
BERTMap: A BERT-Based Ontology Alignment System

Yuan He1, Jiaoyan Chen1, Denvar Antonyrajah2, Ian Horrocks1

1 Department of Computer Science, University of Oxford, UK
2 Samsung Research, UK

{yuan.he,jiaoyan.chen,ian.horrocks}@cs.ox.ac.uk, denvar.a@samsung.com

Abstract

Ontology alignment (a.k.a ontology matching (OM)) plays a
critical role in knowledge integration. Owing to the success
of machine learning in many domains, it has been applied in
OM. However, the existing methods, which often adopt ad-
hoc feature engineering or non-contextual word embeddings,
have not yet outperformed rule-based systems especially in an
unsupervised setting. In this paper, we propose a novel OM
system named BERTMap which can support both unsuper-
vised and semi-supervised settings. It first predicts mappings
using a classifier based on fine-tuning the contextual embed-
ding model BERT on text semantics corpora extracted from
ontologies, and then refines the mappings through extension
and repair by utilizing the ontology structure and logic. Our
evaluation with three alignment tasks on biomedical ontolo-
gies demonstrates that BERTMap can often perform better
than the leading OM systems LogMap and AML.

Introduction
Ontology alignment (a.k.a. ontology matching (OM)) aims
at matching semantically related entities from different on-
tologies. A relationship (usually equivalence or subsump-
tion) between two matched entities is known as a mapping.
OM plays an important role in knowledge engineering, as
a key technique for ontology integration and quality assur-
ance (Shvaiko and Euzenat 2013). The independent develop-
ment of ontologies often results in heterogeneous knowledge
representations with different categorizations and naming
schemes. For example, the class named “muscle layer” in the
SNOMED Clinical Terms ontology is named “muscularis
propria” in the Foundational Model of Anatomy (FMA)
ontology. Moreover, real-world ontologies often contain a
large number of classes, which not only causes scalability
issues, but also makes it harder to distinguish classes of sim-
ilar names and/or contexts but representing different objects.

Traditional OM solutions typically use lexical matching
as their basis and combine it with structural matching and
logic-based mapping repair. This has led to several classic
systems such as LogMap (Jiménez-Ruiz and Cuenca Grau
2011) and AgreementMakerLight (AML) (Faria et al. 2013)
which still demonstrate state-of-the-art performance on
many OM tasks. However, their lexical matching part only

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

considers texts’ surface form such as overlapped sub-strings,
and cannot capture the word semantics. Recently, machine
learning has been proposed as a replacement for lexical and
structural matching; for example, DeepAlignment (Koly-
vakis, Kalousis, and Kiritsis 2018) and OntoEmma (Wang
et al. 2018) utilize word embeddings to represent classes and
compute two classes’ similarity according to their word vec-
tors’ Euclidean distance. Nevertheless, these methods adopt
either traditional non-contextual word embedding models
such as Word2Vec (Mikolov et al. 2013), which only learns a
global (context-free) embedding for each word, or use com-
plex feature engineering which is ad-hoc and relies on a
large number of annotated samples for training. In contrast,
pre-trained transformer-based language representation mod-
els such as BERT (Devlin et al. 2019) can learn robust con-
textual text embeddings, and usually require only moderate
training resources for fine-tuning. Although these models
perform well in many Natural Language Processing tasks,
they have not yet been sufficiently investigated in OM.

In this paper, we propose BERTMap, a novel ontology
alignment system that exploits BERT fine-tuning for map-
ping prediction and utilizes the graphical and logical in-
formation of ontologies for mapping refinement. As shown
in Figure 1, BERTMap includes the following main steps:
(i) corpus construction, where synonym and non-synonym
pairs from various sources are extracted; (ii) fine-tuning,
where a suitable pre-trained BERT model is selected and
fine-tuned on the corpora constructed in (i); (iii) mapping
prediction, where mapping candidates are first extracted
based on sub-word inverted indices and then predicted by
the fine-tuned BERT classifier; and (iv) mapping refinement,
where additional mappings are recalled from neighbouring
classes of highly scored mappings, and some mappings that
lead to logical inconsistency are deleted for higher precision.

We evaluate BERTMap1 on the FMA-SNOMED task and
the FMA-NCI task of the OAEI Large BioMed Track2, and
an extended task of FMA-SNOMED where the more com-
plete labels from the original SNOMED ontology are added.
Our results demonstrate that BERTMap can often outper-
form the state-of-the-art systems LogMap and AML.

1Codes and data: https://github.com/KRR-Oxford/BERTMap.
2http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/

ar
X

iv
:2

11
2.

02
68

2v
4 

 [
cs

.A
I]

  3
 M

ay
 2

02
2

https://github.com/KRR-Oxford/BERTMap
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/


Preliminaries
Problem Formulation
An ontology is mainly composed of entities (including
classes, instances and properties), and axioms that can ex-
press relationships between entities. Ontology alignment in-
volves identifying equivalence, subsumption or other more
complex relationships between cross-ontology pairs of enti-
ties. In this work, we focus on equivalence between classes.
Given a pair of ontologies, O and O′, whose named class
sets are C and C ′, respectively, we aim to first generate a set
of scored mappings of the form (c ∈ C, c′ ∈ C ′, P (c ≡ c′)),
where P (c ≡ c′) ∈ [0, 1] is a score indicating the degree to
which c and c′ are equivalent; we then extend and repair the
scored mappings to output determined mappings.

BERT: Pre-Training and Fine-Tuning
BERT is a contextual language representation model built
on bidirectional transformer encoders (Vaswani et al. 2017).
Its framework involves pre-training and fine-tuning. In pre-
training, the input is a sequence composed of a special token
[CLS], tokens of one sentence A, a special token [SEP],
and tokens of another sentence B that follows A in the cor-
pus. Each token’s initial embedding encodes its content, its
position in the sequence, and the sentence it belongs to (A
or B). The model has multiple successive layers of an iden-
tical architecture. Its main component is the multi-head self-
attention block which computes a contextual hidden rep-
resentation of each token by considering the output of the
whole sequence from the previous layer. The tokens’ embed-
dings from the last layer can be used as the input of a down-
stream task. Pre-training is conducted by minimizing losses
on two tasks: Masked Language Modelling, which predicts
a part of tokens that are randomly masked, and Next Sen-
tence Prediction, which predicts whether sentenceB follows
A. In contrast to the traditional non-contextual word embed-
ding methods which assign each token only one embedding,
BERT distinguishes different occurrences of the same token.
For instance, given a sentence “the bank robber was seen
on the river bank”, BERT computes different embeddings
for the two occurrences of “bank”, while a non-contextual
model yields a unified embedding that is biased towards the
most frequent meaning in the corpus. In fine-tuning, pre-
trained BERT is attached to customized downstream layers
and takes as input either one sentence (e.g., for sentiment
classification) or two sentences (e.g., for paraphrasing) ac-
cording to specific tasks. It typically necessitates only a few
epochs and a moderate number of samples for training.

BERTMap
Corpus Construction and BERT Fine-Tuning
Text Semantics Corpora In real-world ontologies, a
named class often has multiple labels (aliases) defined by
annotation properties such as rdfs:label. For convenience,
we denote a label after preprocessing3 by ω, and denote the
set of all the preprocessed labels of a class c as Ω(c). Labels
of the same class or from semantically equivalent classes

3This includes lowercasing and underscore symbol removing.

are intuitively synonymous in the domain of the input on-
tologies; labels from semantically distinct classes can be
regarded as non-synonymous. The corpora for BERT fine-
tuning are composed of pairs of such synonymous labels
(i.e., “synonyms”) and pairs of such non-synonymous labels
(i.e.,“non-synonyms”). According to the source, the corpora
are divided into three categories as follows.
Intra-ontology corpus. For each named class c in an in-
put ontology, we derive all its synonyms which are pairs
(ω1, ω2) with ω1, ω2 ∈ Ω(c), and the special cases where
ω1 = ω2 are referred to as identity synonyms. We consider
two types of non-synonyms: (i) soft non-synonyms which are
labels from two random classes; and (ii) hard non-synonyms
which are labels from logically disjoint classes. Since class
disjointness is often not defined in an ontology, we simply
assume that sibling classes (i.e., classes that share a com-
mon superclass) are disjoint. In fact, this is a naive solution
to infer disjointness from the structure of the input ontology.
Cross-ontology corpus. The lack of annotated mappings
makes it unfeasible to apply supervised learning on ontol-
ogy alignment. However, it is reasonable to support a semi-
supervised setting where a small portion of annotated map-
pings are given and we can extract synonyms from these
mappings. Given a mapping composed of two named classes
c and c′ we extract all synonyms (ω, ω′) where (ω, ω′) ∈
Ω(c)×Ω(c′) (× refers to the Cartesian Product). We also ex-
tract non-synonyms from pairs of randomly aligned classes.
Complementary corpus. We can optionally utilize auxil-
iary ontologies for additional synonyms and non-synonyms.
They are extracted in the same way as the intra-ontology
corpus but from an auxiliary ontology. To reduce data noise
and limit the corpus size, we consider auxiliary ontologies
of the same domain and only utilize named classes that have
shared labels with some class of the input ontologies.

The intra-ontology, cross-ontology and complementary
corpora are denoted as io, co and cp, respectively. The iden-
tity synonyms are denoted as ids. For convenience, we use
+ to denote the combination of different corpus/synonyms;
for example, io + ids refers to the intra-ontology corpus
with identity synonyms considered, and io + co + cp refers
to including all three corpora without identity synonyms.
To learn the symmetrical property, we also append reversed
synonyms, i.e., if (ω1, ω2) is in the synonym set, (ω2, ω1) is
added. Since some non-synonyms are extracted randomly,
they can occasionally also appear in the synonym set; in this
case, we delete the non-synonyms.

Fine-tuning Given sets of synonyms and non-synonyms
as positive and negative samples, respectively, we fine-tune
a pre-trained BERT along with a downstream binary classi-
fier on the cross-entropy loss. Note that we conduct no pre-
training but use an existing one from the Hugging Face
library4. The inputs of BERT are the tokenized label pairs
with the maximum length set to 128. The classifier consists
of a linear layer (with dropout) that takes as input the em-
bedding of [cls] token from BERT’s last-layer outputs,
and transforms it into a 2-dimensional vector before apply-
ing the output softmax layer. The optimization is done using

4https://huggingface.co/models

https://huggingface.co/models


if matched

Sub-word Inverted Indices

String-match Module

Prediction Inputs
Create Indices

BERT Classifier

Prediction

Mapping Extension

Mapping Repair

Refinement 

Corpora

Source Ontology   
Target Ontology 

Known Mappings 

Complementary Sources 

Intra-ontology Corpus

Cross-ontology Corpus

Complementary Corpus

Fine-tuning
Inputs

if no matched labels

candidate selection

Scored Mappings

Output Mappings

Figure 1: Illustration of BERTMap system.

the Adam algorithm (Loshchilov and Hutter 2017). The fi-
nal output is of the form 〈1 − s, s〉, where s ∈ [0, 1] is the
score that indicates the degree that the input label pairs are
synonymous.

Mapping Prediction
To compute a matched class for each class c ∈ C, a naive so-
lution is to search for arg maxc′∈C′ P (c ≡ c′). Computing
mappings in this way has a time complexity ofO(n2), which
is impractical for matching large ontologies. To reduce the
search space, BERTMap first selects a set of candidates of
matched classes using sub-word inverted indices, and then
scores each potential mapping with the fine-tuned BERT.

Candidate Selection The assumption of our candidate
selection is that matched classes are likely to have labels
with overlapped sub-tokens. Previous works typically adopt
word-level inverted index with additional text processing
such as stemming and dictionary consulting (Jiménez-Ruiz
and Cuenca Grau 2011; Wang et al. 2018). In contrast,
BERTMap exploits the sub-word inverted index which can
(i) capture various word forms without extra processing, and
(ii) parse unknown words into consecutive known sub-words
instead of simply treating them as one special token.

We build sub-word inverted indices based on BERT’s
inherent WordPiece tokenizer (Wu et al. 2016), which is
trained by an incremental procedure that merges characters
(from the corpus) into most likely sub-words at each iter-
ation. We opt to use the built-in sub-word tokenizer rather
than re-train it on our corpora because it has already been
fitted to an enormous corpus (with 3.3 billion words) that
covers various topics (Devlin et al. 2019), and in this context
we consider generality to be preferable to task specificity.

We construct5 indices I and I ′ for the two input ontolo-
gies O and O′, respectively. Each entry of an index is a sub-
word, and its values are classes that have at least one la-
bel containing this sub-word after tokenization. A query of
source (resp. target) classes that contain a token t is denoted
as I[t] (resp. I ′[t]). The function that takes a class as input
and returns all the sub-word tokens of this class’s labels is

5Index construction is linear w.r.t. the number of sub-words.

denoted as T (·). Given a source class c, we search from C ′

the target candidate classes as follows: we first select tar-
get classes that share at least one sub-word token with c,
i.e.,

⋃
t∈T (c) I

′[t], and then rank them according to a scoring
metric based on inverted document frequency (idf):

Ssel(c, c
′) =

∑
t∈T (c)∩T (c′)

idf(t) =
∑

t∈T (c)∩T (c′)

log10

|C ′|
|I ′[t]|

where | · | denotes set cardinality. Finally, we choose the top
k scored target classes for c to form potential mappings of
which the scores will be computed. As a result, we reduce
the quadratic time complexity to O(kn) where k << n is
the cut-off of candidate selection.

Mapping Score Computation For a target class candidate
c′ of the source class c, BERTMap uses string matching
and the fine-tuned BERT classifier to calculate the mapping
score between them as follows:

Smap(c, c′) =

{
1.0 if Ω(c)

⋂
Ω(c′) 6= ∅

Sbert(Ω(c),Ω(c′)) otherwise

where Ω(c)
⋂

Ω(c′) 6= ∅ means c and c′ have at least one
exactly matched label. Sbert(·, ·) denotes the average of the
synonym scores of all the label pairs (i.e., (ω, ω′) ∈ Ω(c)×
Ω(c′)), which are predicted by the BERT classifier. The pur-
pose of the string-matching is to save computation by avoid-
ing unnecessary use of the BERT classifier on “easy” map-
pings. BERTMap finally returns the mapping for c by se-
lecting the top scored candidate c′ = arg maxSmap(c, c′).

With the above steps, we can optionally generate three
sets of scored mappings: (i) src2tgt by looking for a
matched target class c′ ∈ C ′ for each source class c ∈ C; (ii)
tgt2src by looking for a matched source class c ∈ C for
each target class c′ ∈ C ′; and (iii) combined by merging
src2tgt and tgt2src with duplicates removed. We de-
note the hyperparameters as τ and λwhere τ refers to the set
type (src2tgt, tgt2src or combined) of scored map-
pings and λ ∈ [0, 1] refers to the mapping score threshold.

Mapping Refinement
Mapping Extension If a source class c and a target class
c′ are matched, their respective semantically related classes



Algorithm 1: Iterative Mapping Extension
Input: High confidence mapping set,M
Parameter: Extension threshold, κ
Output: Extended mapping set,Mex

1: Initialize the frontier:Mfr ←M
2: Initialize the extended mapping set:Mex ← {}
3: Let Sup(·) be the function that returns superclasses
4: Let Sub(·) be the function that returns subclasses
5: whileMfr is not empty do
6: Initialize an empty new extension set:Mnew ← {}
7: for each mapping (c, c′, Smap(c, c′)) ∈Mfr do
8: for (x, x′) ∈ (Sup(c) × Sup(c′)) ∪ (Sub(c) ×

Sub(c′)) do
9: m← (x, x′, Smap(x, x′))

10: if Smap(x, x′) ≥ κ and m /∈M and m /∈Mex

then
11: Mnew ←Mnew ∪ {m}
12: end if
13: end for
14: end for
15: Mex ←Mex ∪Mnew

16: Mfr ←Mnew

17: end while
18: returnMex

such as parents and children are likely to be matched. This
is referred to as the locality principle which is assumed in
many ontology engineering tasks (Grau et al. 2007; Jiménez-
Ruiz et al. 2020). BERTMap utilizes this principle to dis-
cover new mappings from those highly scored mappings
with an iterative mapping extension algorithm (see Algo-
rithm 1). Note that this algorithm only preserves extended
mappings that are not previously seen (inM andMex) and
have scores ≥ κ (Line 10 - 12), i.e., the extension threshold.
Moreover, although κ is a hyperparameter, the empirical ev-
idence shows that the results are insensitive to κ, and thus
we set it to a fixed value κ = 0.9. Finally, the algorithm
terminates iteration when no new mappings can be found.

Mapping Repair Mapping repair removes mappings that
will lead to logical conflicts after integrating two ontolo-
gies. A “perfect repair” (a.k.a. a diagnosis) refers to remov-
ing a minimal number of mappings to achieve logical co-
herence. However, computing a diagnosis is usually time-
consuming, and there may be no unique solution. To ad-
dress this, Jiménez-Ruiz et al. (2013) proposes a proposi-
tional logic-based repair method that can efficiently compute
an approximate repairR which ensures that: (i)R is a subset
of the diagnosis (so that there is no sacrifice of correct map-
pings); (ii) only a small number of unsatisfiable classes re-
main. Mapping repair is commonly used in classic OM sys-
tems, but rarely considered in machine learning-based ap-
proaches. In this work, we adopt the repair tool developed
by Jiménez-Ruiz et al. (2013).

Note that mapping extension and repair can consistently
improve the performance without excessive time cost, be-
cause the former only needs to handle mappings of high
prediction scores and the later adopts an efficient repair al-

Task SRC TGT Refs (=) Refs (?)

FMA-SNOMED 10,157 13,412 6,026 2,982
FMA-NCI 3,696 6,488 2,686 338

Table 1: Numbers of classes and reference mappings in the
FMA-SNOMED and FMA-NCI tasks.

gorithm (Jiménez-Ruiz et al. 2013).

Evaluation
Experiment Settings
Datasets and Tasks The evaluation considers the FMA-
SNOMED and FMA-NCI small fragment tasks of the OAEI
LargeBio Track. They have large-scale ontologies and high
quality gold standards created by domain experts. Table 1
summarizes the numbers of classes in source (SRC) and tar-
get (TGT) ontologies, and the numbers of reference map-
pings. “Refs (=)” refers to the reference mappings to be
considered, while “Refs (?)” refers to the reference map-
pings that will cause logical inconsistency after alignment
and are ignored as suggested by OAEI. We also consider
an extended task of FMA-SNOMED, denoted as FMA-
SNOMED+, where the target ontology is extended by in-
troducing the labels from the latest version of SNOMED.6
This is because the LargeBio SNOMED is many years
out of date, and the naming scheme in the newly released
SNOMED has changed and many more class labels have
been added. We adopt the following strategy to construct
SNOMED+: for each class c in SNOMED, we extract its la-
bels Ω(c) and for each label ω in Ω(c), we search for classes
in the original SNOMED that have ω as an alias; we then
add all the labels of the searched classes to the LargeBio
SNOMED for SNOMED+. We also use these additional la-
bels to construct the complementary corpus for the FMA-
SNOMED task. The key difference is that they are used for
fine-tuning alone on the FMA-SNOMED task but for both
fine-tuning and prediction on the FMA-SNOMED+ task.

Evaluation Metrics We evaluate all the systems on Preci-
sion (P), Recall (R), and Macro-F1 (F1), defined as:

P =
|Mout ∩M=\M?|
|Mout\M?|

, R =
|Mout ∩M=\M?|
|M=\M?|

and F1 = 2PR/(P +R), whereMout is the system’s out-
put mappings,M= andM? refer to reference mappings to
be considered (Refs (=)) and ignored (Refs (?)), respectively.
In the unsupervised setting, we divideM= intoMval (10%)
and Mtest (90%); and in the semi-supervised setting, we
divide M= into Mtrain (20%), Mval (10%) and Mtest

(70%). When computing the metrics on the hold-out vali-
dation or test set, we should regard reference mappings that
are not in this set as neither positive nor negative (i.e., as
ignored mappings). For example, during validation, we add
the mappings fromMtrain (if semi-supervised) andMtest

(for both settings) intoM? when calculating the metrics.

6The version of 20210131 is available at: https://www.nlm.nih.
gov/healthit/snomedct/index.html.

https://www.nlm.nih.gov/healthit/snomedct/index.html
https://www.nlm.nih.gov/healthit/snomedct/index.html


BERTMap Settings We set up various BERTMap set-
tings considering (i) being unsupervised (without co) or
semi-supervised (+co), (ii) including the identity synonyms
(+ids), (iii) being augmented with a complementary corpus
(+cp), and (iv) applying mapping extension (ex) and repair
(rp). In fine-tuning, the semi-supervised setting takes all the
label pairs extracted from both within the input ontologies
andMtrain as training data, label pairs fromMval as vali-
dation data and label pairs from Mtest as test data, while
the unsupervised setting partitions all the label pairs ex-
tracted from within the input ontologies into 80% for train-
ing and 20% for validation. Note that the the validation in
fine-tuning is different from the mapping validation which
usesMval because the former concerns the performance of
the BERT classifier while the latter concerns selecting the
best hyperparameters for determining output mappings.

Besides, we set the positive-negative sample ratio to 1 : 4.
Namely, we sample 4 non-synonyms for each synonym in
co, and 2 soft and 2 hard non-synonyms for each synonym
in other corpora. We use Bio-Clinical BERT, which has
been pre-trained on biomedical and clinical domain corpora
(Alsentzer et al. 2019). The BERT model is fine-tuned for 3
epochs with a batch size of 32, and evaluated on the valida-
tion set for every 0.1 epoch, through which the best check-
point on the cross-entropy loss is selected for prediction. The
cut-off of sub-word inverted index-based candidate selection
is set to 200. Our implementation uses (i) owlready27 for
ontology processing and (ii) transformers8 for BERT.
The training uses a single GTX 1080Ti GPU.

After fine-tuning, we perform a 2-step mapping validation
using Mval as follows: we first validate the scored map-
pings from prediction and obtain the best {τ, λ}; we then
extend the mappings by Algorithm 1 and validate the ex-
tended mappings and obtain another best mapping filtering
threshold λ. Interestingly, in all our BERTMap experiment
settings, we find the best λ obtained in the first step always
coincides with the best λ obtained in the second step. This
demonstrates the robustness of our mapping extension algo-
rithm. After validation, we repair and ouput the mappings.
Note that we also test BERTMap without extension and re-
pair, and in this case, we skip the second mapping validation
step and output mappings with scores ≥ λ.

Baselines We compare BERTMap with various baselines
as follows: (i) String-matching as defined in the Mapping
Score Computation; (ii) Edit-similarity, which computes
the maximum normalized edit similarity between the la-
bels of two classes as their mapping score (note that (i) is
a special case of (ii)); (iii) LogMap and AML, which are
the leading systems in many OAEI tracks and other tasks;
(iv) LogMapLt, the lexical matching part of LogMap; (v)
LogMap-ML∗, which is a variant of LogMap-ML (Chen
et al. 2021b) using no branch conflicts but only LogMap
anchor mappings for extracting samples for training, where
Word2Vec is used to embed the class label and a Siamese
Neural Network with Multilayer Perception is used as the
classifier. Note that (i) and (ii) are our internal baselines, and

7https://owlready2.readthedocs.io/en/latest/.
8https://huggingface.co/transformers/.

we set up the same candidate selection and hyperparameter
search procedure for them as for BERTMap; whereas (iii) to
(v) are external systems with default implementations. Note
that by comparing to LogMap and AML, we actually have
several indirect baselines that have participated in the Large-
Bio Track (e.g., ALOD2Vec (Portisch and Paulheim 2018)
and Wiktionary (Portisch, Hladik, and Paulheim 2019)).

Results
The results together with the corresponding hyperparameter
settings are shown in Tables 2, 3 and 4, where 90% (resp.
70%) Test Mappings refer to the results measured onMtest

of the unsupervised (resp. semi-supervised) setting. To fairly
compare the unsupervised and semi-supervised settings, we
report the results on both 90% and 70% Test Mappings for
the unsupervised setting.

The overall results show that BERTMap can achieve
higher F1 score than all the baselines on the FMA-
SNOMED and FMA-SNOMED+ tasks, but its F1 score
is lower than LogMap and AML on the FMA-NCI task.
On the FMA-SNOMED task, the unsupervised BERTMap
can surpass AML (resp. LogMap) by 1.4% (resp. 4.2%) in
F1, while the semi-supervised BERTMap can exceed AML
(resp. LogMap) by 3.0% (resp. 5.4%). The corresponding
rates become 2.5% (resp. 1.8%) and 3.3% (resp. 2.7%)
on the FMA-SNOMED+ task. On the FMA-NCI task, the
best F1 score of the unsupervised BERTMap is worse than
AML (resp. LogMap) by 2.5% (resp. 2.6%), and the best F1
score of the semi-supervised BERTMap is worse than AML
(resp. LogMap) by 2.3% (resp. 2.3%). Note that BERTMap
without ex or rp consistently outperforms LogMapLt on
all the tasks. This suggests that with a more suitable map-
ping refinement strategy, BERTMap is likely to outperform
LogMap on the FMA-NCI task as well. BERTMap can also
significantly outperform the machine learning-based base-
line LogMap-ML∗ on all the three tasks. This is because
LogMap-ML∗ relies on LogMap and heuristic rules to ex-
tract high quality samples (anchor mappings) for training,
but this strategy is not effective on our data. In contrast,
BERTMap primarily relies on unsupervised data (synonyms
and non-synonyms) to fine-tune the BERT model.

By comparing different BERTMap settings, we have the
following observations. First, the semi-supervised setting
(+co) is generally better than the unsupervised setting (with-
out co), implying that BERTMap can effectively learn from
given mappings. Second, complementary corpus is helpful
especially when the task-involved ontologies are deficient
in class labels — on the FMA-SNOMED task, BERTMap
with the complementary corpus (+cp) attains a higher F1
score than string-matching, edit-similarity, LogMapLt and
LogMap-ML∗ baselines, all of which rely on class labels
from within the input ontologies, by around 50%. Third,
considering the identity synonyms (+ids) may slightly im-
prove the performance or make no difference. Finally, map-
ping extension and repair can consistently boost the per-
formance, but not by much, possibly because it is hard to
improve given that BERTMap’s prediction part has already
achieved high performance.

It is interesting to notice that BERTMap is robust to hy-

https://owlready2.readthedocs.io/en/latest/
https://huggingface.co/transformers/


90% Test Mappings 70% Test Mappings

System {τ, λ} Precision Recall Macro-F1 Precision Recall Macro-F1

io (tgt2src, 0.999) 0.705 0.240 0.359 0.649 0.239 0.350
io+ids (tgt2src, 0.999) 0.835 0.347 0.490 0.797 0.346 0.483
io+cp (src2tgt, 0.999) 0.917 0.750 0.825 0.895 0.748 0.815
io+ids+cp (src2tgt, 0.999) 0.910 0.758 0.827 0.887 0.755 0.816
io+ids+cp (ex) (src2tgt, 0.999) 0.896 0.771 0.829 0.869 0.771 0.817
io+ids+cp (ex+rp) (src2tgt, 0.999) 0.905 0.771 0.833 0.881 0.771 0.822

io+co (src2tgt, 0.997) NA NA NA 0.937 0.564 0.704
io+co+ids (src2tgt, 0.999) NA NA NA 0.850 0.714 0.776
io+co+cp (src2tgt, 0.999) NA NA NA 0.880 0.779 0.826
io+co+ids+cp (src2tgt, 0.999) NA NA NA 0.899 0.774 0.832
io+co+ids+cp (ex) (src2tgt, 0.999) NA NA NA 0.882 0.787 0.832
io+co+ids+cp (ex+rp) (src2tgt, 0.999) NA NA NA 0.892 0.786 0.836
string-match (combined, 1.000) 0.987 0.194 0.324 0.983 0.192 0.321
edit-similarity (combined, 0.920) 0.971 0.209 0.343 0.963 0.208 0.343
LogMapLt NA 0.965 0.206 0.339 0.956 0.204 0.336
LogMap NA 0.935 0.685 0.791 0.918 0.681 0.782
AML NA 0.892 0.757 0.819 0.865 0.754 0.806
LogMap-ML∗ NA 0.944 0.205 0.337 0.928 0.208 0.340

Table 2: Results of BERTMap under different settings and baselines on the FMA-SNOMED task.

90% Test Mappings 70% Test Mappings

System {τ, λ} Precision Recall Macro-F1 Precision Recall Macro-F1

io (src2tgt, 0.999) 0.930 0.836 0.880 0.911 0.834 0.871
io+ids (src2tgt, 0.999) 0.926 0.834 0.878 0.906 0.832 0.868
io+ids (ex) (src2tgt, 0.999) 0.916 0.852 0.883 0.894 0.851 0.872
io+ids (ex+rp) (src2tgt, 0.999) 0.924 0.851 0.886 0.905 0.851 0.877

io+co (src2tgt, 0.999) NA NA NA 0.913 0.841 0.875
io+co+ids (src2tgt, 0.999) NA NA NA 0.913 0.836 0.873
io+co+ids (ex) (src2tgt, 0.999) NA NA NA 0.899 0.852 0.875
io+co+ids (ex+rp) (src2tgt, 0.999) NA NA NA 0.908 0.852 0.879
string-match (src2tgt, 1.000) 0.978 0.672 0.797 0.972 0.665 0.790
edit-similarity (src2tgt, 0.930) 0.978 0.728 0.834 0.972 0.724 0.830
LogMapLt NA 0.953 0.717 0.819 0.940 0.709 0.808
LogMap NA 0.869 0.867 0.868 0.838 0.868 0.852
AML NA 0.895 0.829 0.861 0.868 0.825 0.846
LogMap-ML∗ NA 0.955 0.684 0.797 0.942 0.700 0.803

Table 3: Results of BERTMap under different settings and baselines on the FMA-SNOMED+ task.

90% Test Mappings 70% Test Mappings

System {τ, λ} Precision Recall Macro-F1 Precision Recall Macro-F1

io (src2tgt, 0.999) 0.930 0.847 0.887 0.912 0.851 0.880
io+ids (src2tgt, 0.999) 0.936 0.842 0.887 0.920 0.845 0.881
io+ids (ex) (src2tgt, 0.999) 0.926 0.852 0.888 0.907 0.854 0.880
io+ids (ex+rp) (src2tgt, 0.999) 0.938 0.852 0.893 0.922 0.854 0.887

io+co (src2tgt, 0.999) NA NA NA 0.939 0.838 0.886
io+co+ids (src2tgt, 0.999) NA NA NA 0.961 0.805 0.876
io+co+ids (ex) (src2tgt, 0.999) NA NA NA 0.955 0.813 0.879
io+co+ids (ex+rp) (src2tgt, 0.999) NA NA NA 0.959 0.813 0.880

string-match (tgt2src, 1.000) 0.978 0.742 0.843 0.972 0.747 0.845
edit-similarity (src2tgt, 0.900) 0.976 0.768 0.860 0.970 0.774 0.861
LogMapLt NA 0.963 0.815 0.883 0.953 0.812 0.877
LogMap NA 0.938 0.900 0.919 0.922 0.897 0.909
AML NA 0.936 0.900 0.918 0.919 0.898 0.909
LogMap-ML∗ NA 0.968 0.715 0.822 0.959 0.714 0.818

Table 4: Results of BERTMap systems under different settings and baselines on the FMA-NCI task.



Figure 2: Validation results of BERTMap (io+ co+ ids) on
the FMA-SNOMED+ task with mapping score threshold λ
ranging from 0 to 1.

FMA Class SNOMED Class

Third cervical spinal ganglion C3 spinal ganglion

Deep posterior sacrococcygeal
ligament

Structure of deep dorsal
sacrococcygeal ligament

Wall of smooth endoplasmic
reticulum

Agranular endoplasmic
reticulum membrane

Table 5: Typical examples of reference mappings that are
predicted by BERTMap but not by LogMap or AML.

perparameter selection; most of its settings lead to the same
best hyperparameters (i.e. τ = src2tgt and λ = 0.999})
on the validation set,Mval. To further investigate this phe-
nomenon, we visualize the validation process by presenting
the plots of evaluation metrics against λ in Figure 2, where
we can see that as λ increases, Precision increases signifi-
cantly while Recall drops only slightly — thus F1 increases
and attains the maximum at λ = 0.999. This observation is
consistent for all BERTMap models in this paper9.

In Table 5, we present some examples of reference map-
pings that are retrieved by BERTMap but not by LogMap
or AML. We can clearly see that, the BERT classifier cap-
tures the implicit connection between “third cervical” and
“C3” in the first example, “posteior” and “dorsal” in the
second example, as well as “wall” and “membrane” in the
third example. This demonstrates the strength of contextual
embeddings over the traditional lexical matching.

Related Work
Classic OM systems are often based on lexical matching,
structure matching and logical inference (Otero-Cerdeira,
Rodrı́guez-Martı́nez, and Gómez-Rodrı́guez 2015). For ex-
ample, LogMap (Jiménez-Ruiz and Cuenca Grau 2011) uses
a lexical index to compute anchor mappings, then alternates
between mapping extension that utilizes ontology structure,
and mapping repair that utilizes logical reasoning; whereas
AML (Faria et al. 2013) mixes several strategies to calculate
lexical matching scores, followed by mapping extension and

9See appendix for complete ablation study results.

repair. Although these systems have proven quite effective,
their lexical matching only utilizes the surface form of texts
and ignores word semantics. BERTMap employs a similar
architecture but utilizes BERT so that textual semantics and
contexts are considered in mapping computation.

Recent supervised learning-based OM approaches mainly
focus on constructing class embeddings or extracting fea-
tures. Nkisi-Orji et al. (2018) uses hand-crafted features
such as string similarities together with Word2Vec; On-
toEmma (Wang et al. 2018) relies on both hand-crafted fea-
tures and word context features learned by a complex net-
work; LogMap-ML (Chen et al. 2021b) utilizes path con-
texts and ontology tailored word embeddings by OWL2Vec*
(Chen et al. 2021a); VeeAlign (Iyer, Agarwal, and Kumar
2020) proposes “dual attention” for class embeddings. How-
ever, these approaches often heavily depend on complicated
feature engineering and/or complex neural networks. More
importantly, they need a significant number of high quality
labeled mappings for training which are often not available
and costly to manually annotate. Although some solutions
such as distant supervision (Chen et al. 2021b) and sam-
ple transfer (Nkisi-Orji et al. 2018) were investigated, the
sample quality varies and limits their performance. Unsu-
pervised learning approaches such as ERSOM (Xiang et al.
2015) and DeepAlign (Kolyvakis, Kalousis, and Kiritsis
2018) were also studied. They attempt to refine word em-
beddings by, e.g., counter-fitting, to directly compute class
similarity. However, they do not consider word contexts.

Neutel and Boer (2021) have presented a preliminary
OM investigation using BERT. Their work considered two
relatively naive approaches: (i) encoding classes with pre-
trained BERT’s token embeddings and calculating their co-
sine similarity; (ii) fine-tuning class embeddings with the
SentenceBERT (Reimers and Gurevych 2019) architecture,
which relies on a large number of given mappings. We have
implemented (i) and found it to perform much worse than
string-matching on our tasks; moreover, according to their
evaluation, method (ii) has much lower mean reciprocal rank
score than the non-contextual word embedding model, Fast-
Text (Bojanowski et al. 2017), although it has higher cov-
erage. Furthermore, their evaluation data have no gold stan-
dards, and thus, Precision, Recall and F1 are not computed.

Conclusion and Future Work
In this paper, we propose a novel, general and practical
OM system, BERTMap, which exploits the textual, struc-
tural and logical information of ontologies. The backbone
of BERTMap is its predictor, which utilizes the contex-
tual embedding model, BERT, to learn word semantics and
contexts effectively, and computes mapping scores with the
aid of sub-word inverted indices. The mapping extension
and repair modules further improve the recall and preci-
sion, respectively. BERTMap works well with just the to-
be-aligned ontologies and can be further improved by given
mappings and/or complementary sources. In future, we will
evaluate BERTMap with more large-scale (industrial) data.
We will also consider e.g., BERT-based ontology embedding
for more robust mapping prediction, and more paradigms for
integrating mapping prediction, extension and repair.



Acknowledgments
This work was supported by the SIRIUS Centre for Scal-
able Data Access (Research Council of Norway, project
237889), eBay, Samsung Research UK, Siemens AG, and
the EPSRC projects OASIS (EP/S032347/1), UK FIRES
(EP/S019111/1) and ConCur (EP/V050869/1).

References
Alsentzer, E.; Murphy, J.; Boag, W.; Weng, W.-H.; Jindi, D.;
Naumann, T.; and McDermott, M. 2019. Publicly Available
Clinical BERT Embeddings. In Proceedings of the 2nd Clin-
ical Natural Language Processing Workshop, 72–78.
Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017.
Enriching Word Vectors with Subword Information. Trans-
actions of the Association for Computational Linguistics, 5:
135–146.
Chen, J.; Hu, P.; Jimenez-Ruiz, E.; Holter, O. M.; Antonyra-
jah, D.; and Horrocks, I. 2021a. OWL2Vec*: Embedding of
OWL ontologies. Machine Learning, 1–33.
Chen, J.; Jiménez-Ruiz, E.; Horrocks, I.; Antonyrajah, D.;
Hadian, A.; and Lee, J. 2021b. Augmenting ontology align-
ment by semantic embedding and distant supervision. In
European Semantic Web Conference, 392–408. Springer.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of NAACL-HLT,
4171–4186.
Faria, D.; Pesquita, C.; Santos, E.; Palmonari, M.; Cruz, I. F.;
and Couto, F. M. 2013. The AgreementMakerLight Ontol-
ogy Matching System. In Meersman, R.; Panetto, H.; Dil-
lon, T.; Eder, J.; Bellahsene, Z.; Ritter, N.; De Leenheer, P.;
and Dou, D., eds., On the Move to Meaningful Internet Sys-
tems: OTM 2013 Conferences, 527–541. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN 978-3-642-41030-7.
Grau, B. C.; Horrocks, I.; Kazakov, Y.; and Sattler, U. 2007.
A Logical Framework for Modularity of Ontologies. In IJ-
CAI.
Iyer, V.; Agarwal, A.; and Kumar, H. 2020. VeeAlign: a
supervised deep learning approach to ontology alignment.
In OM@ISWC.
Jiménez-Ruiz, E.; Agibetov, A.; Chen, J.; Samwald, M.;
and Cross, V. V. 2020. Dividing the Ontology Alignment
Task with Semantic Embeddings and Logic-based Modules.
ArXiv, abs/2003.05370.
Jiménez-Ruiz, E.; and Cuenca Grau, B. 2011. LogMap:
Logic-Based and Scalable Ontology Matching. In Aroyo,
L.; Welty, C.; Alani, H.; Taylor, J.; Bernstein, A.; Kagal, L.;
Noy, N.; and Blomqvist, E., eds., The Semantic Web – ISWC
2011, 273–288. Berlin, Heidelberg: Springer Berlin Heidel-
berg. ISBN 978-3-642-25073-6.
Jiménez-Ruiz, E.; Meilicke, C.; Grau, B. C.; and Horrocks,
I. 2013. Evaluating Mapping Repair Systems with Large
Biomedical Ontologies. In Description Logics.
Kolyvakis, P.; Kalousis, A.; and Kiritsis, D. 2018.
DeepAlignment: Unsupervised Ontology Matching with
Refined Word Vectors. In Proceedings of NAACL-HLT,
787–798.

Loshchilov, I.; and Hutter, F. 2017. Fixing Weight Decay
Regularization in Adam. ArXiv, abs/1711.05101.
Mikolov, T.; Chen, K.; Corrado, G. S.; and Dean, J. 2013.
Efficient Estimation of Word Representations in Vector
Space. In ICLR.
Neutel, S.; and Boer, M. D. 2021. Towards Automatic On-
tology Alignment using BERT. In AAAI Spring Symposium:
Combining Machine Learning with Knowledge Engineer-
ing.
Nkisi-Orji, I.; Wiratunga, N.; Massie, S.; Hui, K.-Y.; and
Heaven, R. 2018. Ontology alignment based on word em-
bedding and random forest classification. In Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases, 557–572. Springer.
Otero-Cerdeira, L.; Rodrı́guez-Martı́nez, F. J.; and Gómez-
Rodrı́guez, A. 2015. Ontology matching: A literature re-
view. Expert Systems with Applications, 42(2): 949–971.
Portisch, J.; Hladik, M.; and Paulheim, H. 2019. Wiktionary
Matcher. In OM@ISWC.
Portisch, J.; and Paulheim, H. 2018. ALOD2Vec matcher.
In OM@ISWC.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. ArXiv,
abs/1908.10084.
Shvaiko, P.; and Euzenat, J. 2013. Ontology Matching: State
of the Art and Future Challenges. IEEE Transactions on
Knowledge and Data Engineering, 25(1): 158–176.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.
Wang, L.; Bhagavatula, C.; Neumann, M.; Lo, K.; Wil-
helm, C.; and Ammar, W. 2018. Ontology alignment in the
biomedical domain using entity definitions and context. In
Proceedings of the BioNLP 2018 workshop, 47–55.
Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.; Norouzi, M.;
Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.;
Klingner, J.; Shah, A.; Johnson, M.; Liu, X.; Kaiser, L.;
Gouws, S.; Kato, Y.; Kudo, T.; Kazawa, H.; Stevens, K.;
Kurian, G.; Patil, N.; Wang, W.; Young, C.; Smith, J.; Riesa,
J.; Rudnick, A.; Vinyals, O.; Corrado, G.; Hughes, M.; and
Dean, J. 2016. Google’s Neural Machine Translation Sys-
tem: Bridging the Gap between Human and Machine Trans-
lation. CoRR.
Xiang, C.; Jiang, T.; Chang, B.; and Sui, Z. 2015. Ersom: A
structural ontology matching approach using automatically
learned entity representation. In Proceedings of the 2015
conference on empirical methods in natural language pro-
cessing, 2419–2429.

A Full Ablation Results of Mapping
Thresholds on the Validation Mapping Sets

In Figure 3, 4 and 5, we present, for all the BERTMap
models in this paper, the plots of evaluation metrics (Pre-



cision, Recall and Macro-F1) against the mapping thresh-
old λ ∈ [0, 1) on the validation set. Figure 4 correspond
to (left-to-right, top-to-bottom) the combined, src2tgt,
and tgt2src results of io, io + ids, io + co, io + co +
ids, io + ids + cp, io + co + ids + cp settings on the
FMA-SNOMED task. Figure 3 and 5 correspond to the
combined, src2tgt, and tgt2src results of io, io +
ids, io + co, io + co + ids settings on the FMA-NCI task
and FMA-SNOMED+ task, respectively.

Note that the validation results are generally worse than
testing results because when evaluating on smaller mapping
set, we need to ignore more positive mappings whereas the
number of negative mappings stays the same, resulting in the
prominent drop of F1 score.



Figure 3: Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-NCI task as the mapping score threshold ranges
from 0 to 1 (excluded 1 because it represents the sting-match result). The maximum F1 is indicated by a red vertical line.



Figure 4: Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-SNOMED task as the mapping score threshold
ranges from 0 to 1 (excluded 1 because it represents the sting-match result). The maximum F1 is indicated by a red vertical line.



Figure 5: Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-SNOMED+ task as the mapping score threshold
ranges from 0 to 1 (excluded 1 because it represents the sting-match result). The maximum F1 is indicated by a red vertical line.


	Introduction
	Preliminaries
	Problem Formulation
	BERT: Pre-Training and Fine-Tuning

	BERTMap
	Corpus Construction and BERT Fine-Tuning
	Mapping Prediction
	Mapping Refinement

	Evaluation
	Experiment Settings
	Results

	Related Work
	Conclusion and Future Work 
	Acknowledgments
	A   Full Ablation Results of Mapping Thresholds on the Validation Mapping Sets

