the various matrix predictors

Table 4 presents the Pearson’s r correlation between the
predictors and the two quality measures, Precision (P) and
Recall (R). A two-tailed t-test of significance at 95% con-
fidence level was performed against the null hypothesis of
no-correlation. Table entries marked with double star (∗∗)

denote significant results (p-value < 0.05). Results indicate
that MCD predicted values (Eq. 5) are well correlated with
Precision, yet not much with Recall. The results for the
other predictors are in line with those previously presented
in [33]. LC as a matrix predictor demonstrates a similar
behavior to Dominants with strong (yet not as strong as
MCD) correlation with Precision and low correlation with
Recall. Note that the Max predictor and Recall are strongly
correlated. Compared together with the MCD result, side-
by-side, this result empirically confirms our assumption that
MCD may regulate MWBM. By increasing the β regulariza-
tion free parameter, MCD is expected to improve on Preci-
sion, yet with some sacrifice on Recall. MCD regulation is
expected to direct the CE optimization process made by
CESM towards a Precision oriented solution. The effect
of the β regularization parameter is demonstrated in Sec-
tion 5.4.

5.3.2 MCD-based entry quality prediction
As an entry predictor, MCD is evaluated against three en-

try predictors: VAL, NNV and CRV, previously proposed by
Sagi and Gal [33]. Entry predictors attempt to predict the
value of a specific entry. This prediction can then be used to
select more promising entries. For example, in a 1 : 1 match-
ing setting, a 2LM would aim to select the highest scoring
matrix entries among those competing for a single attribute.
Often, 2LMs implicitly assume the confidence value reported
by the 1LM as predictive of its quality. Thus, a matched at-
tribute (ai, bj) pair with Mi,j = 0.9 confidence is preferred
over one with Mi,j = 0.8 confidence. Accordingly, a predic-
tion method named VAL uses the reported 1LM confidence
value Mi,j as the predicted value. The two additional entry
predictors are based upon the observation that while an en-
try predictor provides a prediction for a single matrix entry,
surrounding entries from its similarity matrix neighborhood
can assist in assessing its quality. Both methods evaluate an
entry with respect to its row and column. NNV normalizes
the entry value by the difference of the highest and lowest
entries in this neighborhood, while CRV normalizes by the
maximum rank difference between entries.

MCD CRV CNV Val

Γ sig. Γ sig. Γ sig. Γ sig.
Term 0.98 0.018 0.91 0 0.95 0 0.96 0
Token

Path 0.93 0.002 0.67 0 0.67 0 0.34 0.042
WordNet 0.93 0 0.51 0.01 0.59 0 0.67 0

Table 5: Goodman-Kruskal Gamma correlation (Γ)
of various Entry Predictors. sig. denotes the statis-
tical significance level (p-value)

In this evaluation, two randomly selected schema pairs
from the Web-forms dataset were matched using (AMC)
Token Path, Term, and WordNet. For each similarity ma-
trix entry (i, j), we thus had the 1LM result (VAL), three
predictions calculated on its row and column neighborhood
(NNV, CRV and MCD), and its expected true result (match/
no match). Overall, 5869 entries were used to calculate the
GK-Gamma correlation. The evaluation results are reported
in Table 5. As we can observe, MCD has a better correla-
tion than previously suggested predictors, with GK-Gamma
values above .92 for all 1LMs. A two-tailed t-test confirms
the significance of the results (p-value < 0.05).
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5.4 CESM
We now evaluate CESM, providing a 1 : 1 match and

aiming to optimize the bi-objective match problem that cap-
tures the tradeoff betweenMWBM andMCD. As was demon-
strated by the Max predictor in Table 4, MWBM objective
is expected to guide the optimization towards higher Recall,
while MCD is expected to guide the optimization towards
higher Precision. The β regularization free parameter con-
trol the tradeoff between Precision and Recall.
Three 1LM (Term, (AMC) TokenPath, and WordNet) were

applied over the schema pairs of the Web-forms and Thalia
datasets (Table 3), with 1 : 1 ground truth match. Us-
ing these 1LMs produced similarity matrices, which were
provided as an input to CESM and five additional 2LMs,
namely MWBM, SM, Dominants, Threshold(ν=0.85) and
Max-Delta(Delta=0.1). Tuning parameters (ν and Delta)
were selected to optimize F1-Score.

5.4.1 CESM Effectiveness
Table 6 presents the result of a standard binary Precision

(P) and Recall (R) evaluation, reported per 1LM. Statistical
significant differences in performance of CESM compared to
the other 2LMs were measured using a one-side paired t-test
(p-value < 0.05) and are marked with ∗∗.
Overall, independently of a given 1LM, CESM 2LM 1 : 1

decision maker has produced (on average) a better quality
match, with up to +14.6% and +9.8% improvement in F1-
Score over the second best 2LM baseline for the Web-forms
and Thalia datasets, respectively. On average, CESM pro-
vides a match that has a significantly better Precision (with
up to +17.5% boost over the second best 2LM), yet with
slightly less Recall (but an overall better F1-Score). Com-
paring CESM with MWBM, this experiment confirms the
ability ofMCD to regulate the decision making of the former,
with up to +31.2% and +35.1% improvement in F1-Score
for the Web-forms and Thalia datasets, respectively. Fur-
thermore, for the majority of cases, a notable improvement
in Precision was measured with up to +37.9% and +55.8%
improvement for the Web-froms and Thalia datasets, respec-
tively. As can be observed, the drop in Recall by CESM was
moderate compared to MWBM, and for some 1LMs, CESM
even managed to improve the Recall level of MWBM. Fi-
nally, notable improvements in F1-Score were also measured
in performance robustness terms, with an average RI value
(across 1LMs) of 0.19 and 0.28 using CESM over MWBM for
the Web-forms and Thalia datasets, respectively.

5.4.2 MCD and the Precision vs. Recall tradeoff
Using the Web-forms and Thalia datasets we empirically

validate MCD’s role in regulating the Precision vs. Recall
tradeoff. The results of this validation are depicted in Fig-
ure 1 per 1LM and varied β regularization parameter value.
For all 1LMs, more emphasis is given to the MCD objec-

tive as β increases and the general trend is towards increased
Precision at the expense of Recall. Such trend is most no-
table for the Term 1LM (with R2 = 0.93 and R2 = 0.97 for
the Web-forms and Thalia datasets, respectively) compared
to the two other 1LM (with an average of R2 = 0.92 and
R2 = 0.60 for the Web-forms and Thalia datasets, respec-
tively).

5.4.3 CESM Efficiency

(a) Token Path

(b) Term

(c) WordNet

Figure 1: Effect of β using various 1LMs for the
Web-forms (left) and Thalia (right) datasets

The efficiency of CESM is measured both in terms of the
number of iterations t and the absolute time in seconds it
takes the algorithm to converge. For the Web-forms dataset,
on average, CESM converged within 18(±1) iterations or
16(±1) seconds. For the Thalia dataset, the same conver-
gence was reached, on average, within 12(±1) iterations or
2(±1) seconds. Recall that, on each iteration t, CESM sam-
ples N = 10, 000 matches. Therefore, the average maximum
number of matches explored during a single CESM run is
about 180,000 and 120,000 for the Web-forms and Thalia
datasets, respectively. A full enumeration of matches, on
the other hand, has an exponential time-factor in the simi-
larity matrix M dimensions. For example, an average sim-
ilarity matrix within the Web-forms dataset has (on aver-
age) 40(±2) rows and 39(±2) columns with about 739(±59)
non-zero entries. Therefore, an enumeration of few hundred
thousands of matches by CESM is actually negligible com-
pared to the alternative of full enumeration.

The effect of problem complexity on CESM effectiveness
(convergence), as determined by the input similarity matrix
M size, was analyzed using the Web-forms dataset and the
Term 1LM. The results of this analysis are depicted in Fig-
ure 2. Overall, CESM’s number of iterations and absolute
run-time increases linearly with matrix size, with R2 = 0.62
and R2 = 0.67, respectively.
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Threshold Max-Delta Dominants SM MWBM CESM
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Token Path .02 .03 .02 .20 .67 .30 .48 .45 .45 .27 .62 .36 .32 .58 .41 .29 .60 .38
Term .51 .43 .41 .27 .78 .38 .09 .67 .15 .28 .64 .37 .41 .63 .48 .53** .60 .55**
WordNet .36 .52 .38 .15 .67 .24 .20 .62 .29 .20 .45 .27 .26 .46 .32 .40** .47 .42**

(a) Web-forms

Threshold Max-Delta Dominants SM MWBM CESM
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Token Path .00 .00 .00 .25 .53 .33 .46 .46 .45 .31 .56 .40 .33 .54 .41 .42 .54 .45
Term .53 .48 .48 .25 .55 .33 .44 .53 .47 .32 .58 .40 .30 .52 .37 .59** .46 .50**
WordNet .57 .51 .51 .34 .72 .45 .50 .63 .53 .39 .71 .50 .43 .66 .51 .67** .52 .56**

(b) Thalia

Table 6: Comparison of CESM (N = 10, 000, ρ = 0.01, λ = 0.3, β = 0.6) with other 2LMs. Bold-face values
mark the best performing matcher per each quality measure and 1LM. Statistical significant differences in
performance of CESM compared to the other 2LMs are marked with **

Figure 2: Effect of input similarity matrix M size on
CESM effectiveness (convergence)

5.4.4 CESM Sensitivity Analysis
CESM sensitivity to changes in its configuration param-

eters, namely N (sample size), ρ (which defines the size of
the elite sample on each iteration), and λ (which trades be-
tween the algorithm’s model exploitation and exploration)
is next examined. For that, the Web-forms dataset was used
with Term as the 1LM. We fixed β = 0.6, the same param-
eter that was used in Table 6. Modifying each time a single
parameter while fixing the two other parameters (using the
default configuration of N = 10, 000, ρ = 0.01, λ = 0.3 for
reference), we recorded the variation in CESM effectiveness
(as captured by its match Precision, Recall and F1) and ef-
ficiency (as captured by the number of iterations t and the
absolute time in seconds it takes the algorithm to converge).
The sensitivity analysis results are given in Figure 3, con-

firming previous reports on the impact of the three parame-
ters on the convergence of the CE Method [31, 21]. Specifi-
cally to the CESM instantiation, we observe that among the
three parameters the sample size N and the λ smoothing
parameters have the strongest impact on CESM efficiency.
Analyzing the effect of the sample size, we observe that

with the increase in N CESM effectiveness (as measured
by P,R and F1) improves until reaching a plateau around
N = 5, 000 with no significant impact on its convergence (in
terms of number of iterations t), yet with an expected direct
(linear) effect on its runtime due to increase in sample size.
Next, for the smoothing parameter, we observe that when

λ increases, CESM effectiveness again improve up to a point.
Here we observe an opposite trend, yet expected [31, 21], as
smaller λ values allow CESM better model exploration (using
the current derived reference parameter vt) with less model

exploitation of previously learned reference parameter vt−1,
leading to a slower convergence.

Finally, as we can observe, the elite sample size that is de-
fined by the ρ parameter has a moderate effect on CESM con-
vergence, which also coincide with previous studies on the
CE Method [31, 21]. With the increase in ρ, the algorithm
learns from a larger set of elite samples, corresponding with
a more frequent event estimation. Hence, it takes longer to
reach the goal of estimating the rare event of obtaining the
optimal solution. Therefore, learning from a smaller elite
sample results in a more effective match.

5.5 Improving Max-Delta usingMCD

We now compare the MCD enhanced Max-Delta version
(Section 4.4) against its basic version (Section 2). To this
end, we use three 1LMs of ORE, namely Term, Token-Path,
and WordNet, and the AllContextW recommended configura-
tion of COMA 3.0 [23], on 30 randomly selected pairs from
the University dataset and 30 pairs from the Purchase-Order
dataset. Both datasets assume a 1 : n matching, allowing us
to evaluate the impact MCD has on the Max-Delta matcher
performance. We set Delta = 0.1 for all MCD experiments.
The community version of COMA 3.0 was used with its
recommended workflow AllContextW. The workflow applies
Max-Delta with Delta = 0.05 and a threshold t = 0.4. We
implemented MCD prediction in COMA, using t = 0.2.

Max-Delta + MCD Max-Delta

P R F1 P R F1
Term 0.17** 0.38 0.21** 0.10 0.50 0.16
Token-Path 0.18** 0.38 0.21** 0.11 0.43 0.17
Word-Net 0.11** 0.45 0.17** 0.09 0.50 0.15
COMA 3.0 0.29 0.29** 0.28** 0.36** 0.15 0.19

(a) University

Max-Delta + MCD Max-Delta

P R F1 P R F1
Term 0.16** 0.47 0.22** 0.12 0.54 0.18
Token-Path 0.28** 0.39 0.26 0.22 0.45 0.27

Word-Net 0.19** 0.51 0.26** 0.17 0.56 0.24
COMA 3.0 0.51** 0.48 0.48 0.43 0.55** 0.47

(b) Purchase Order

Table 7: Comparison of Max-Delta enhanced with
MCD vs. basic version. Bold-face values for best
performing matcher per quality measure and 1LM.
Statistical significant differences in performance of
the former compared to the last are marked with **
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(a) Sample Size (N)

(b) Elite Sample portion (ρ)

(c) Model Smoothing (λ)

Figure 3: CESM sensitivity analysis (N, ρ, λ)

Results are reported in Table 7. Similarly to 1 : 1 match
results with CESM, the results demonstrate a consistent im-
provement of an MCD based Max-Delta over the basic Max-
Delta. Significance of the differences between the methods
was tested using a one-side paired t-test (p-value < 0.05)
and significantly higher performance values are marked with
**. In most 1LM-dataset combinations, basing Max-Delta
on the MCD matrix ∆ improves Precision up to +70% and
+33.3% for the University and Purchase Order datasets, re-
spectively. This comes somewhat at the expense of Recall,
yet with an overall improvement in F1-Score, up to +31.2%
and +22.2% for the University and Purchase Order datasets,
respectively. COMA results for University are surprising as
Recall is improved at the expense of somewhat lower Pre-
cision, with an overall improvement in F1-Score for both
datasets. Finally, notable improvements in F1-Score were
also measured in performance robustness terms, with an av-
erage RI value (across 1LMs) of 0.53 and 0.2 usingMax-Delta
+ MCD over Max-Delta for the University and Purchase Or-
der datasets, respectively.

6. RELATED WORK
Schema matching research has expanded and evolved over

three decades (see surveys [2, 34, 4, 35] and books [9, 12,
3]) and is widely recognized as a basic research field, con-
tributing to efforts in data integration, semantic reasoning,
and deep Web exploration (e.g., [17, 7, 24]).
Early approaches of schema matching assume the raw

1LM similarity to be predictive of the match quality and
attempted to maximize it. The application of a-priori eval-
uation of schema features to direct and influence the execu-
tion of schema matching was first suggested by Tu and Yu
[36], which used schema features to select execution strate-
gies. Similar work was done by Peukert et al. [27]. This

approach was generalized and explored by Sagi and Gal [33],
who introduced prediction as a method to evaluate similar-
ity scores and predict match quality. This paper explores a
new predictor, MCD and uses it to regularize matchers by
using the prediction it provides.

Cruz et al. [5] proposed a local confidence measure LC
that computes the difference between the average similarity
of selected matches for a given concept and the average of
all other similarity measures of the same row in a similarity
matrix. LC is similar in spirit to MCD, but its use was
entirely different. It was used (and assumed to be) a measure
of quality in the absence of an exact match. MCD, on the
other hand, is shown to serve as a good predictor and a
regulator for tuning the matching task. In Section 5 we
showed LC, as a matrix predictor, to be inferior to MCD.

CESM is based on the Cross Entropy (CE) Method [31],
a Monte Carlo framework for rare event estimation and
combinatorial optimization. This Method has been applied
in domains such as machine learning, simulation, and net-
works [31]. To the best of our knowledge, our work is the
first to use the CE Method in the schema matching domain.

7. CONCLUSIONS AND FUTURE WORK
In this work we presented a new schema matching predic-

tor, MCD, discussed its properties, and used it to enhance
the performance of two existing state-of-the-art schema
matchers. Our empirical evaluation shows MCD to be more
predictive than any known schema matching predictor in
the literature by far. We also demonstrated empirically its
usefulness for schema matching in general.

Our work can be extended in several ways. First, we in-
tend to test the impact of MCD on additional schema match-
ers. Second, an important observation from this work is
that, diversification in schema matching plays an important

11



role. Hence, we would like to explore additional methods for
schema matching diversification and analyze their impact on
quality using the evaluation methodology proposed in this
work. Finally, while diversification was mainly utilized in
this work for evaluating and improving the performance of
2LM decision makers, we believe that such diversification
considerations may be used to develop new baseline 1LMs
whose decisions are encoded in the similarity matrix.

Acknowledgments
We thank Roee Shraga and Igal Shprincis for their assistance
in performing the empirical evaluation.

8. REFERENCES
[1] S. Anand. The multi-criteria bipartite matching problem.

2006.

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Surveys (CSUR), 18(4):323–364, 1986.

[3] Z. Bellahsene. Schema Matching and Mapping.
Springer-Verlag New York Inc, 2011.

[4] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic
schema matching, ten years later. Proceedings of the VLDB
Endowment, 4(11):695–701, 2011.

[5] I. F. Cruz, F. P. Antonelli, and C. Stroe. Efficient selection
of mappings and automatic quality-driven combination of
matching methods. In Proceedings of the 4th International
Workshop on Ontology Matching (OM-2009) collocated
with the 8th International Semantic Web Conference
(ISWC-2009) Chantilly, USA, October 25, 2009, 2009.

[6] H. H. Do and E. Rahm. Coma: a system for flexible
combination of schema matching approaches. In Proceedings
of VLDB, pages 610–621. VLDB Endowment, 2002.

[7] R. dos Santos Mello, S. Castano, and C. A. Heuser. A
method for the unification of XML schemata. Information
and Software Technology, 44(4):241 – 249, 2002.

[8] M. Ehrgott. Multicriteria optimization, volume 2. Springer,
2005.

[9] J. Euzenat. Semantic precision and recall for ontology
alignment evaluation. In Proc. IJCAI, pages 348–353, 2007.

[10] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag New York Inc, 2007.

[11] G. E. Evans, J. M. Keith, and D. P. Kroese. Parallel
cross-entropy optimization. In Proc. of WSC, pages
2196–2202, 2007.

[12] A. Gal. Uncertain schema matching. Synthesis Lectures on
Data Management, 3(1):1–97, 2011.

[13] A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A
framework for modeling and evaluating automatic semantic
reconciliation. The VLDB Journal, 14(1):50–67, 2005.

[14] A. Gal and T. Sagi. Tuning the ensemble selection process
of schema matchers. Information Systems, 35(8):845–859,
2010.

[15] Z. Galil, S. Micali, and H. Gabow. An O(EV\logV)
algorithm for finding a maximal weighted matching in
general graphs. SIAM Journal on Computing,
15(1):120–130, 1986.

[16] M. Gawinecki. Abbreviation expansion in lexical
annotation of schema. Camogli (Genova), Italy June 25th,
2009 Co-located with SEBD, page 61, 2009.

[17] B. He and K. C.-C. Chang. Statistical schema matching
across web query interfaces. In Proceedings of the 2003
ACM SIGMOD international conference on Management
of data, SIGMOD ’03, pages 217–228, New York, NY, USA,
2003. ACM.

[18] J. J. Jiang and D. W. Conrath. Semantic similarity based
on corpus statistics and lexical taxonomy. arXiv preprint
cmp-lg/9709008, 1997.

[19] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpus-based schema matching. In Proc. ICDE, pages 57 –
68, april 2005.

[20] M. Mao, Y. Peng, and M. Spring. A harmony based
adaptive ontology mapping approach. In Proc. of SWWS,
2008.

[21] L. Margolin. On the convergence of the cross-entropy
method. Annals of Operations Research, 134(1):201–214,
2005.

[22] A. Marie and A. Gal. On the stable marriage of maximum
weight royal couples. In Proceedings of AAAI Workshop on
Information Integration on the Web, 2007.

[23] S. Massmann, S. Raunich, D. Aumüller, P. Arnold, and
E. Rahm. Evolution of the coma match system. Ontology
Matching, 49, 2011.

[24] P. D. Meo, G. Quattrone, G. Terracina, and D. Ursino.
Integration of XML schemas at various ‘severity’ levels.
Information Systems, 31(6):397 – 434, 2006.

[25] G. Modica, A. Gal, and H. Jamil. The use of
machine-generated ontologies in dynamic information
seeking. In CoopIS, pages 433–447, 2001.

[26] E. Peukert, J. Eberius, and E. Rahm. AMC-a framework
for modelling and comparing matching systems as matching
processes. In ICDE, pages 1304–1307. IEEE, 2011.

[27] E. Peukert, J. Eberius, and E. Rahm. A self-configuring
schema matching system. In ICDE, 2012.

[28] L. Ramshaw and R. E. Tarjan. On minimum-cost
assignments in unbalanced bipartite graphs. Technical
report, HP Labs technical report HPL-2012-40R1, www.
hpl. hp. com/techreports/HPL-2012-40R1. html, 2012.

[29] L. Ratinov and E. Gudes. Abbreviation expansion in
schema matching and web integration. In Proceedings of the
2004 IEEE/WIC/ACM International Conference on Web
Intelligence, pages 485–489. IEEE Computer Society, 2004.

[30] P. Rodriguez-Gianolli and J. Mylopoulos. A semantic
approach to xml-based data integration. In H. S.Kunii,
S. Jajodia, and A. Slvberg, editors, Conceptual Modeling
ER 2001, volume 2224 of Lecture Notes in Computer
Science, pages 117–132. Springer Berlin Heidelberg, 2001.

[31] R. Y. Rubinstein and D. P. Kroese. The cross-entropy
method: a unified approach to combinatorial optimization,
Monte-Carlo simulation and machine learning. Springer,
2004.

[32] R. Y. Rubinstein and D. P. Kroese. Simulation and the
Monte Carlo method, volume 707. John Wiley & Sons,
2011.

[33] T. Sagi and A. Gal. Schema matching prediction with
applications to data source discovery and dynamic
ensembling. The VLDB Journal, 22(5):689–710, 2013.

[34] A. P. Sheth and J. A. Larson. Federated database systems
for managing distributed, heterogeneous, and autonomous
databases. ACM Computing Surveys (CSUR),
22(3):183–236, 1990.

[35] P. Shvaiko and J. Euzenat. A survey of schema-based
matching approaches. Journal on Data Semantics IV,
pages 146–171, 2005.

[36] K. Tu and Y. Yu. CMC: Combining multiple
schema-matching strategies based on credibility prediction.
In L. Zhou, B. Ooi, and X. Meng, editors, Database
Systems for Advanced Applications, volume 3453 of LNCS,
pages 995–995. Springer Berlin / Heidelberg, 2005.

[37] J. Wang, J. Wen, F. Lochovsky, and W. Ma.
Instance-based schema matching for web databases by
domain-specific query probing. In Proceedings of the
Thirtieth international conference on Very large data
bases-Volume 30, pages 408–419. VLDB Endowment, 2004.

[38] M. Weidlich, T. Sagi, H. Leopold, A. Gal, and J. Mendling.
Predicting the quality of process model matching. In
Business Process Management, volume 8094 of LNCS,
pages 203–210. Springer, 2013.

12



APPENDIX

A. RANDOM MATCH SAMPLING
To apply the CE Method, we first need to propose a pdf fam-

ily f(·; v) defined over Σ for various reference parameter values
v ∈ V from which random matches can be sampled [31]. By choos-
ing the pdf family to come from the natural exponential family
(NEF) [31], the optimal (learning) reference parameter vt can be
analytically derived at each iteration t [31].

We can define such choice of NEF density f(·; v) for the
schema matching problem as follows. Let G(V1, V2, E) be a
bipartite graph with |V1| = n and |V2| = m, whose edge
weights w(e) are assigned according to matrix M : w(e) =
Mi,j ; ∀e = (i, j) ∈ E : vi ∈ V1, vj ∈ V2.

We observe that each match σ ∈ Σ is formed by a selection
of a subset of edges E′ ⊆ E. Let δi,j = δ[e=(i,j)∧e∈E′] be an

indicator function, encoding the event that edge e = (i, j) has
been chosen to be part of E′. For a given reference parameter
vi,j ∈ [0, 1], a random choice of such edge selection follows the
(discrete) Bernoulli(vi,j) distribution:

Pvi,j (δi,j) = v
δi,j
i,j (1− vi,j)

1−δi,j . (16)

Assuming that edges are selected independently of each other
(i.e., δi,j ∼ Bernoulli(vi,j) are i.i.d’s), we now choose f(·; v) to
be the density that captures the events of edge subsets E′ ⊆ E
formation, with reference parameter vector v = (v1, v2, . . . , v|E|).
Therefore, we have:

f(E′; v) =
∏

(i,j)∈E′

v
δi,j
i,j (1− vi,j)

1−δi,j . (17)

We note that, choosing subsets of edges E′ may sometimes
produce incorrect matches that actually violate the 1:1 match
restriction. To overcome this “hurdle” and make sure that the
result of the CE Method would be a correct match, we now define
an adjusted match quality measure for any selection E′ ⊆ E, as
follows:

Q′(E′,M) =

{

Q(E′,M), E′ ∈ Σ
−∞ otherwise

(18)

Obviously, for each edge e = (i, j) we have Mi,j ≥ 0, hence
maxE′∈E Q′(E′,M) ≥ 0. Therefore, from the definition of
Q′(·,M), any match that will be produced will be a correct match
in Σ. Moreover, since we assume that E′ maximizes Q′(E′,M),
it implies that E′ maximizes Q(E′,M).

Algorithm 3 now describes the details of the match sampling.
The main idea behind the algorithm relies on the fact that, the
only edge subsets E′ that we need to consider are those that
provide a correct 1:1 match in Σ.

Algorithm 3 Random Match Sampling

1: input: M ,v
2: E := {(i, j); i = 1, . . . , n; j = 1, . . . ,m}
3: σ := ∅
4: while E 6= ∅ do
5: select next edge (i, j) ∈ E to consider at random
6: draw u ∼ U [0, 1]
7: if vi,j ≥ u then
8: σ := σ ∪ {(i, j)}
9: E := E \ {(i, j)}
10: end if
11: for (i′, j′) ∈ S do
12: if i′ = i ∨ j′ = j then
13: E := E \ {(i′, j′)}
14: end if
15: end for
16: end while
17: return σ

The algorithm gets as an input a similarity matrix M and a
reference (Bernoulli) parameter vector v. The algorithm starts
with the full set of bipartite graph edges E, and picks edges at

random to be included in the match σ, each edge is picked accord-
ing to a single random Bernoulli trial [32]. To maintain a correct
match, the algorithm removes any adjunct edges that violate the
1:1 match correctness.

B. REFERENCE PARAMETER DERIVATION
Here we explain how the vt reference parameter vector is learned

on each iteration t. Recall that, for a given performance level

γt ∈ R, derived as the (1 − ρ) quantile of
−→
ΣQ, our aim is to

estimate the following likelihood:

l(γt) = Pvt−1 (δ[Q(Σ,M)≥γt]) = Evt−1 (δ[Q(Σ,M)≥γt]) (19)

The estimation is done via importance sampling as follows.
First, we observe that:

E
vt−1 (δ[Q(Σ,M)≥γt]

)
f(Σ; vt)

f(Σ; vt)
=

∫
Σ

δ[Q(Σ,M)≥γt]
f(Σ; v

t−1
)
f(Σ; vt)

f(Σ; vt)
dσ

(20)

After applying the change of measure, the estimation problem
defined in Eq. 19 can be now expressed by the following Likelihood
Ratio (LR) estimation problem:

lLR(γt) = Evt (δ[Q(Σ,M)≥γt])
f(Σ; vt−1)

f(Σ; vt)
(21)

The corresponding LR estimator is therefore:

l̂LR(γt) =
1

N

N
∑

k=1

δ[Q(σk,M)≥γt]
f(σk; v

t−1)

f(σk; vt)
, (22)

where σk ∼ f(·; vt); k = 1, . . . , N .
An hypothetic reference distribution f∗ = f∗(Σ) under which

the LR estimation is the most accurate possible (i.e., l̂LR(γt) =
l(γt)), would be obtained as follows:

f∗(Σ) =
δ[Q(Σ,M)≥γt]f(Σ, vt−1)

l(γt)
(23)

Unfortunately, f∗(Σ) depends on the unknown parameter l(γt).
Choosing a density f ′ from the same family of densities {f(·; vt), vt ∈
V)}, the idea now would be to choose the reference parameter
vt ∈ V such that the “distance” between f∗ and f ′ = f(·; vt) is
as minimum as possible. Such “distance” is captured in the CE
Method using the Kullback-Leibler Divergence (KLD) be-
tween the hypothetic optimal density f∗ and the reference density
f(·; vt) in hand, i.e.:

DKL(f
∗(Σ), f(Σ; vt)) = Ef∗ ln

f∗(Σ)
f(Σ;vt)

=
∫

Σ f∗(Σ) ln f∗(Σ)dσ −
∫

Σ f∗(Σ) ln f(Σ; vt)dσ
(24)

Noting that the left term of the KLD measure is independent of
vt, all we need is to minimize the Cross Entropy (CE) “distance”
between f∗ and f(·; vt). Minimizing the CE distance in Eq. 24 is
further equivalent to solving the following maximization problem:

max
vt

∫

Σ

δ[Q(Σ,M)≥γt]f(Σ, vt−1)

l(γt)
ln f(Σ, vt)dσ, (25)

where f∗(Σ) was substituted according to Eq. 23.
Finally, dropping the “constant” l(γt) we get the following

equivalent maximization problem:

max
vt

Evt−1 (δ[Q(Σ,M)≥γt]) ln f(Σ, vt)dσ (26)

The optimal reference parameter v∗ can be, therefore, esti-
mated as follows:

max
vt

1

N

N
∑

k=1

δ[Q(σk,M)≥γt] ln f(σk, v
t)dσ, (27)

where σk ∼ f(·; vt−1); k = 1, . . . , N .
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Next, given that f(·; vt−1) follows the distribution defined in
Eq. 17, we now note that:

∂

∂vti,j
ln f(·, vt) =

δi,j

vti,j
−

1− δi,j

1− vti,j
=

1

vti,j(1− vti,j)
(δi,j − vti,j)

(28)
For each parameter vti,j , its optimal value is achieved by taking

the partial derivative in Eq. 27 according to vti,j and equal it to
zero:

∂

∂vti,j

(

1

N

N
∑

k=1

δ[Q′(σk,M)≥γt] ln f(σk, v
t)

)

= 0 (29)

Noting that we can push the derivative inside and using the
result of Eq. 28, we get that:

1

vti,j(1− vti,j)

1

N

N
∑

k=1

δ[Q′(σk,M)≥γt](δi,j − vti,j) = 0 (30)

Finally, after dropping the constants we obtain the closed for-
mula for calculating the optimal reference parameters:

vti,j =

∑N
k=1 δ[Q′(σk,M)≥γt]δi,j
∑N

k=1 δ[Q′(σk,M)≥γt]

(31)
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