
Chapter 6

Scalable End-user Access to Big Data

Martin Giese,1 Diego Calvanese,2 Peter Haase,3 Ian Horrocks,4 Yannis Ioannidis,5

Herald Kllapi,5 Manolis Koubarakis,5 Maurizio Lenzerini,6 Ralf Möller,7 Özgür

Özçep,7 Mariano Rodriguez Muro,2 Riccardo Rosati,6 Rudolf Schlatte,1 Michael

Schmidt,3 Ahmet Soylu,1 Arild Waaler1

This chapter proposes steps towards the solution to the data access problem that end-users

typically face when dealing with Big Data:

• They need to pose ad hoc queries to a collection of data sources, possibly including

streaming sources;

• They are unable to query those sources on their own, but are dependent on assistance

from IT experts;

• The turnaround time for information requests is in the range of days, possibly weeks,

due to the involvement of the IT personnel;
1University of Oslo
2Free University of Bozen-Bolzano
3fluid Operations AG
4Oxford University
5National and Kapodistrian University of Athens
6Sapienza University of Rome
7TU Hamburg-Harburg
The work on this chapter was partially funded by the Seventh Framework Program (FP7) of the European Commission

under Grant Agreement 318338, “Optique.”

1

2 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

• The volume, complexity, variety and velocity of the underlying data sources put very

high demands on the scalability of the solution.

We propose to approach this problem using ontology-based data access (OBDA), the idea

being to capture end-user conceptualizations in an ontology and use declarative mappings

to connect the ontology to the underlying data sources. End user queries posed are posed in

terms of concepts of the ontology and are then rewritten to queries against the sources.

The chapter is structured in the following way. First, in Section 6.1, we situate the

problem within the more general discussion about Big Data. Then, in Section 6.2, we review

the state of the art in OBDA, explain why we believe OBDA is the superiour approach to

the data access challenge posed by Big Data, and explain why the field of OBDA is currently

not yet sufficiently mature to deal satisfactory with these problems. The rest of the chapter

contains concepts for lifting OBDA to a level where it can be successfully deployed to Big

Data.

The ideas proposed in this chapter are investigated and implemented in the FP7 Inte-

grating Project Optique – Scalable End-user Access to Big Data, which runs until the end

of year 2016. The Optique solutions are evaluated on two comprehensive use cases from the

energy sector with a variety of data access challenges related to Big Data.8

6.1 The Data Access Problem of Big Data

The situation in knowledge- and data-intensive enterprises is typically as follows. Massive

amounts of data, accumulated in real time and over decades, are spread over a wide variety

of formats and sources. End users operate on these collections of data using specialized

applications, the operation of which requires expert skills and domain knowledge. Relevant

data is extracted from the data sources using predefined queries that are built into the

applications. Moreover, these queries typically access just some specific sources with identical

structure. The situation can be illustrated like this:

8See http://www.optique-project.eu/.

http://www.optique-project.eu/

6.1. THE DATA ACCESS PROBLEM OF BIG DATA 3

SIMPLE
CASE

Application predefined queries

uniform sources

engineer

In these situations the turnaround time, by which we mean the time from when the end-

user delivers an information need until the data are there, will typically be in the range of

minutes, maybe even seconds, and Big Data technologies can be deployed to dramatically

reduce the execution time for queries.

Situations where users need to explore the data using ad hoc queries are considerably more

challenging, since accessing relevant parts of the data typically requires in depth knowledge

of the domain and of the organisation of data repositories. It is very rare that the end-users

possess such skills themselves. The situation is rather that the end-user needs to collaborate

with an IT skilled person in order to jointly develop the query that solves the problem at

hand, illustrated in the figure below:

IT expert

translation
disparate sourcesCOMPLEX

CASE
specialized queryinformation need

engineer

The turnaround time is then mostly dependent on human factors and is in the range of

days, if not worse. Note that the typical Big Data technologies are of limited help in this

case, as they do not in themselves eliminate the need for the IT expert.

The problem of end-user data access is ultimately about being able to put the enterprise

data in the hands of the expert end-users. Important aspects of the problem are volume,

variety, velocity, and complexity (Beyer et al., 2011), where by volume we mean the sheer

size of the data, by variety we mean the number of different data types and data sources, by

velocity we mean the rate at which data streams in and how fast it needs to be processed,

and by complexity we mean factors such as standards, domain rules and size of database

4 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

schemas that in normal circumstances are manageable, but quickly complicate data access

considerably when they escalate.

Factors such as variety, velocity and complexity can make data access challenging even

with fairly small amounts of data. When, in addition to these factors, data volumes are

extreme, the problem becomes seemingly intractable; one must then not only deal with large

data sets, but at the same time one also has to cope with dimensions that to some extent are

complementary. In Big Data scenarios, one or more of these dimensions go to the extreme,

at the same time interacting with other dimensions.

Based on the ideas presented in this chapter, the Optique project implements a solution

to the data access problem for Big Data in which all the above mentioned dimensions of the

problem are addressed. The goal is to enable expert end-users access the data themselves,

without the help of the IT experts, as illustrated in this figure:

OPTIQUE
SOLUTION

Application

Optique
flexible,
ontology-

based
queriesengineer

disparate sources
translated

queries

Query
trans-
lation

6.2 Ontology-Based Data Access

We have seen that the bottleneck in end-user access to Big Data is to be found in the process

of translating end-users’ information needs into executable, optimized queries over the data

sources. An approach known as “Ontology-Based Data Access” (OBDA) has the potential

to avoid this bottleneck by automating this query translation process. Fig. 6.1 shows the

essential components in an OBDA setup.

The main idea is to use an ontology, or domain model, that is a formalisation of the

vocabulary employed by the end-users to talk about the problem domain. This ontology

is constructed entirely independently of how the data is actually stored. End users can

6.2. ONTOLOGY-BASED DATA ACCESS 5

End-user IT-expert

Appli-
cation

Query Answering

Ontology Mappingsq
u

ery

re
su

lt
s

Figure 6.1: The basic set-up for Ontology-Based Data Access

formulate queries using the terms defined by the ontology, using some formal query language.

In other words, queries are formulated according to the end-users’ view of the problem

domain.

To execute such queries, a set of mappings is maintained which describe the relationship

between the terms in the ontology and their representation(s) in the data sources. This set

of mappings is typically produced by the IT-expert, who previously translated end-users’

queries manually.

It is now possible to give an algorithm that takes an end-user query, the ontology, and a

set of mappings as inputs, and computes a query that can be executed over the data sources,

and which produces the set of results expected for the end-user query. As Fig. 6.1 illustrates,

the result set can then be fed into some existing domain-specific visualisation or browsing

application which presents it to the end-user.

In the next section, we will see an example of such a query translation process, which

illustrates the point that including additional information about the problem domain in

the ontology can be very useful for end-users. In general, this process of query translation

becomes much more complex than just substituting pieces of queries using the mappings.

6 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

The generated query can also in some cases become dramatically larger than the original

ontology-based query formulated by the end-user.

The theoretical foundations of OBDA have been thoroughly investigated in recent years (Möller

et al., 2006; Calvanese et al., 2007b,a; Poggi et al., 2008). There is a very good understanding

of the basic mechanisms for query rewriting, and the extent to which expressivity of ontolo-

gies can be increased while maintaining the same theoretical complexity as is exhibited by

standard relational database systems.

Also, prototypical implementations exist (Acciarri et al., 2005; Calvanese et al., 2011)

which have been applied to minor industrial case studies (e.g. Amoroso et al., 2008). They

have demonstrated the conceptual viability of the OBDA approach for industrial purposes.

There are several features of a successful OBDA implementation that lead us to believe

that it is the right basic approach to the challenges of end-user access to Big Data:

• It is declarative, i.e. there is no need for end-users, nor for IT-experts, to write special

purpose program code.

• Data can be left in existing relational databases. In many cases, moving large and

complex data sets is impractical, even if the data owners were to allow it. Moreover,

for scalability it is essential to exploit existing optimised data structures (tables), and

to avoid increasing query complexity by fragmenting data. This is in contrast to, e.g.,

data warehousing approaches which copy data: OBDA is more flexible and offers an

infrastructure which is simpler to set up and maintain.

• It provides a flexible query language that corresponds to the end-user conceptualisation

of the data.

• The ontology can be used to hide details and introduce abstractions. This is significant

in cases where there is a source schema which is too complex for the end-user.

• The relationship between the ontology concepts and the relational data is made explicit

in the mappings. This provides a means for the DB experts to make their knowledge

available to the end-user independently of specific queries.

6.2. ONTOLOGY-BASED DATA ACCESS 7

Table 6.1: Example ontology and data for turbine faults

Human readable Logic

Ontology

Condenser is a CoolingDevice that

is part of a Turbine

Condenser Fault is a Fault that

affects a Condenser

Turbine Fault is a Fault that

affects part of a Turbine

CondenservCoolingDeviceu
∃isPartOf.Turbine

CondenserFault≡Faultu
∃affects.Condenser

TurbineFault≡Faultu
∃affects.(∃isPartOf.Turbine)

Data

g1 is a Generator

g1 has fault f1

f1 is a CondenserFault

Generator(g1)

hasFault(g1, f1)

CondenserFault(f1)

6.2.1 Example

We will now present a (highly) simplified example that illustrates some of the benefits of

OBDA, and explains how the technique works. Imagine that an engineer working in the

power generation industry wants to retrieve data about generators that have a turbine fault.

The engineer is able to formalise this information need, possibly with the aid of a suitable

tool, as a query of the form:

Q1(g)← Generator(g) ∧ hasFault(g, f) ∧ TurbineFault(f)

which can be read as “return all g such that g is a generator, g has a fault f , and f is a

turbine fault”.

Now consider a database that includes the tuples given in the lower part of Table 6.1.

If Q1 is evaluated over this data, then g1 is not returned in the answer, because f1 is a

condenser fault, but not a turbine fault. However, this is not what the engineer would want

or expect, because the engineer knows that the condenser is a part of the turbine, and that

a condenser fault is thus a kind of turbine fault.

8 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

The problem is caused by the fact that the query answering system is not able to use the

engineer’s expert knowledge of the domain. In an OBDA system, (some of) this knowledge

is captured in an ontology, which can then be exploited in order to answer queries “more

intelligently”. The ontology provides a conceptual model that is more intuitive for users: it

introduces familiar vocabulary terms, and captures declaratively the relationships between

terms.

In our running example, the ontology might include the declarative statements shown in

the upper part of Table 6.1. These introduce relevant vocabulary, such as condenser, cooling

device, affects, etc., and establish relationships between terms. The first axiom, for example,

states that “every condenser is a cooling device that is part of a turbine”. If we formalise

these statements as axioms in a suitable logic, as shown on the right hand side of Table

6.1, we can then use automated reasoning techniques to derive facts that must hold, but

are not explicitly given by the data, such as TurbineFault(g1). This in turn means that g1

is recognized as a correct answer to the example query. Using an ontology and automated

reasoning techniques, query answering can relate to the whole set of implied information,

instead of only that which is explicitly stated.

Automated reasoning can, in general, be computationally very expensive. Moreover, most

standard reasoning techniques would need to interleave operations on the ontology and the

data, which may not be practically feasible if the data is stored in a relational database.

OBDA addresses both these issues by answering queries using a two-stage process, first

using the ontology to rewrite the query, and then evaluating the rewritten query over the

data (without any reference to the ontology). The rewriting step generates additional queries,

each of which can produce extra answers that follow from a combination of existing data and

statements in the ontology. Ensuring that this is possible for all possible combinations of

data and ontology statements requires some restrictions on the kinds of statement that can

be included in the ontology. The OWL 2 QL ontology language profile has been designed as

a maximal subset of OWL 2 that enjoys this property.

Coming back to our example, we can easily derive from the ontology that a condenser

6.2. ONTOLOGY-BASED DATA ACCESS 9

Table 6.2: Database Tables

Generator
id serial
g1 1234
g2 5678
...

...

Fault
id type
f1 C
f2 T
...

...

hasFault
g-id f-id
g1 f1
g2 f2
...

...

fault is a kind of turbine fault, and we can use this to rewrite the query as:

Q2(g)← Generator(g) ∧ hasFault(g, f) ∧ CondenserFault(f)

Note that there are many other possible rewritings, including, e.g.:

Q3(g)← Generator(g) ∧ hasFault(g, f) ∧ Fault(f) ∧ affects(f, c) ∧ Condenser(c)

all of which need to be considered if we want to guarantee that the answer to the query will

be complete for any data set, and this can result in the rewritten query becoming very large

(in the worst case, exponential in the size of the input ontology and query).

One final issue that needs to be considered is how these queries will be evaluated if the

data is stored in a data store such as a relational database. So far we have assumed that

the data is just a set of ground tuples that use the same vocabulary as the ontology. In

practice, however, we want to access data in some kind of data store, typically a relational

database management system (RDBMS), and typically one whose schema vocabulary does

not correspond with the ontology vocabulary. In OBDA we use mappings to declaratively

capture the relationships between ontology vocabulary and database queries. A mapping

typically takes the form of a single ontology vocabulary term (e.g., Generator) and a query

over the data sources that retrieves the instances of this term (e.g., “SELECT id FROM

Generator”). Technically, this kind of mapping is known as global as view (GAV).

In our example, the data might be stored in an RDBMS using tables for generators

and faults, and using a hasFault table to capture the one to many relationship between

generators and faults, as shown in Figure 6.2. Mappings from the ontology vocabulary to

RDBMS queries can then be defined as follows:

10 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

Generator 7→ SELECT id FROM Generator

CondenserFault 7→ SELECT id FROM Fault WHERE type=‘C’

TurbineFault 7→ SELECT id FROM Fault WHERE type=‘T’

hasFault 7→ SELECT g-id,f-id FROM hasFault

When combined with Q2, these mappings produce the following query over the RDBMS:

SELECT Generator.id FROM Generator, Fault, hasFault

WHERE Generator.id=g-id AND f-id=Fault.id AND type=‘C’

The answer to this query will include g1. However, in order to ensure that all valid

answers are returned we also need to include the results of Q1 (the original query), and all

other possible rewritings. In an SQL setting this leads to a UNION query of the form:

SELECT Generator.id FROM Generator, Fault, hasFault

WHERE Generator.id=g-id AND f-id=Fault.id AND type=‘T’

UNION

SELECT Generator.id FROM Generator, Fault, hasFault

WHERE Generator.id=g-id AND f-id=Fault.id AND type=‘C’

UNION

. . .

6.2.2 Limitations of the State of the Art in OBDA

As mentioned above, OBDA has been successfully applied to first industrial case studies.

Still, realistic applications, where non-technical end-users require access to large corporate

datastores, lie beyond the reach of current technology in several respects:

(i) The usability is hampered by the need to use a formal query language that makes it

difficult for end-users to formulate queries, even if the vocabulary is familiar.

(ii) The prerequisites of OBDA, namely ontology and mappings, are in practice expensive

to obtain.

(iii) The scope of existing systems is too narrow: they lack many features that are vital for

6.2. ONTOLOGY-BASED DATA ACCESS 11

applications.

(iv) The efficiency of both the translation process and the execution of the resulting queries

is too low.

In the remainder of this chapter, we discuss possible approaches to overcome these short-

comings, and how the state of the art will have to be advanced in order to realise them.

Figure 6.2 shows a proposed architecture supporting this approach. In short terms, the

ideas are as follows:

End-user acceptance depends on the usability for non-technical users, e.g. by providing a

user-friendly Query Formulation front-end (see Fig. 6.2) that lets the end-user navigate the

vocabulary and presents a menu of possible refinements of a query (see Sect. 6.3). Advanced

users must have the possibility to switch back and forth as required between the navigational

view and a more technical view where the query can be edited directly. This will make it

possible for a non-technical user to author large parts of a query, but receive help from a

technical expert when required.

The second problem that needs to be addressed is providing and maintaining the pre-

requisites: ontology and mappings. In practice, these will have to be treated as evolving,

dynamic entities which are updated as required for formalising end-users’ information re-

quirements. An industrial-scale front-end needs to support both the semi-automatic deriva-

tion of an initial ontology and mappings in new deployments, and the extension of the

ontology during query formulation, e.g., by adding new technical terms or relationships that

were not previously captured. In the architecture of Fig. 6.2, this is accomplished by the

Query Formulation and Ontology and Mapping Management front-end components. This

mechanism of bootstrapping and query-driven ontology construction can enable the creation

of an ontology that fits the end-users’ needs at a moderate cost. The same Ontology and

Mapping Management component can then also support the IT-expert in maintaining a set

of mappings that is consistent with the evolving ontology. The sections on “Query Formu-

lation” (see Sect. 6.3) and “Ontology and Mapping Management” (see Sect. 6.4) expand on

the requirements for such a management component.

12 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

Providing a robust answer to the scope problem is difficult, because there is a trade-

off between expressivity and efficiency: very expressive mechanisms in the ontology and

mapping languages, that would guarantee applicability to virtually any problem that might

occur in industrial applications, are known to preclude efficient query rewriting and execution

(Brachman and Levesque, 1984; Artale et al., 2009; Calvanese et al., 2012). To ensure

efficiency, a restricted set of features must be carefully chosen for ontology and mapping

languages, with the aim of covering as many potential applications as possible.

Still, concrete applications will come with their own specific difficulties that cannot be

covered by a general-purpose tool. This expressivity problem needs to be resolved by plug-

ging application-specific modules into the query answering engine. These domain-specific

plugins must take care of query translation and optimisation in those cases where a generic

declarative mechanism is not powerful enough for an application. A wide range of special

purpose vocabulary and reasoning could be covered by such domain-specific modules, such

as, to name just a few,

• geological vocabulary in a petroleum industry application

• protein interactions and pathways in molecular biology

• elementary particle interactions for particle physics

On the other hand, important features that occur in many applications need to be built

into the core of any OBDA system. Notably, temporal aspects and the possibility of pro-

gressively processing data as it is generated (stream processing) are vital to many indus-

trial applications. Fortunately, existing research on temporal databases, as well as time

and streams in semantic technologies can be integrated into a unified OBDA framework (see

Sect. 6.6). Another important domain that occurs in many applications is that of geo-spatial

information, spatial proximity, containment, etc. Again, we expect that existing research

about geo-spatial data storage, querying, and semantics can be integrated into the OBDA

framework.

Other examples are aggregation (summation, averaging, etc.) and epistemic negation

(questions about missing data) that have received little theoretical or practical attention,

6.2. ONTOLOGY-BASED DATA ACCESS 13

End-user IT-expert

Appli-
cation

Query
Formulation

Ontology & Mapping
Management

Ontology Mappings

Query Transformation

Query Planning

Stream Adapter Query Execution Query Execution· · ·

· · · · · ·
streaming data

q
u

ery

re
su

lt
s

Site A Site B Site C

cr
o

ss
-c

o
m

p
o

n
en

t
o

p
ti

m
iz

at
io

n

Figure 6.2: Platform architecture for scalable OBDA

but which are important in many practical applications.

To address efficiency, we propose to decompose the “Query Answering” component into

several layers, as shown in Fig. 6.2:

1. Query Transformation using the ontology and mappings,

2. Query Planning to distribute queries to individual servers,

3. Query Execution using existing scalable data stores, or a massively parallelised (cloud)

architecture.

The implementation of the query transformation layer can take recent theoretical advances

in query rewriting into account, which can lead to significantly improved performance (see

Sect. 6.5). The same holds for query execution, which can take advantage of research on

massive parallelisation of query execution, with the possibility of scaling orders of magnitude

beyond a conventional RDBMS architecture (see Sect. 6.7).

14 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

We surmise however, that to gain a real impact on efficiency, a holistic, cross-component

view on query answering is needed: current OBDA implementations leave query planning

and execution to off-the-shelf database products, often leading to suboptimal performance

on the kinds of queries produced by a rewriting component. The complete query answering

stack needs to be optimised as a whole, so that the rewritten queries can capitalise on the

strengths of the query execution machinery, and the query execution machinery is optimised

for the queries produced by the rewriting component.

In the following sections, we give a detailed discussion of the state of the art in the

mentioned aspects, and the necessary expansions for an industrial-scale OBDA tool.

6.3 Query Formulation Support

Traditional database query languages, such as SQL, require some technical skills and knowl-

edge about language syntax and domain schema. More precisely, they require users to recall

relevant domain concepts and syntax elements and communicate their information need in

a programmatic way. Such an approach makes information systems almost, if not com-

pletely, inaccessible to the end-users. Direct manipulation (Schneiderman, 1983) languages,

which employ recognition (rather than recall) and direct manipulation objects (rather than

a command language syntax), have emerged as a response to provide easy to use and in-

tuitive interactive systems. In the database domain, Visual Query Systems (VQS, Catarci

et al., 1997) follow the direct manipulation approach in which the domain of interest and

the information need are represented by visual elements. Various interaction mechanisms

and visualization paradigms – such as diagrams, forms etc. – have been employed (Catarci

et al., 1997; Epstein, 1991) to enable end-users to easily formulate and construct their query

requests. However, early approaches mostly missed a key notion, that is usability (Catarci,

2000), whose concern is the quality of the interaction between the user and the software

system rather than the functionality or the technology of the software product. Increasing

awareness on the usability in database domain is visible through a growing amount of re-

search addressing end-user database access (e.g. Popov et al., 2011; Barzdins et al., 2008;

6.3. QUERY FORMULATION SUPPORT 15

Uren et al., 2007)).

One of the key points for the success of a system, from the usability perspective, is its

ability to clearly communicate the provided affordances for user interaction and the domain

information that the user is expected to operate on. This concerns the representation and

interaction paradigm employed by the system and the organization of the underlying domain

knowledge. Concerning the former, researchers mostly try to identify the correlation between

task (e.g., simple, complex etc.) and user type (e.g., novice, expert etc.) and the visual

representation and interaction paradigm used (Catarci et al., 1997; Catarci, 2000; Popov

et al., 2011). Regarding the latter, ontologies are considered as a key paradigm for capturing

and communicating domain knowledge with the end-users (Uren et al., 2007; Barzdins et al.,

2008; Tran et al., 2011).

A key feature of any OBDA system is that the ontology needs to provide a user-oriented

conceptual model of the domain against which queries can be posed. This allows the user

to formulate “natural” queries using familiar terms and without having to understand the

structure of the underlying data sources. However, in order to provide the necessary power

and flexibility, the underlying query language will inevitably be rather complex. It would

be unrealistic to expect all domain experts to formulate queries directly in such a query

language, and even expert users may benefit from tool support that exploits the ontology in

order to help them to formulate coherent queries. Moreover, the ontology may not include

all the vocabulary expected or needed by a given user. Ideally, it should be possible for users

with differing levels of expertise to cooperate on the same query, by allowing them to switch

between more or less technical representations as required, and to extend the ontology on

the fly as needed for the query being formulated.

Many applications existing today use navigation of simple taxonomic ontologies in order

to search for information; a user of eBay, for example, can navigate from “electronics” to

“cameras & photography” to “camcorders” in order to find items of interest. In some cases,

additional attributes may also be specified; in the above example, attributes such as “brand”,

“model” and “price” can also be specified. Sometimes called faceted search (Schneiderman,

1983; D.Tunkelang, 2009; Suominen et al., 2007; Lim et al., 2009), but the structure of the

16 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

ontology is very simple, as is the form of the query—effectively just retrieving the instances

of a given concept/class. The faceted search is based on series of orthogonal categories that

can be applied in combination to filter the information space. Facets are derived from the

properties of the information elements. In an ontology-based system, identification of these

properties is straightforward. An important benefit of faceted search is that it frees users

from the burden of dealing with complex form-based interfaces and from the possibility of

reaching empty result sets. This faceted search approach, however, in its most common

form breaks down as soon as a “join” between information about several objects is required.

Consider e.g. searching for camcorders available from sellers who also have a digital camera

with ≥ 12MP resolution on offer.

Similarly, ontology development tools such as Protégé may allow for the formulation of

query concepts using terms from the ontology, but the query is again restricted to a single

concept term. Specialised applications have sometimes used GUIs or form-based interfaces

for concept formulation, e.g., the Pen & Pad data entry tool developed in the GALEN project

(Nowlan et al., 1990), but if used for querying this would again provide only for concept/class

instance retrieval queries.

An essential part of any practically usable system must be an interface that supports

technically less advanced users by some kind of “query by navigation” interface, where the

user gradually refines the query by selecting more specific concepts and adding relationships

to other concepts, with the ontology being used to suggest relevant refinements and rela-

tionships (Nowlan et al., 1990; Catarci et al., 2004). Work on ontology-supported faceted

search (Suominen et al., 2007; Lim et al., 2009) is also relevant in this context. Due to the

rising familiarity of users with faceted search interfaces, a promising direction seems to be

to extend faceted search with, amongst others,

• the ability to select several pieces of information for output (querying instead of search)

• a possibility for adding restrictions on several objects connected through roles, in order

to allow joins

• a possibility to specify aggregation, like summation or averaging

6.3. QUERY FORMULATION SUPPORT 17

• a possibility to specify the absence of information (e.g. that a vendor has no negative

reviews)

The amalgamation of faceted search and navigational search, so-called query by navigation

(ter Hofstede et al., 1996), is of importance for the realization of the aforementioned objec-

tives. The navigational approach exploits the graph-based organization of the information

to allow users to browse the information space by iteratively narrowing the scope. Stratified

hypermedia (Bruza and van der Weide, 1992), a well known example of the navigational ap-

proach, is an architecture in which information is organized via several layers of abstraction.

The base layer contains the actual information while other layers contain the abstraction of

this information and enable access to the base layer. In a document retrieval system, the

abstraction layer is composed of hierarchically organized keywords. An indexing process is

required to characterize the documents and to construct the abstraction layer. However, the

characterization of information instances in an ontology-based system is simple and provided

by the reference ontology (ter Hofstede et al., 1996). The query by navigation approach is

particularly supportive at the exploration phase of the query formulation (Marchionini and

White, 2007). Recent applications of query by navigation are available in the Semantic Web

domain in the form of textual semantic data browsers (e.g. Soylu et al., 2012; Popov et al.,

2011).

A particular approach which combines faceted search and a diagrammatic form of query

by navigation is presented in (Heim and Ziegler, 2011). The approach is based on the hierar-

chical organization of facets, and hence allows joins between several information collections.

The main problem with such diagrammatic approaches and with textual data browsers is

that they do not support dealing with large complex ontologies and schemata well, mainly

lacking balance between overview and focus. For instance, a diagrammatic approach is good

at providing an overview of the domain; however, it has its limits in terms of information

visualization and users’ cognitive bandwidths. A textual navigation approach is good at

splitting the task into several steps; however, it can easily cause users to lose the overview.

Therefore it is not enough to provide navigation along the taxonomy and relations captured

in the ontology. In many cases, it turns out that accessing data is difficult even for end-users

who are very knowledgeable in their domain, for two reasons: a) the complexity of the data

18 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

model – which can be hidden using an ontology and mappings, but also b) the complexity of

an accurate description of the domain. Often an ontology that accurately describes all rele-

vant details of the domain will be more complicated than even experienced domain experts

usually think about it in their daily work. This means that they approach the task of query

construction without having complete knowledge of all the details of the domain model. It

is therefore necessary to develop novel techniques to support users in formulating coherent

queries that correctly capture their requirements. In addition to navigation, a query for-

mulation tool should allow searching by name for properties and concepts the expert knows

must be available in the ontology. The system should help users understand the ontology by

showing how the concepts and properties relevant for a query are interconnected.

For instance, assume that the user would like to list all digital cameras with ≥ 12MP

resolution. This sounds like a reasonable question that should have a unique interpretation.

But the ontology might not actually assign a “resolution” to a camera. Rather, it might

say that a camera has at least one image sensor, possibly several,9 each of which has an

effective and a total resolution. The camera also may or may not support a variety of video

resolutions, independently of sensor’s resolution. The system should let the users search for

“resolution,” help them find chains of properties from “Camera” to the different notions of

“Resolution” and help them find out whether all sensors need to have ≥ 12MP, or at least

one of them, etc., and which kind of resolution is meant.

For complex queries, any intuitive user interface for non-technical users will eventually

reach its limits. It is therefore important to also provide a textual query interface for tech-

nically versed users that allows direct editing of a query using a formal syntax like the W3C

SPARQL language. Ideally, both interfaces provide views on an underlying partially con-

structed query, and users can switch between views at will. Even in the textual interface,

there should be more support than present-day interfaces provide, in the form of context-

sensitive completion (taking account of the ontology), navigation support, etc. (as is done,

e.g., in the input fields of the Protégé ontology editor (Knublauch et al., 2005)).

Finally, no ontology can be expected to cover a domain’s vocabulary completely. The

vocabulary is to a certain extent specific to individuals, projects, departments, etc. and

9For instance front-facing and rear-facing on a mobile phone, two sensors in a 3D camcorder, etc.

6.4. ONTOLOGY AND MAPPING MANAGEMENT 19

subject to change. To adapt to changing vocabularies, cater for omissions in the ontology, and

to allow a light weight process for ontology development, the query formulation component

should also support “on the fly” extension of the ontology during query formulation. This can

be achieved by adapting techniques from ontology learning (Cimiano et al., 2005; Cimiano,

2006) in order to identify relevant concepts and relations, and adapting techniques from

ontology alignment (aka matching) in order to relate this new vocabulary to existing ontology

terms. In case such on-the-fly extensions are insufficient, users should also have access to

the range of advanced tools and methodologies discussed in Sect. 6.4, although they may

require assistance from an IT expert in order to use such tools.

6.4 Ontology and Mapping Management

The OBDA architecture proposed in this chapter depends crucially on the existence of suit-

able ontologies and mappings. In this context, the ontology provides a user-oriented concep-

tual model of the domain that makes it easier for users to formulate queries and understand

answers. At the same time, the ontology acts as a “global schema” onto which the schemas

of various data sources can be mapped.

Developing suitable ontologies from scratch is likely to be expensive. A more cost-effective

approach is to develop tools and methodologies for semi-automatically “bootstrapping” the

system with a suitable initial ontology and for extending the ontology “on the fly” as needed

by a given application. This means that in this scenario ontologies are dynamic entities that

evolve (i) to incorporate new vocabulary required in user queries, and (ii) to accommodate

new data sources. In both cases, some way is needed to ensure that vocabulary and axioms

are added to the ontology in a coherent way.

Regarding the ontology/data-source mappings, many of these will, like the ontology, be

generated automatically from either database schemata and other available metadata or

formal installation models. However, these initial mappings are unlikely to be sufficient in

all cases, and they will certainly need to evolve along with the ontology. Moreover, new data

sources may be added, and this again requires extension and adjustment of the mappings.

20 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

The management of large, evolving sets of mappings must be seen as an engineering problem

on the same level as that of ontology management.

Apart from an initial translation from structured sources like, e.g., a relational database

schema, present-day ontology management amounts to using interactive ontology editors

like Protégé, NeOn, or TopBraid Composer.10 These tools support the construction and

maintenance of complex ontologies, but they offer little support for the kind of ontology

evolution described above.

The issue of representing and reasoning about schema mappings has been widely inves-

tigated in recent years. In particular, a large body of work has been devoted to studying

operators on schema mappings relevant to model management, notably, composition, merge,

and inverse (Bernstein and Ho, 2007; Kolaitis, 2005; Madhavan and Halevy, 2003; Fagin

et al., 2005c; Fagin, 2007; Fagin et al., 2008b, 2009b; Arenas et al., 2009; Arocena et al.,

2010; Arenas et al., 2010a,b). In (Fagin et al., 2005a,b; Arenas et al., 2004; Fuxman et al.,

2005; Libkin and Sirangelo, 2008) the emphasis is on providing foundations for data inter-

operability systems based on schema mappings. Other works deal with answering queries

posed to the target schema on the basis of both the data at the sources, and a set of source-

to-target mapping assertions (e.g. Abiteboul and Duschka, 1998; Arenas et al., 2004; Cal̀ı

et al., 2004) and the surveys in (Ullman, 1997; Halevy, 2001; Halevy et al., 2006)).

Another active area of research is principles and tools for comparing both schema map-

ping languages, and schema mappings expressed in a certain language. Comparing schema

mapping languages aims at characterizing such languages in terms of both expressive power

and complexity of mapping-based computational tasks (ten Cate and Kolaitis, 2009; Alexe

et al., 2010). In particular, (ten Cate and Kolaitis, 2009) studies various relational schema

mapping languages with the goal of characterizing them in terms of structural properties

possessed by the schema mappings specified in these languages. Methods for comparing

schema mappings have been proposed in (Fagin et al., 2008a; Gottlob et al., 2009; Fagin

et al., 2009b; Arenas et al., 2010a), especially in the light of the need of a theory of schema

mapping optimisation. In (Fagin et al., 2009b; Arenas et al., 2010a), schema mappings are

compared with respect to their ability to transfer source data and avoid redundancy in the

10http://protege.stanford.edu/, http://neon-toolkit.org/, http://www.topbraidcomposer.com/

http://protege.stanford.edu/
http://neon-toolkit.org/
http://www.topbraidcomposer.com/

6.4. ONTOLOGY AND MAPPING MANAGEMENT 21

target databases, as well as their ability to cover target data. In (Fagin et al., 2008a), three

notions of equivalence are introduced. The first one is the usual notion based on logic: two

schema mappings are logically equivalent if they are indistinguishable by the semantics, i.e.,

if they are satisfied by the same set of database pairs. The other two notions, called data ex-

change and conjunctive query equivalence, respectively, are relaxations of logical equivalence,

capturing indistinguishability for different purposes.

Most of the research mentioned above aims at methods and techniques for analyzing

schema mappings. However, mapping management is a broader area, which includes methods

for supporting the development of schema mappings, debugging such mappings, or maintain-

ing schema mappings when some part of the specification (for example, one of the schemas)

changes. Although some tools are already available, (e.g., CLIO Fagin et al., 2009a), and

some recent papers propose interesting approaches (e.g. Glavic et al., 2010), this problem

is largely unexplored, especially in the realm of OBDA. Specifically, the following problems

are so far unsolved in the area, but are crucial in dealing with complex scenarios:

(i) Once a set of mappings has been defined, the designer often needs to analyze them, in

order to verify interesting properties (for example, minimality).

(ii) Mappings in OBDA systems relate the elements of the ontology to the data structures

of the underlying sources. When the ontology changes, some of the mappings may

become obsolete. Similarly, when the sources changes, either because new sources are

added, or because they undergo modifications of various types, the mappings may

become obsolete.

(iii) Different types of mappings (LAV, GAV, etc.) have been studied in the literature.

It is well known that the different types have different properties from the point of

view of expressive power of the mapping language, and computational complexity of

mapping-based tasks. The ideal situation would be to use rich mapping languages

during the design phase, and then transforming the mappings in such a way that

efficient query answering is possible with them. This kind of transformation is called

mapping simplification. Given a set of mappings M , the goal of simplification is to come

up with a set of mappings that are expressed in a tractable class C, and approximate

22 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

at best M , i.e., such that no set M ′ of mappings in C exists which is “closer” to M

than M ′.

Regarding ontologies, the required management and evolution described above could be

reached by a combination of different techniques, including ontology alignment (Shvaiko and

Euzenat, 2005; Jiménez-Ruiz et al., 2009) and ontology approximation (Brandt et al., 2001;

Pan and Thomas, 2007). Both the addition of user-defined vocabulary from a query formu-

lation process and the incorporation of the domain model for a new data source are instances

of an ontology alignment problem. The results of aligning new user-requested vocabulary or

new knowledge coming from new data sources with the existing ontology do not necessar-

ily fall within the constrained fragments required for efficient OBDA (like, e.g., OWL 2 QL,

Calvanese et al., 2007b). This problem can be dealt with by an approximation approach, i.e.,

transforming the ontology into one that is as expressive as possible while still falling within

the required profile. In general, finding an optimal approximation may be costly or even

undecidable, but effective techniques are known for producing good approximations (Brandt

et al., 2001; Pan and Thomas, 2007).

Concerning mapping management, in order to be able to freely analyze schema mappings,

one possibility is to define a specific language for querying schema mappings. The goal of the

language is to support queries of the following types: return all mappings that map concepts

that are subsets of concept C; or, return all mappings that access table T in the data source

S. The basic step is to define a formal meta-model for mapping specification, so that queries

over schema mappings will be expressions over this meta-model. A query language can thus

be defined over such a meta-model: the general idea is to design the language in such a way

that important properties (e.g., scalability of query answering) will be satisfied.

Based on this meta-model, reasoning techniques could be designed that support the evo-

lution of schema mappings. The meta-model could also be used in order to address the issue

of monitoring changes and reacting to them. Indeed, every change to the elements involved

in the schema mappings may be represented as specific updates on the instance level of the

meta-level. The goal of such a reasoning system is to specify the actions to perform, or the

actions to suggest to the designer, when these update operations change the instances of the

6.5. QUERY TRANSFORMATION 23

meta-model.

6.5 Query Transformation

The OBDA architecture proposed in this chapter relies heavily on query rewriting techniques.

The motivation for this is the ability of such techniques to separate ontology reasoning from

data reasoning, which can be very costly in the presence of Big Data. However, although

these techniques have been studied for several years, applying this technology to Big Data

introduces performance requirements that go far beyond what can be obtained with simple

approaches. In particular, emphasis must be put both on the performance of the rewriting

process and on the performance of the evaluation of the queries generated by it. At the

same time, meeting these performance requirements can be achieved by building on top of

the experiences in the area of OBDA optimisation which we now briefly mention.

In the context of query rewriting with respect to the ontology only (i.e., mappings and

query execution aside), recent results (Kikot et al., 2011; Rosati and Almatelli, 2010) have

shown that performing query rewriting by means of succinct query expressions, e.g., non-

recursive Datalog programs, can be orders of magnitude faster than the approaches that

produce UCQs (unions of conjunctive queries) apriori (Calvanese et al., 2007b; Pérez-Urbina

et al., 2008; Chortaras et al., 2011; Cal̀ı et al., 2009). Moreover, these succinct query repre-

sentations are in general cheaper to deal with during optimisation, since the structure that

needs to be optimised is smaller. Complementary to these results are optimisation results

for OBDA systems in which the data is in control of the query answering engine, where

dramatic improvements can be achieved when load-time pre-computation of inferences is

allowed. In particular, it has been shown in (Rodŕıguez-Muro and Calvanese, 2011) that

full materialisation of inferences is not always necessary to obtain these benefits, that it is

possible to capture most of the semantics of DL-Lite ontologies by means of simple and inex-

pensive indexing structures in the data-storage layer of the query answering system. These

pre-computations allow to further optimise the rewriting process and the queries returned

by this process.

24 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

In the context of query rewriting in the presence of mappings and where the data sources

cannot be modified by the query answering system, a point of departure are recent ap-

proaches that focus on the analysis of the data sources and the mappings of the OBDA sys-

tem (Rodŕıguez-Muro, 2010). Existing approaches (Rodŕıguez-Muro and Calvanese, 2011)

focus on detecting the state of completeness of the sources w.r.t. the semantics of the ontology.

The result of this analysis can be used for at least two types of optimisation, namely (i) op-

timisation of the ontology and mappings used during query rewriting (offline optimisation),

and (ii) optimisation of the rewritten queries (online optimisation). For the former, initial

work can be found in the semantic preserving transformations explored in (Rodŕıguez-Muro

and Calvanese, 2011). For the latter, early experiences (Rodŕıguez-Muro, 2010; Rodriguez-

Muro and Calvanese, 2012; Calvanese et al., 2011; Pérez-Urbina et al., 2008) suggest that

traditional theory of Semantic Query Optimisation (SQO, Grant et al., 1997) can be ap-

plied in the OBDA context as long as the chosen rewriting techniques generate queries that

are cheap to optimise using SQO techniques, for example (Kikot et al., 2011; Rosati and

Almatelli, 2010). Complementary, a first-order logics based approach to Semantic Query

Optimization in the context of semantic data formats and reasoning has been proposed

in (Schmidt et al., 2010). Finally, previous experiences also suggest that in the context of

query rewriting into SQL, obtaining high performance is not guaranteed by using an opti-

mised DBMS system; instead, it has been shown (Rodŕıguez-Muro, 2010) that the form of

the SQL query (e.g., use of sub-queries, views, nested expressions, etc.) plays a critical role,

and that even in commercial DBMS engines, care must be taken to guarantee that the SQL

queries are in a form that the DBMS can plan and execute efficiently.

Regarding systems, a lot of experience has been accumulated in the last years and can

be used to build the next generation OBDA systems. In particular, most of the aforemen-

tioned rewriting techniques, as well as optimisation techniques, have been accompanied by

prototypes that were used to benchmark and study the applicability of these techniques em-

pirically. The first example of these systems is QuOnto (Acciarri et al., 2005), a system that

implements the core algorithms presented in (Calvanese et al., 2007b) and that seeded the

idea of query answering through query rewriting in the context of DL ontologies. QuOnto has

also served as a platform for the implementation of the epistemic-query answering techniques

proposed in (Calvanese et al., 2007a) and served as a basis for the Mastro system (Calvanese

6.5. QUERY TRANSFORMATION 25

et al., 2011), which implements OBDA-specific functionality. While these systems allowed

for query answering over actual databases, initially they put little attention to the perfor-

mance issue. Because of this, following prototypes focused strongly on the performance of

the query rewriting algorithms; examples are Requiem (Pérez-Urbina et al., 2010), which im-

plemented the resolution-based query rewriting techniques from (Pérez-Urbina et al., 2008),

and Presto (Rosati and Almatelli, 2010), which implemented a succinct query translation

based on non-recursive Datalog programs. Finally, the latest generation OBDA systems such

as Quest (Rodriguez-Muro and Calvanese, 2012) and Prexto (Rosati, 2012) have focused on

the exploitation of efficient rewriting techniques, SQO optimisation as well as the generation

of efficient SQL queries.

At the same time, while these initial steps towards performance are promising, there are

many challenges that arise in the context of industrial applications and Big Data that are

not covered by current techniques. For example, optimisations of query rewriting techniques

have only been studied in the context of rather inexpressive ontology and query languages

such as OWL 2 QL/DL-Lite and UCQs; however, empirical evidence indicates that none of

these languages is enough to satisfy industrial needs. Also, current proposals for optimisation

using constraints have considered only the use of few classes of constraints, in particular, only

simple inclusion dependencies, and little attention has been given to the use of functional

dependencies and other forms of constraints that allow to represent important features of

the sources and that are relevant for query answering optimisation.

Likewise, optimisation of OBDA systems has so far only been considered either in a

pure ‘on-the-fly’ query rewriting context, in which sources are out of the scope of the query

answering system, or in a context in which the data has been removed from the original

source and transformed into an ABox. However, the experience that has been obtained

experimenting with the current technology indicates that in practice, a middle ground could

give rise to a higher degree of optimisation of the query answering process. It also appears

that in the context of Big Data and the complex analytical queries that are often used in

this context, good performance cannot be achieved otherwise and these hybrid approaches

might be the only viable alternative. It has also become clear that declarative OBDA might

not be the best choice to handle all tasks over Big Data. In some cases, domain specific

26 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

Ontology Mappings

Query Transformation

Query answering plugins Configuration plugins

Query rewriting Ontology/mapping optimisation

query/results

Query planning

Stream Adapter Query Execution Query Execution

aux. source· · · · · ·

Site A Site B Site C

Figure 6.3: Fine structure of the Query Transformation component.

procedures can be more efficient, and hence, an OBDA system should provide the means to

define such procedures (e.g., by means of domain specific plugins).

To conclude, an optimal system for query answering through query rewriting in the con-

text of Big Data must be approached in an integral way, including modules that handle and

optimise each of the aspects of the query answering process, while trying to maximize the

benefits that are obtained by separating reasoning w.r.t. the Ontology vs. reasoning w.r.t.

the data. The resulting architecture of such a system may look like the one proposed in this

chapter and depicted in Fig. 6.3, where all optimisation techniques previously mentioned

are combined into a framework that is expressive enough to capture industrial requirements,

can understand the data sources (in the formal sense), and is able to identify the best way

to achieve performance, being able to go from pure on-the-fly query answering to (partially)

materialised query answering as needed.

6.6. TIME AND STREAMS 27

6.6 Time and Streams

Time plays an important role in many industrial applications. Hence, OBDA based so-

lutions for such applications have to provide means for efficiently storing and querying

timed-stamped data. If we recast these user requirements to technical ones on the OBDA

components involved in the life cycle of a query, we come to the conclusion that, first, the

user query language should allow the reference to time (instances, intervals) and allow for

adequate combinations with concepts of the ontology; that, second, the mapping language

should allow the handling of time; and that, third, the back-end database should provide

means for efficiently storing and retrieving temporal data, in particular, it should provide

a temporal query language into which the user query will be transformed. One might also

want to add a requirement for the ontology language such that it becomes possible to build

temporal-thematic concepts in the user ontology; but regarding well-known unfeasibility re-

sults on temporal description logics (Artale et al., 2010), we will refrain from discussing any

aspect concerning temporal constructors for ontology languages and rather focus on temporal

query languages and temporal DBs.

While SQL provides built-in data types for times and dates, which can be used, for in-

stance, for representing birthday data, representing validity of facts using, say, two attributes

Start and End imposes severe problems for formulating queries in SQL. For instance, in a Big

Data scenario involving possibly mobile sensors of one or more power plants, measurement

values might be stored in a table Sensor with schema

Sensor(ID,Location, V alue, Start, End),

and it might happen that the location changes while the value remains the same.

ID Location Value Start End

.
S 42 Loc 1 16 15 20
S 42 Loc 1 17 20 25
S 42 Loc 2 17 25 30
S 42 Loc 2 18 30 35
.

28 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

Now, querying for the (maximum) duration of a measurement with a particular value 17

(and neglecting the location of the sensor) should return a relation

{(S 42, 17, 20, 30)}.

Although in principle one could specify an SQL query that maximizes the interval length

to be specified in result tuples (see Zaniolo et al. (1997) for examples and for pointers to the

original literature in which solutions were developed), the query is very complex (Zaniolo

et al., 1997, p. 104) and will hardly be optimized appropriately by standard SQL query

engines. Even worse, if only (irregular) time points are stored for measurements, one has to

find the next measurement of a particular sensor and timepoint by a minimization query, and

the problem of maximizing validity intervals in output relations as described above remains.

In addition, an attribute Timepoint might also refer to the insertion time (transaction time)

of the tuple rather than to the valid time as we have assumed in the discussion above.

In order to support users in formulating simpler queries for accessing temporal informa-

tion appropriately, extensions to relational database technology and query languages such

as SQL have been developed (e.g., TSQL2, see (Zaniolo et al., 1997) for an overview). The

time ontology usually is defined by a linear time structure, a discrete representation of the

real time line, and proposals for language standards as well as implementations provide data

types for intervals or timestamps. A useful distinction adapted from constraint databases

(Kuper et al., 2000) is the one between abstract and concrete temporal databases (Chomicki

and Toman, 2005). The representation-independent definitions of temporal databases rely-

ing on the infinite structures of the time ontology are called abstract temporal databases;

these are the objects relevant for describing the intended semantics for query answering. Fi-

nite representations of abstract temporal databases are termed concrete temporal databases

(Chomicki and Toman, 2005); these rely on compact representations by (time) intervals.

Temporal databases provide for means of distinguishing between valid time and trans-

action time. Valid time captures the idea of denoting the time period during which a fact

is considered to be true (or to hold w.r.t. the real world). With transaction time the time

point (or time period) during which a fact is stored in the database is denoted. It might be

6.6. TIME AND STREAMS 29

the case that valid time is to be derived from transaction time (due to a sampling interval).

In case of a transaction time point often valid time is to be derived by retrieving the “next”

entry, assuming an assertion is valid until the next one appears. It might also be the case

that both types of time aspects are stored in the database leading to so called bitemporal

databases (Jensen et al., 1993). Using a temporal database, a query for checking which

values the sensors indicate between time units should be as easy as in the following example:

SELECT ID, Value FROM Sensor WHERE Start >= 23 and End <= 27;

with the intended result being a single tuple

{(S 42, 17)}.

The reason for expecting this result can be explained by the abstract vs. concrete distinction.

The table with the mobile sensor from the beginning of this section is considered to be part of

a concrete temporal database that represents an abstract temporal database. The abstract

temporal database holds relations of the form

Sensor(ID,Location, V alue, T)

meaning that sensor ID, located in Location, has a value V alue measured/valid in time T

for all T such that there is an entry in the concrete temporal database with Start and End

values in between which T lies.

Note that the resulting answer to the last query above is the empty set if the mobile sensor

data are understood as being part of a pure (non-temporal) SQL DB.

One could extend the simple SQL query from above to a temporal SQL query that also

retrieves the locations of the sensors.

SELECT ID, Location, Value FROM Sensor WHERE Start >= 20 and End <= 27;

30 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

The expected result w.r.t. the semantics of abstract temporal databases is

{(S 42, Loc 1, 17), (S 42, Loc 2, 17)}.

Again note that the resulting answer set would have been different for non-temporal SQL,

namely

{(S 42, Loc 1, 17)}.

As a third example for querying temporal databases think of a query retrieving temporal

information. For the query

SELECT ID, Value, Start, End FROM Sensor WHERE Start <= 23 and End >= 27;

the expected result is

{(S 42, 17, 20, 30)}.

Index structures for supporting these kinds of queries have been developed, and add-ons

to commercial products offering secondary-memory query answering services such as those

sketched above are on the market. Despite the fact that standards have been proposed (e.g.,

ATSQL) no agreement has been achieved yet, however. Open source implementations for

mapping ATSQL to SQL have been provided as well (e.g., TimeDB, Steiner, 1997; Tang

et al., 2003).

For many application scenarios, however, only small “windows” of data are required, and

thus, storing temporal data in a database (and in external memory) as shown above might

cause a lot of unnecessay overhead in some application scenarios. This insight gave rise

to the idea of stream-based query answering. In addition to window-based temporal data

access, stream-based query answering adopts the view that multiple queries are registered

and assumed to be answered “continuously”. For this kind of continuous query answering,

appropriate index structures and join algorithms have been developed in the database com-

munity (see, e.g., Cammert et al. (2003, 2005) for an overview). Data might be supplied

incrementally by multiple sources. Combining these sources defines a fused stream of data

over which a set of registered queries is continuously answered. In stream-based query an-

6.6. TIME AND STREAMS 31

swering scenarios, an algebraically specified query (over multiple combined streams set up for

a specific application) might be implemented by several query plans that are optimized w.r.t.

all registered queries. An expressive software library for setting up stream-based processing

scenarios is described in (Cammert et al., 2003).

Rather than by accessing the whole stream, continuous queries refer to only a subset of all

assertions, which is defined by a sliding time window. Interestingly, the semantics of sliding

windows for continuous queries over data streams is not easily defined appropriately, and

multiple proposals exist in the literature (e.g. Krämer and Seeger, 2009; Zhang et al., 2001).

For event recognition, temporal aggregation operators are useful extensions to query lan-

guages, and range predicates have to be supported in a special way to compute temporal

aggregates (Zhang et al., 2001). In addition, expectation on trajectories help to answer

continuous queries in a faster way (Schmiegelt and Seeger, 2010). Moreover, it is apparent

that the “best” query plan might depend on the data rates of various sources, and dynamic

replanning might be required to achieve best performance over time (Krämer et al., 2006;

Heinz et al., 2008).

While temporal query answering and stream-based processing has been discussed for a

long time in the database community (e.g. Law et al., 2004), recently L data representation

formats and query answering languages have become more and more popular. Besides XML,

e.g., the Resource Description Format (RDF) has been investigated in temporal or stream-

based application contexts. Various extensions to the RDF query language SPARQL have

been proposed for stream-based access scenarios in the RDF context (Bolles et al., 2008;

Barbieri et al., 2010b; Calbimonte et al., 2010). With the advent of SPARQL 1.1, aggregate

functions are investigated in this context as well.

Streaming SPARQL (Bolles et al., 2008) was one of the first approaches based on a

specific algebra for streaming data. However, data must be provided “manually” in RDF in

this approach. On the other hand, mappings for relating source data to RDF ontologies in

an automated way have been investigated in stream-based query answering scenarios as well

(e.g. Calbimonte et al., 2010). In contrast to ontology-based data access (OBDA) methods,

nowadays these approaches require the materialization of structures at the ontology level

32 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

(RDF) in order to provide the input data for stream-based query systems. For instance, C-

SPARQL queries are compiled to SPARQL queries over RDF data that was produced with

specific mappings. C-SPARQL deals with entailments for RDFS or OWL 2 RL by relying

on incremental materialization (Barbieri et al., 2010a). See also (Ren and Pan, 2011) for an

approach based on EL++.

SPARQLstream (Calbimonte et al., 2010) provides for mappings to ontology notions and

translates to stream-based queries to SNEEQL (Brenninkmeijer et al., 2008), which is the

query language for SNEE, a query processor for wireless sensor networks. Stream-based

continuous query answering is often used in monitoring applications for detecting events,

possibly in real time. EP-SPARQL (Anicic et al., 2011a), which is tailored for complex event

processing, is translated to ETALIS (Event TrAnsaction Logic Inference System (Anicic

et al., 2011b)), a Prolog-based real time event recognition system based on logical inferences.

While translation to SQL, SPARQL or other languages is attractive w.r.t. reusing existing

components in a black box approach, some information might be lost, and the best query

execution plan might not be found. Therefore, direct implementations of stream-based

query languages based on RDF are also investigated in the literature. CQELS (Phuoc

et al., 2011) is a much faster “native” implementation (and does not rely on transformation

to underlying non-stream-based query languages). In addition, in the latter stream-based

querying approach, queries can also refer to static RDF data (e.g., linked open data). In

addition, a direct implementation of temporal and static reasoning with ontologies has been

investigated for media data interpretation in (Möller and Neumann, 2008; Peraldi et al.,

2011). Event recognition w.r.t. expressive ontologies has been investigated recently (Luther

et al., 2008; Wessel et al., 2007, 2009; Baader et al., 2009).

As we have seen, it is important to distinguish between temporal queries and window-

based continuous queries for streams. Often the latter are executed in main memory before

data is stored in a database, and much work has been carried out for RDF. However, tempo-

ral queries are still important in the RDF context as well. T-SPARQL (Grandi, 2010) applies

techniques from temporal DBs (TSQL2, SQL/Temporal, TimeDB) to RDF querying (possi-

bly also with mappings to plain SQL) to define a query language for temporal RDF. For data

6.6. TIME AND STREAMS 33

represented using the W3C standard RDF, an approach for temporal query answering has

been developed in an industrial project (Motik, 2010). It is shown that ontology-based an-

swering of queries with specific temporal operators can indeed be realized using a translation

to SQL.

In summary, it can be concluded that there is no unique semantics for the kind of queries

discussed above, i.e., neither for temporal nor for stream-based queries. A combination of

stream-based (or window-based), temporal (history-based), and static querying is useful in

applications, but is not provided at a time by most approaches. Early work on deduc-

tive event recognition (Neumann and Novak, 1983; Neumann, 1985; Neumann and Novak,

1986; Kockskämper et al., 1994; André et al., 1988) already contains many ideas of recently

published efforts, and in principle a semantically well-founded combination of quantitative

temporal reasoning w.r.t. valid time has been developed. However, scalability was not the

design goal of these works.

While database-based temporal querying approaches or RDF-based temporal and stream-

querying approaches as discussed above offer fast performance for large data and massive

streams with high data rates, query answering w.r.t. (weakly expressive) ontologies is sup-

ported only with brute-force approaches like materialization. It is very unlikely that this

approach results in scalable query answering for large real-world ontologies of the future

due to the enormous blowup (be the materialization managed incrementally or not). Fur-

thermore, reasoning support is quite limited, i.e., the expressivity of the ontology languages

that queries can refer to is quite limited. Fortunately, it has been shown that brute-force

approaches involving materialization for ontology-based query answering are not required for

efficiently accessing large amounts of data if recently developed ontology based data access

(OBDA) techniques are applied.

A promising idea for scalable stream-based answering of continuous queries is to apply

the idea of query transformation w.r.t. ontologies also for queries with temporal semantics.

Using an ontology and mapping rules to the nomenclature used in particular relational

database schemas, query formulation is much easier. Scalability can, e.g., be achieved by

a translation to an SQL engine with temporal extensions and native index structures and

34 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

processing algorithms (e.g., as offered by Oracle).

As opposed to what current systems offer, stream-based processing of data usually does

not give rise to the instantiation of events with absolute certainty. Rather, data acquired

(observations) can be seen as cues that have to be aggregated or accumulated in order to be

able to safely infer that a certain event has occurred. These events might be made explicit

in order to be able to refer to them directly in subsequent queries (rather than recomputing

them from scratch all the time). The central idea of (Gries et al., 2010) is to use aggregation

operators for data interpretation. Note that interpretation is more than mere materialization

of the deductive closure: with interpretation new and relevant data is generated to better

focus temporal and stream-based query answering algorithms.

6.7 Distributed Query Execution

In the past, OBDA approaches simply assumed centralized query execution using a well-

known relational database system, e.g., PostgreSQL (Savo et al., 2010). However, this

assumption does not usually hold in the real world where data is distributed over many

autonomous, heterogeneous sources. In addition, existing relational database systems, such

as PostgreSQL, cannot scale when faced with TBs of data and the kinds of complex queries

to be generated by a typical OBDA query translation component (Savo et al., 2010).

Relevant research in this area includes previous work on query processing in parallel,

distributed, and federated database systems, which has been studied for a long time by

the database community (Sheth, 1991; DeWitt and Gray, 1992; Kossmann, 2000; Özsu and

Valduriez, 1999). Based on principles established in these pioneering works, recently also a

variety of approaches for federated query processing in the context of semantic data process-

ing have been proposed (see Görlitz and Staab (2011) for a recent survey). Falling into this

category, our own work on FedX (Schwarte et al., 2011) presents a federated query process-

ing engine operating on top of autononous semantic databases. The FedX engine enables

the virtual integration of heterogeneous sources and implements efficient query evaluation

strategies, driven by novel join processing and grouping techniques to minimize the num-

6.7. DISTRIBUTED QUERY EXECUTION 35

ber of requests sent to the federation members. These techniques are based on innovative

source selection strategies, pursuing the goal to identify minimal sets of federation members

that can contribute answers to the respective subqueries. Coming with all these features,

FedX can easily be leveraged to OBDA scenarios whenever the source systems scale with the

amounts of data and queries to be processed in the concrete ODBA scenario.

For truly large-scale, heterogeneous datastores, efficient evaluation of queries produced

by the query translation component discussed in Section 6.5 requires massively parallel and

distributed query execution. To cover such scenarios, cloud computing has attracted much

attention in the research community and software industry. Thanks to virtualization, cloud

computing has evolved over the years from a paradigm of basic IT infrastructures used

for a specific purpose (clusters), to grid computing, and recently to several paradigms of

resource provisioning services: depending on the particular needs, infrastructures (IaaS —

Infrastructure as a Service), platforms (PaaS — Platform as a Service), and software (SaaS

— Software as a Service) can be provided as services (Gonzalez et al., 2009). One of the

important advantages of these newest incarnations of cloud computing is the cost model of

resources. Clusters represent a fixed capital investment made up-front and a relatively small

operational cost paid over time. In contrast, IaaS, PaaS, and SaaS clouds are characterized

by elasticity (Kllapi et al., 2011), and offer their users the ability to lease resources only for

as long as needed, based on a per quantum pricing scheme, e.g., one hour on Amazon EC2.11

Together with the lack of any up-front cost, this represents a major benefit of clouds over

earlier approaches.

The ability to use computational resources that are available on demand challenges the

way that algorithms, systems, and applications are implemented. Thus, new computing

paradigms that fit closely the elastic computation model of cloud computing were proposed.

The most popular of these paradigms today is MapReduce (Dean and Ghemawat, 2008). The

intuitive appeal of MapReduce, and the availability of platforms such as Hadoop (Apache,

2011), has recently fueled the development of Big Data platforms that aim to support the

query language SQL on top of MapReduce (e.g., Hive, Thusoo et al. (2010), and HadoopDB,

Bajda-Pawlikowski et al. (2011)).

11http://aws.amazon.com/ec2

http://aws.amazon.com/ec2

36 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

Our own work on massively parallel, elastic query execution for Big Data takes place in

the framework of the Athena Distributed Processing (ADP) system (Tsangaris et al., 2009;

Kllapi et al., 2011). Massively parallel query execution is the ability to run queries with the

maximum amount of parallelism at each stage of execution. Elasticity means that query

execution is flexible; the same query can be executed with more or less resources, given the

availability of resources for this query and the execution time goals. Making sure that these

two properties are satisfied is a very hard problem in a federated data sources environment

such as the ones discussed in this chapter. The current version of ADP, and its extensions

planned for the near future, provide a framework with the right high-level abstractions and

an efficient implementation for offering these two properties.

ADP utilizes state-of-the-art database techniques: (i) a declarative query language based

on data flows, (ii) the use of sophisticated optimization techniques for executing queries ef-

ficiently, (iii) operator extensibility to bring domain specific computations into the database

processing, and (iv) execution platform independence to insulate applications from the id-

iosynchracies of execution environments such as local clusters, private clouds, or public

clouds.

Figure 6.4 shows the current architecture of ADP. The queries are expressed in a data

flow language allowing complex graphs with operators as nodes and with edges representing

producer-consumer relationships. Queries are optimized and transformed into execution

plans that are executed in ART, the ADP Run Time. The resources needed to execute

the queries (machines, network, etc.) are reserved or allocated by ARM, the ADP Resource

Mediator. Those resources are wrapped into containers. Containers are used to abstract from

the details of a physical machine in a cluster or a virtual machine in a cloud. The information

about the operators and the state of the system is stored in the Registry. ADP uses state

of the art technology and well proven solutions inspired by years of research in parallel and

distributed databases (e.g., parallelism, partitioning, various optimizations, recovery).

Several services that are useful to the OBDA paradigm discussed in this chapter have

already been developed on top of ADP: an SQL engine (AdpDB), a MapReduce engine

(AdpMR), and a data mining library (AdpDM). Some core research problems have also

6.7. DISTRIBUTED QUERY EXECUTION 37

Figure 6.4: The architecture of the ADP system

been studied in depth. For example, in (Kllapi et al., 2011), we have studied the problem

of scheduling dataflows that involve arbitrary data processing operators in the context of

three different optimization problems: 1) minimize completion time given a fixed budget,

2) minimize monetary cost given a deadline, and 3) find trade-offs between completion

time and monetary cost without any a-priori constraints. We formulated these problems

and presented an approximate optimization framework to address them that uses resource

elasticity in the cloud. To investigate the effectiveness of our approach, we incorporate

the devised framework into ADP and instantiate it with several greedy, probabilistic, and

exhaustive search algorithms. Finally, through several experiments that we conducted with

the prototype elastic optimizer on numerous scientific and synthetic dataflows, we identified

several interesting general characteristics of the space of alternative schedules as well as the

advantages and disadvantages of the various search algorithms. The overall results are very

promising and show the effectiveness of our approach.

To maximize the impact of ADP to the OBDA Big Data paradigm discussed in this

chapter, ADP will be extended as follows:

• Tight integration with query transformation modules: We will develop query

planning and execution techniques for queries produced by query translators such as the

ones of Section 6.5 by integrating the ADP system tightly with Quest (Rodriguez-Muro

and Calvanese, 2012). The integration will start by interfacing with SQL using the

AdpDB service, and continue using lower level dataflow languages and providing hints

(e.g., the degree of parallelism) to the ADP engine in order to increase its scalability.

38 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

• Federation: Building on the input of the query transformation modules, federation

will be supported in ADP by scheduling the operators of the query to the different sites

so that appropriate cost metrics are minimized. Among others, the techniques include

scheduling of operators close to the appropriate data sources and moving data (when

possible) to sites with more compute power.

• Continuous and Temporal Query Support: Continuous queries such as the ones

discussed in Section 6.6 will be supported natively by data streaming operators. Simi-

larly, temporal queries will be supported by special operators that can handle temporal

semantics.

6.8 Conclusion

Giving end-users with limited IT expertise flexible access to large corporate data stores is

a major bottleneck in data-intensive industries. Typically, standard domain specific tools

only allow users to access data using a predefined set of queries. Any information need that

goes beyond these predefined queries will require the help of a highly skilled IT expert, who

knows the data storage intimately, and who know the application domain sufficiently well to

communicate with the end users.

This is costly, not only because such IT experts are a scarce resource, but also because the

time of the expert end-users are not free for core tasks. We have argued how ontology-based

data access (OBDA) can provide a solution: by capturing the end-users’ vocabulary in a

formal model (ontology), and maintaining a set of mappings from this vocabulary to the

data sources, we can automate the translation work previously done by the IT-experts.

OBDA has in recent years received a large amount of theoretical attention, and there are

also several prototypical implementations. But in order to apply the idea to actual industry

data, a number of limitations still needs to be overcome. In Sect. 6.2.2, we have identified

the specific problems of usability, prerequisites, scope, and efficiency.

We have argued that these problems can be overcome by a novel combination of tech-

6.8. CONCLUSION 39

niques, encompassing an end-user oriented query interface, query-driven ontology construc-

tion, new ideas for scalable query rewriting, temporal and streaming data processing, and

query execution on elastic clouds.

The ideas proposed in this chapter are now investigated and implemented in the FP7

Integrating Project Optique – Scalable End-user Access to Big Data.12

12See http://www.optique-project.eu/.

http://www.optique-project.eu/

40 CHAPTER 6. SCALABLE END-USER ACCESS TO BIG DATA

Bibliography

Abiteboul, Serge and Oliver Duschka (1998), Complexity of answering queries using materi-
alized views. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’98), 254–265.

Acciarri, Andrea, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, Mattia Palmieri, and Riccardo Rosati (2005), QuOnto: Querying ontologies. In Proc.
of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), 1670–1671.

Alexe, Bogdan, Phokion Kolaitis, and Wang-Chiew Tan (2010), Characterizing schema map-
pings via data examples. In Proc. of the 29th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS 2010), 261–271.

Amoroso, Alfonso, Gennaro Esposito, Domenico Lembo, Paolo Urbano, and Raffaele Ver-
tucci (2008), Ontology-based data integration with Mastro-i for configuration and data
management at SELEX Sistemi Integrati. In Proc. of the 16th Ital. Conf. on Database
Systems (SEBD 2008), 81–92.

André, Elisabeth, Gerd Herzog, and Thomas Rist (1988), On the simultaneous interpretation
of real world image sequences and their natural language description: The system Soccer.
In Proc. of the European Conference on Artificial Intelligence (ECAI 1988), 449–454.

Anicic, Darko, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic (2011a), EP-SPARQL:
A unified language for event processing and stream reasoning. In Proc. of the 20th Int.
World Wide Web Conference (WWW 2011).

Anicic, Darko, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic, and
Rudi Studer (2011b), ETALIS: Rule-based reasoning in event processing. In Reasoning
in Event-Based Distributed Systems (Sven Helmer, Alex Poulovassilis, and Fatos Xhafa,
eds.), volume 347 of Studies in Computational Intelligence, 99–124, Springer.

Apache (2011), Apache Hadoop, http://hadoop.apache.org/. URL http://hadoop.
apache.org/.

Arenas, Marcelo, Pablo Barcelo, Ronald Fagin, and Leonid Libkin (2004), Locally consistent
transformations and query answering in data exchange. In Proc. of the 23rd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2004), 229–240.

Arenas, Marcelo, Ronald Fagin, and Alan Nash (2010a), Composition with target con-
straints. In Proc. of the 13th Int. Conf. on Database Theory (ICDT 2010), 129–142.

Arenas, Marcelo, Jorge Pérez, Juan L. Reutter, and Cristian Riveros (2010b), Foundations
of schema mapping management. In Proc. of the 29th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS 2010), 227–238.

41

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

42 BIBLIOGRAPHY

Arenas, Marcelo, Jorge Pérez, and Cristian Riveros (2009), The recovery of a schema map-
ping: Bringing exchanged data back. ACM Trans. on Database Systems, 34.

Arocena, Patricia C., Ariel Fuxman, and Renée J. Miller (2010), Composing local-as-view
mappings: Closure and applications. In Proc. of the 13th Int. Conf. on Database Theory
(ICDT 2010), 209–218.

Artale, A., D. Calvanese, R. Kontchakov, and M. Zakharyaschev (2009), The DL-Lite family
and relatives. J. of Artificial Intelligence Research, 36, 1–69.

Artale, Alessandro, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev
(2010), Past and future of DL-Lite. In AAAI Conference on Artificial Intelligence.

Baader, Franz, Andreas Bauer, Peter Baumgartner, Anne Cregan, Alfredo Gabaldon, Krys-
tian Ji, Kevin Lee, David Rajaratnam, and Rolf Schwitter (2009), A novel architecture for
situation awareness systems. In Proc. of the 18th Int. Conf. on Automated Reasoning with
Analytic Tableaux and Related Methods (Tableaux 2009), volume 5607 of Lecture Notes in
Computer Science, 77–92, Springer-Verlag.

Bajda-Pawlikowski, Kamil, Daniel J. Abadi, Avi Silberschatz, and Erik Paulson (2011),
Efficient processing of data warehousing queries in a split execution environment. In Proc.
of SIGMOD.

Barbieri, Davide Francesco, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus (2010a), Incremental reasoning on streams and rich background knowledge.
In Proc. of the 7th Extended Semantic Web Conference (ESWC 2010), volume 1, 1–15.

Barbieri, Davide Francesco, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus (2010b), Querying RDF streams with C-SPARQL. SIGMOD Record, 39, 20–
26.

Barzdins, Guntis, Edgars Liepins, Marta Veilande, and Martins Zviedris (2008), Ontology
enabled graphical database query tool for end-users. In Databases and Information Systems
V - Selected Papers from the Eighth International Baltic Conference, DB&IS 2008, June
2-5, 2008, Tallinn, Estonia (Hele-Mai Haav and Ahto Kalja, eds.), volume 187 of Frontiers
in Artificial Intelligence and Applications, 105–116, IOS Press.

Bernstein, Philip A. and Howard Ho (2007), Model management and schema mappings: The-
ory and practices. In Proc. of the 33rd Int. Conf. on Very Large Data Bases (VLDB 2007),
1439–1440.

Beyer, Mark A., Anne Lapkin, Nicholas Gall, Donald Feinberg, and Valentin T. Sribar
(2011), ‘Big Data’ is only the beginning of extreme information management. Gartner
report G00211490.

Bolles, Andre, Marco Grawunder, and Jonas Jacobi (2008), Streaming SPARQL - Extending
SPARQL to process data streams. In Proc. of the 5th European Semantic Web Conference
(ESWC 2008), 448–462, URL http://data.semanticweb.org/conference/eswc/2008/
paper/3.

Brachman, Ronald J. and Hector J. Levesque (1984), The tractability of subsumption in
frame-based description languages. In AAAI, 34–37.

Brandt, Sebastian, Ralf Küsters, and Anni-Yasmin Turhan (2001), Approximation
in description logics. LTCS-Report 01-06, LuFG Theoretical Computer Science,
RWTH Aachen, Germany. Available at http://www-lti.informatik.rwth-aachen.de/
Forschung/Reports.html.

http://data.semanticweb.org/conference/eswc/2008/paper/3
http://data.semanticweb.org/conference/eswc/2008/paper/3
http://www-lti.informatik.rwth-aachen.de/Forschung/Reports.html
http://www-lti.informatik.rwth-aachen.de/Forschung/Reports.html

BIBLIOGRAPHY 43

Brenninkmeijer, Christian, Ixent Galpin, Alvaro Fernandes, and Norman Paton (2008), A
semantics for a query language over sensors, streams and relations. In Sharing Data, Infor-
mation and Knowledge (Alex Gray, Keith Jeffery, and Jianhua Shao, eds.), volume 5071
of Lecture Notes in Computer Science, 87–99, Springer.

Bruza, P.D. and T.P. van der Weide (1992), Stratified hypermedia structures for information
disclosure. Computer Journal, 35, 208–220.

Calbimonte, Jean-Paul, Óscar Corcho, and Alasdair J. G. Gray (2010), Enabling ontology-
based access to streaming data sources. In Proc. of the 9th Int. Semantic Web Conf.
(ISWC 2010), 96–111.

Cal̀ı, A., G. Gottlob, and T. Lukasiewicz (2009), A general datalog-based framework for
tractable query answering over ontologies. In Proc. of the 28th ACM Symposium on Prin-
ciples of Database Systems (PODS 2009), 77–86.

Cal̀ı, Andrea, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini (2004), Data
integration under integrity constraints. Information Systems, 29, 147–163.

Calvanese, Diego, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo
(2011), The MASTRO system for ontology-based data access. Semantic Web Journal, 2,
43–53.

Calvanese, Diego, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati (2007a), EQL-Lite: Effective first-order query processing in description logics.
In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), 274–279.

Calvanese, Diego, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati (2007b), Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. J. of Automated Reasoning, 39, 385–429.

Calvanese, Diego, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati (2012), Data complexity of query answering in description logics. Artificial
Intelligence. To appear.

Cammert, Michael, Christoph Heinz, Jürgen Krämer, Martin Schneider, and Bernhard
Seeger (2003), A status report on XXL - a software infrastructure for efficient query pro-
cessing. IEEE Data Eng. Bull., 26, 12–18.

Cammert, Michael, Christoph Heinz, Jürgen Krämer, and Bernhard Seeger (2005), Sortier-
basierte Joins über Datenströmen. In BTW, volume 65 of LNI, 365–384, GI, URL
http://dblp.uni-trier.de/db/conf/btw/btw2005.html#CammertHKS05.

Catarci, Tiziana (2000), What happened when database researchers met usability. Informa-
tion Systems, 25, 177 – 212, URL http://www.sciencedirect.com/science/article/
pii/S0306437900000156.

Catarci, Tiziana, Maria F. Costabile, Stefano Levialdi, and Carlo Batini (1997), Visual query
systems for databases: A survey. Journal of Visual Languages & Computing, 8, 215 – 260,
URL http://www.sciencedirect.com/science/article/pii/S1045926X97900379.

Catarci, Tiziana, Paolo Dongilli, Tania Di Mascio, Enrico Franconi, Giuseppe Santucci, and
Sergio Tessaris (2004), An ontology based visual tool for query formulation support. In
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004) (Ramon López de
Mántaras and Lorenza Saitta, eds.), 308–312, IOS Press.

http://dblp.uni-trier.de/db/conf/btw/btw2005.html#CammertHKS05
http://www.sciencedirect.com/science/article/pii/S0306437900000156
http://www.sciencedirect.com/science/article/pii/S0306437900000156
http://www.sciencedirect.com/science/article/pii/S1045926X97900379

44 BIBLIOGRAPHY

Chomicki, Jan and David Toman (2005), Temporal databases. In Handbook of Temporal
Reasoning in Artificial Intelligence, volume 1, 429–467, Elsevier.

Chortaras, Alexandros, Despoina Trivela, and Giorgos B. Stamou (2011), Optimized query
rewriting for OWL 2 QL. In Proc. of the 23st Int. Conf. on Automated Deduction
(CADE 2011), 192–206.

Cimiano, Philipp (2006), Ontology Learning and Population from Text: Algorithms, Evalu-
ation and Applications. Springer.

Cimiano, Philipp, Andreas Hotho, and Steffen Staab (2005), Learning concept hierarchies
from text corpora using formal concept analysis. J. of Artificial Intelligence Research, 24,
305–339.

Dean, Jeffrey and Sanjay Ghemawat (2008), MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51, 107–113, URL http://doi.acm.org/10.1145/
1327452.1327492.

DeWitt, David J. and Jim Gray (1992), Parallel database systems: The future of high
performance database systems. Communications of the ACM, 35, 85–98.

D.Tunkelang (2009), Faceted Search. Morgan and Claypool.

Epstein, Richard G. (1991), The tabletalk query language. Journal of Visual Languages &
Computing, 2, 115 – 141, URL http://www.sciencedirect.com/science/article/pii/
S1045926X05800266.

Fagin, Ronald (2007), Inverting schema mappings. ACM Trans. on Database Systems, 32.

Fagin, Ronald, Laura M. Haas, Mauricio A. Hernández, Renée J. Miller, Lucian Popa, and
Yannis Velegrakis (2009a), Clio: Schema mapping creation and data exchange. In Con-
ceptual Modeling: Foundations and Applications – Essays in Honor of John Mylopoulos,
198–236, Springer.

Fagin, Ronald, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa (2005a), Data ex-
change: Semantics and query answering. Theoretical Computer Science, 336, 89–124.

Fagin, Ronald, Phokion G. Kolaitis, Alan Nash, and Lucian Popa (2008a), Towards a theory
of schema-mapping optimization. In Proc. of the 27th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS 2008), 33–42.

Fagin, Ronald, Phokion G. Kolaitis, and Lucian Popa (2005b), Data exchange: Getting to
the core. ACM Trans. on Database Systems, 30, 174–210.

Fagin, Ronald, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan (2005c), Composing
schema mappings: Second-order dependencies to the rescue. ACM Trans. on Database
Systems, 30, 994–1055.

Fagin, Ronald, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan (2008b), Quasi-
inverses of schema mappings. ACM Trans. on Database Systems, 33, 1–52.

Fagin, Ronald, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan (2009b), Reverse
data exchange: Coping with nulls. In Proc. of the 28th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS 2009), 23–32.

Fuxman, A., P. G. Kolaitis, R. Miller, and W. C. Tan (2005), Peer data exchange. In Proc.
of the 24rd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2005), 160–171.

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://www.sciencedirect.com/science/article/pii/S1045926X05800266
http://www.sciencedirect.com/science/article/pii/S1045926X05800266

BIBLIOGRAPHY 45

Glavic, Boris, Gustavo Alonso, Renée J. Miller, and Laura M. Haas (2010), TRAMP: Under-
standing the behavior of schema mappings through provenance. PVLDB, 3, 1314–1325.

Gonzalez, Luis Miguel Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik A. Lindner
(2009), A break in the clouds: towards a cloud definition. Computer Communication Re-
view, 39, 50–55.

Görlitz, Olaf and Steffen Staab (2011), Federated data management and query optimization
for linked open data. In New Directions in Web Data Management 1, 109–137, Springer.

Gottlob, Georg, Reinhard Pichler, and Vadim Savenkov (2009), Normalization and optimiza-
tion of schema mappings. Proc. of the VLDB Endowment, 2, 1102–1113.

Grandi, Fabio (2010), T-SPARQL: a TSQL2-like temporal query language for RDF. In Proc.
of the ADBIS 2010 Int. Workshop on Querying Graph Structured Data (GraphQ 2010),
21–30.

Grant, John, Jarek Gryz, Jack Minker, and Louiqa Raschid (1997), Semantic query opti-
mization for object databases. In Proc. of the 13th IEEE Int. Conf. on Data Engineering
(ICDE’97), 444–453.

Gries, Oliver, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski, and Michael
Wessel (2010), A probabilistic abduction engine for media interpretation based on on-
tologies. In Proc. of the 4th Int. Conf. on Web Reasoning and Rule Systems (RR 2010)
(J. Alferes, P. Hitzler, and Th. Lukasiewicz, eds.).

Halevy, Alon Y. (2001), Answering queries using views: A survey. Very Large Database J.,
10, 270–294.

Halevy, Alon Y., Anand Rajaraman, and Joann Ordille (2006), Data integration: The
teenage years. In Proc. of the 32nd Int. Conf. on Very Large Data Bases (VLDB 2006),
9–16.

Heim, Philipp and Jürgen Ziegler (2011), Faceted visual exploration of semantic data. In
Proceedings of the Second IFIP WG 13.7 conference on Human-computer interaction and
visualization, HCIV’09, 58–75, Springer-Verlag, Berlin, Heidelberg, URL http://dl.acm.
org/citation.cfm?id=1987029.1987035.

Heinz, Christoph, Jürgen Krämer, Tobias Riemenschneider, and Bernhard Seeger (2008),
Toward simulation-based optimization in data stream management systems. In Proc. of
the 24th Int. Conf. on Data Engineering (ICDE 2008), 1580–1583.

Jensen, C.S., M.D. Soo, and R.T. Snodgrass (1993), Unification of temporal data models.
In Proceedings of IEEE International Conference on Data Engineering, 262–271.

Jiménez-Ruiz, Ernesto, Bernardo Cuenca Grau, Ian Horrocks, and Rafael Berlanga Llavori
(2009), Logic-based ontology integration using ContentMap. In Proc. of XIV Jornadas de
Ingenieŕıa del Software y Bases de Datos (JISBD 2009) (Antonio Vallecillo and Goiuria
Sagardui, eds.), 316–319, URL download/2009/JCHB09c.pdf.

Kikot, Stanislav, Roman Kontchakov, and Michael Zakharyaschev (2011), On (in)tractability
of OBDA with OWL 2 QL. In Proc. of the 24th Int. Workshop on Description Logic
(DL 2011).

Kllapi, Herald, Eva Sitaridi, Manolis M. Tsangaris, and Yannis E. Ioannidis (2011), Schedule
optimization for data processing flows on the cloud. In Proc. of SIGMOD, 289–300.

http://dl.acm.org/citation.cfm?id=1987029.1987035
http://dl.acm.org/citation.cfm?id=1987029.1987035
download/2009/JCHB09c.pdf

46 BIBLIOGRAPHY

Knublauch, Holger, Matthew Horridge, Mark A. Musen, Alan L. Rector, Robert Stevens,
Nick Drummond, Phillip W. Lord, Natalya Fridman Noy, Julian Seidenberg, and Hai Wang
(2005), The Protégé OWL experience. In Proc. of the OWL: Experience and Directions
Workshop, volume 188 of CEUR (http: // ceur-ws. org/).

Kockskämper, S., B. Neumann, and M. Schick (1994), Extending process monitoring by event
recognition. In Proc. of the 2nd Int. Conf. on Intelligent System Engineering (ISE’94),
455–460.

Kolaitis, Phokion G. (2005), Schema mappings, data exchange, and metadata management.
In Proc. of the 24rd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2005), 61–75.

Kossmann, Donald (2000), The state of the art in distributed query processing. ACM Com-
puting Surveys, 32, 422–469.

Krämer, Jürgen and Bernhard Seeger (2009), Semantics and implementation of continuous
sliding window queries over data streams. ACM Trans. on Database Systems, 34.

Krämer, Jürgen, Yin Yang, Michael Cammert, Bernhard Seeger, and Dimitris Papadias
(2006), Dynamic plan migration for snapshot-equivalent continuous queries in data stream
systems. In Proc. of EDBT 2006 Workshops, volume 4254 of Lecture Notes in Computer
Science, 497–516, Springer.

Kuper, Gabriel M., Leonid Libkin, and Jan Paredaens, eds. (2000), Constraint Databases.
Springer.

Law, Yan-Nei, Haixun Wang, and Carlo Zaniolo (2004), Query languages and data models
for database sequences and data streams. In Proc. of the 30th Int. Conf. on Very Large
Data Bases, 492–503, VLDB Endowment, URL http://dl.acm.org/citation.cfm?id=
1316689.1316733.

Libkin, Leonid and Cristina Sirangelo (2008), Data exchange and schema mappings in open
and closed worlds. In Proc. of the 27th ACM SIGACT SIGMOD SIGART Symp. on Prin-
ciples of Database Systems (PODS 2008), 139–148.

Lim, Soon Chong Johnson, Ying Liu, and Wing Bun Lee (2009), Faceted search and retrieval
based on semantically annotated product family ontology. In Proc. of the WSDM 2009
Workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR 2009),
15–24, URL http://doi.acm.org/10.1145/1506250.1506254.

Luther, Marko, Yusuke Fukazawa, Matthias Wagner, and Shoji Kurakake (2008), Situa-
tional reasoning for task-oriented mobile service recommendation. Knowledge Engineering
Review, 23, 7–19, URL http://dl.acm.org/citation.cfm?id=1362078.1362080.

Madhavan, Jayant and Alon Y. Halevy (2003), Composing mappings among data sources.
In Proc. of the 29th Int. Conf. on Very Large Data Bases (VLDB 2003), 572–583.

Marchionini, Gary and Ryen White (2007), Find what you need, understand what you find.
International Journal Of Human-Computer Interaction, 23, 205–237.

Möller, R. and B. Neumann (2008), Ontology-based reasoning techniques for multimedia
interpretation and retrieval. In Semantic Multimedia and Ontologies : Theory and Appli-
cations, Springer.

Möller, Ralf, Volker Haarslev, and Michael Wessel (2006), On the scalability of description
logic instance retrieval. In 29. Deutsche Jahrestagung für Künstliche Intelligenz (C. Freksa
and M. Kohlhase, eds.), Lecture Notes in Artificial Intelligence, Springer.

http://ceur-ws.org/
http://dl.acm.org/citation.cfm?id=1316689.1316733
http://dl.acm.org/citation.cfm?id=1316689.1316733
http://doi.acm.org/10.1145/1506250.1506254
http://dl.acm.org/citation.cfm?id=1362078.1362080

BIBLIOGRAPHY 47

Motik, Boris (2010), Representing and querying validity time in RDF and OWL: A logic-
based approach. In Proc. of the 9th Int. Semantic Web Conf. (ISWC 2010), volume 1,
550–565.

Neumann, B. and H.-J. Novak (1986), NAOS: Ein System zur natürlichsprachlichen Beschrei-
bung zeitveränderlicher Szenen. Informatik Forschung und Entwicklung, 1, 83–92.

Neumann, Bernd (1985), Retrieving events from geometrical descriptions of time-varying
scenes. In Foundations of Knowledge Base Management – Contributions from Logic,
Databases, and Artificial Intelligence (J.W. Schmidt and Costantino Thanos, eds.), 443,
Springer Verlag.

Neumann, Bernd and Hans-Joachim Novak (1983), Event models for recognition and natural
language description of events in real-world image sequences. In Proc. of the 8th Int. Joint
Conference on Artificial Intelligence (IJCAI’83), 724–726.

Nowlan, W. A., A. L. Rector, S. Kay, C. A. Goble, B. Horan, T. J. Howkins, and A. Wilson
(1990), PEN&PAD: A doctors’ workstation with intelligent data entry and summaries.
In Proceedings of the 14th Annual Symposium on Computer Applications in Medical Care
(SCAMC’90) (R. A. Miller, ed.), 941–942, IEEE Computer Society Press, Los Alamitos,
California.

Özsu, M. Tamer and Patrick Valduriez (1999), Principles of Distributed Database Systems,
2 edition. Prentice-Hall.

Pan, Jeff Z. and Edward Thomas (2007), Approximating OWL-DL ontologies. In Proc. of
the 22nd Nat. Conf. on Artificial Intelligence (AAAI-07), 1434—1439.

Peraldi, Irma Sofia Espinosa, Atila Kaya, and Ralf Möller (2011), Logical formalization of
multimedia interpretation. In Knowledge-Driven Multimedia Information Extraction and
Ontology Evolution, volume 6050 of Lecture Notes in Computer Science, 110–133, Springer.

Pérez-Urbina, Héctor, Boris Motik, and Ian Horrocks (2008), Rewriting conjunctive queries
over description logic knowledge bases. In Revised Selected Papers of the 3rd Int. Work-
shop on Semantics in Data and Knowledge Bases (SDKB 2008) (Klaus-Dieter Schewe and
Bernhard Thalheim, eds.), volume 4925 of Lecture Notes in Computer Science, 199–214,
Springer.

Pérez-Urbina, Héctor, Boris Motik, and Ian Horrocks (2010), Tractable query answering and
rewriting under description logic constraints. J. of Applied Logic, 8, 186–209.

Phuoc, Danh Le, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth (2011),
A native and adaptive approach for unified processing of linked streams and linked data.
In Proc. of the 10th Int. Semantic Web Conf. (ISWC 2011), volume 1, 370–388.

Poggi, Antonella, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati (2008), Linking data to ontologies. J. on Data Semantics, X,
133–173.

Popov, Igor O., M. C. Schraefel, Wendy Hall, and Nigel Shadbolt (2011), Connecting the
dots: a multi-pivot approach to data exploration. In Proceedings of the 10th international
conference on The semantic web - Volume Part I, ISWC’11, 553–568, Springer-Verlag,
Berlin, Heidelberg, URL http://dl.acm.org/citation.cfm?id=2063016.2063052.

Ren, Yuan and Jeff Z. Pan (2011), Optimising ontology stream reasoning with truth main-
tenance system. In Proc. of the ACM Conference on Information and Knowledge Manage-
ment (CIKM 2011).

http://dl.acm.org/citation.cfm?id=2063016.2063052

48 BIBLIOGRAPHY

Rodŕıguez-Muro, Mariano (2010), Tools and Techniques for Ontology Based Data Access in
Lightweight Description Logics. Ph.D. thesis, KRDB Research Centre for Knowledge and
Data, Free University of Bozen-Bolzano.

Rodŕıguez-Muro, Mariano and Diego Calvanese (2011), Dependencies to optimize ontology
based data access. In Proc. of the 24th Int. Workshop on Description Logic (DL 2011),
volume 745 of CEUR (http: // ceur-ws. org/).

Rodriguez-Muro, Mariano and Diego Calvanese (2012), Quest, an owl 2 ql reasoner for
ontology-based data access. In Proc. of the 9th Int. Workshop on OWL: Experiences
and Directions (OWLED 2012), volume 849 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/.

Rosati, Riccardo (2012), Prexto: Query rewriting under extensional constraints in dl - lite.
In Proc. of the 9th Extended Semantic Web Conference (ESWC 2012), volume 7295 of
LNCS, 360–374, Springer.

Rosati, Riccardo and Alessandro Almatelli (2010), Improving query answering over DL-Lite
ontologies. In Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2010), 290–300.

Savo, Domenico Fabio, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Mariano
Rodŕıguez-Muro, Vittorio Romagnoli, Marco Ruzzi, and Gabriele Stella (2010), Mastro
at work: Experiences on ontology-based data access. In Proc. of the 23rd Int. Workshop
on Description Logic (DL 2010), volume 573 of CEUR (http: // ceur-ws. org/), 20–31.

Schmidt, Michael, Michael Meier, and Georg Lausen (2010), Foundations of sparql query
optimization. In ICDT, 4–33.

Schmiegelt, Philip and Bernhard Seeger (2010), Querying the future of spatio-temporal ob-
jects. In Proc. of the 18th SIGSPATIAL Int. Conf. on Advances in Geographic Informa-
tion Systems (GIS 2010), 486–489, ACM, URL http://doi.acm.org/10.1145/1869790.
1869868.

Schneiderman, B. (1983), Direct manipulation: A step beyond programming languages.
Computer, 16, 57 –69.

Schwarte, Andreas, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt (2011),
Fedx: Optimization techniques for federated query processing on linked data. In Interna-
tional Semantic Web Conference, 601–616.

Sheth, Amit P. (1991), Federated database systems for managing distributed, heterogeneous,
and autonomous databases. In VLDB, 489.

Shvaiko, Pavel and Jérôme Euzenat (2005), A survey of schema-based matching approaches.
J. on Data Semantics, IV, 146–171.

Soylu, Ahmet, Felix Modritscher, and Patrick De Causmaecker (2012), Ubiquitous web
navigation through harvesting embedded semantic data: A mobile scenario. Integrated
Computer-Aided Engineering, 19, 93–109.

Steiner, Andreas (1997), A Generalisation Approach to Temporal Data Models and their
Implementations. Ph.D. thesis, Departement Informatik, ETH Zurich, Switzerland.

Suominen, Osma, Kim Viljanen, and Eero Hyvänen (2007), User-centric faceted search for
semantic portals. In Proc. of the 4th European Semantic Web Conf. (ESWC 2007), 356–
370, URL http://dx.doi.org/10.1007/978-3-540-72667-8_26.

http://ceur-ws.org/
http://ceur-ws.org/
http://doi.acm.org/10.1145/1869790.1869868
http://doi.acm.org/10.1145/1869790.1869868
http://dx.doi.org/10.1007/978-3-540-72667-8_26

BIBLIOGRAPHY 49

Tang, Yong, Lu Liang, Rushou Huang, and Yang Yu (2003), Bitemporal extensions to non-
temporal rdbms in distributed environment. In Proc. of the 8th Int. Conf. on Computer
Supported Cooperative Work in Design.

ten Cate, Balder and Phokion G. Kolaitis (2009), Structural characterizations of schema-
mapping languages. In Proc. of the 12th Int. Conf. on Database Theory (ICDT 2009),
63–72.

ter Hofstede, A. H. M., H. A. Proper, and Th. P. van der Weide (1996), Query formulation
as an information retrieval problem. The Computer Journal, 39, 255–274, URL http:
//comjnl.oxfordjournals.org/content/39/4/255.abstract.

Thusoo, Ashish, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang,
Suresh Anthony, Hao Liu, and Raghotham Murthy (2010), Hive - a petabyte scale data
warehouse using Hadoop. In Proc. of the 26th IEEE Int. Conf. on Data Engineering
(ICDE 2010), 996–1005.

Tran, Thanh, Daniel M. Herzig, and Gnter Ladwig (2011), Semsearchpro – using semantics
throughout the search process. Web Semantics: Science, Services and Agents on the World
Wide Web, 9, 349 – 364, URL http://www.sciencedirect.com/science/article/pii/
S1570826811000758. JWS special issue on Semantic Search.

Tsangaris, Manolis M., George Kakaletris, Herald Kllapi, Giorgos Papanikos, Fragkiskos
Pentaris, Paul Polydoras, Eva Sitaridi, Vassilis Stoumpos, and Yannis E. Ioannidis (2009),
Dataflow processing and optimization on grid and cloud infrastructures. IEEE Data Eng.
Bull., 32, 67–74.

Ullman, Jeffrey D. (1997), Information integration using logical views. In Proc. of the 6th
Int. Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer
Science, 19–40, Springer.

Uren, Victoria, Yuangui Lei, Vanessa Lopez, Haiming Liu, Enrico Motta, and Marina Gior-
danino (2007), The usability of semantic search tools: A review. Knowl. Eng. Rev., 22,
361–377, URL http://dx.doi.org/10.1017/S0269888907001233.

Wessel, M., M. Luther, and R. Möller (2009), What happened to Bob? Semantic data mining
of context histories. In Proc. of the 2009 Int. Workshop on Description Logics (DL 2009).
CEUR Workshop Proceedings, Vol. 477.

Wessel, Michael, Marko Luther, and Matthias Wagner (2007), The difference a day makes
- Recognizing important events in daily context logs. In Proc. of the Int. Workshop on
Contexts and Ontologies: Representation and Reasoning. CEUR Workshop Proceedings
Vol. 298.

Zaniolo, C., S. Ceri, Chr. Faloutsos, R.T. Snodgrass, V.S. Subrahmanian, and R. Zicari
(1997), Advanced Database Systems, chapter Overview of Temporal Databases. Morgan
Kaufmann.

Zhang, Donghui, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios Gunopulos, and Bern-
hard Seeger (2001), Efficient computation of temporal aggregates with range predicates.
In Proc. of the 25th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2006).

http://comjnl.oxfordjournals.org/content/39/4/255.abstract
http://comjnl.oxfordjournals.org/content/39/4/255.abstract
http://www.sciencedirect.com/science/article/pii/S1570826811000758
http://www.sciencedirect.com/science/article/pii/S1570826811000758
http://dx.doi.org/10.1017/S0269888907001233

	Scalable End-user Access to Big Data
	The Data Access Problem of Big Data
	Ontology-Based Data Access
	Example
	Limitations of the State of the Art in OBDA

	Query Formulation Support
	Ontology and Mapping Management
	Query Transformation
	Time and Streams
	Distributed Query Execution
	Conclusion

