
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

An Ontological Approach for Representing
Declarative Mapping Languages
Ana Iglesias-Molina a,*, Andrea Cimmino a, Edna Ruckhaus a, David Chaves-Fraga a,b,c,
Raúl García-Castro a and Oscar Corcho a

a Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
E-mails: ana.iglesiasm@upm.es, andreajesus.cimmino@upm.es, e.ruckhaus@upm.es, david.chaves@upm.es,
r.garcia@upm.es, oscar.corcho@upm.es
b Declarative Languages and Artificial Intelligence Group, KU Leuven, Belgium
c Flanders Make, DTAI-FET, Belgium

Editor: Tania Tudorache, Stanford University, USA
Solicited reviews: Ben De Meester, Ghent University, Belgium; Herminio Garcia-Gonzalez, Kazerne Dossin Research Centre, Belgium; Jose
Emilio Labra Gayo, University of Oviedo, Spain

Abstract. Knowledge Graphs are currently created using an assortment of techniques and tools: ad hoc code in a programming
language, database export scripts, OpenRefine transformations, mapping languages, etc. Focusing on the latter, the wide variety
of use cases, data peculiarities, and potential uses has had a substantial impact in how mappings have been created, extended,
and applied. As a result, a large number of languages and their associated tools have been created. In this paper, we present
the Conceptual Mapping ontology, that is designed to represent the features and characteristics of existing declarative mapping
languages to construct Knowledge Graphs. This ontology is built upon the requirements extracted from experts experience, a
thorough analysis of the features and capabilities of current mapping languages presented as a comparative framework; and the
languages’ limitations discussed by the community and denoted as Mapping Challenges. The ontology is evaluated to ensure
that it meets these requirements and has no inconsistencies, pitfalls or modelling errors, and is publicly available online along
with its documentation and related resources.

Keywords: Mapping Languages, Ontology Description, Knowledge Graphs

1. Introduction

Data on the Web has steadily grown in the last
decades. However, the heterogeneity of the data pub-
lished on the Web has hindered its consumption and
usage [1]. This scenario has fostered data transforma-
tion and publication of data as Knowledge Graphs in
both academic and industrial environments [2]. These
Knowledge Graphs normally expose Web data ex-
pressed in RDF and modeled according to an ontology.

A large number of techniques that query or translate
data into RDF have been proposed, and follow two ap-

*Corresponding author. E-mail: ana.iglesiasm@upm.es.

proaches, namely, (1) RDF materialization, that con-
sists of translating data from one or more heteroge-
neous sources into RDF [3, 4]; or (2) Virtualization,
(Ontology Based Data Access) [5, 6] that comprises
translating a SPARQL query into one or more equiva-
lent queries which are distributed and executed on the
original data source(s), and where its results are trans-
formed back to the SPARQL results format [7]. Both
types of approaches rely on an essential element, a
mapping document, which is the key-enabler for per-
forming the required translation.

Mapping languages allow representing the relation-
ships between the data model in heterogenous sources,
and an RDF version that follows the schema of an

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:ana.iglesiasm@upm.es
mailto:andreajesus.cimmino@upm.es
mailto:e.ruckhaus@upm.es
mailto:david.chaves@upm.es
mailto:r.garcia@upm.es
mailto:oscar.corcho@upm.es
mailto:ana.iglesiasm@upm.es

2 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ontology, i.e., they define the rules on how to trans-
late from non-RDF data into RDF. The original data
can be expressed in a variety of formats such as tab-
ular, JSON, or XML. Due to the heterogeneous na-
ture of data, the wide variety of techniques, and spe-
cific requirements that some scenarios may impose, an
increasing number of mapping languages have been
proposed [8–10]. The differences among them are
usually based on three aspects: (a) the focus on one
or more data formats, e.g., the W3C Recommenda-
tions R2RML focuses on SQL tabular data [11]; (b)
a specific requirement they address, e.g., SPARQL-
Generate [12] allows the definition of functions in a
mapping for cleaning or linking the generated RDF
data; or (c) if they are designed for a scenario that
has special requirements, e.g., the WoT-mappings [13]
were designed as an extension of the WoT stan-
dard [14] and used as part of the Thing Descrip-
tions [15].

As a result, the diversity of mapping languages pro-
vides a rich variety of options for tools to translate
data from heterogeneous formats into RDF, in many
different scenarios [16–19]. However, these tools are
mostly tied to one mapping language, and sometimes
they do not even implement the entire language spec-
ification [4, 20]. Deciding which language and tech-
nique should be used in each scenario becomes a costly
task, since the choice of one language may not cover
all the needed requirements [21]. Some scenarios re-
quire a combination of mapping languages due to their
different features, which requires the use of different
techniques. In many cases, this diversity leads to ad
hoc solutions that reduce reproducibility, maintainabil-
ity, and reusability [22].

Mapping languages for KG construction maintain
the same bottom-line idea and purpose: to describe and
establish the relationships between data sources and
the schema provided by an ontology. Therefore, it can
be assumed that mapping languages share common in-
herent characteristics that can be modeled.

This paper presents the Conceptual Mapping ontol-
ogy, which aims to gather the expressiveness of exist-
ing declarative mapping languages and represent their
shared characteristics. The Conceptual Mapping ontol-
ogy has been developed based on the requirements ex-
tracted from the Mapping Challenges proposed by the
community1 and the analysis of the features of state-
of-the-art mapping languages. This analysis, presented

1https://w3id.org/kg-construct/workshop/2021/challenges.html

as a comparative framework, studies how languages
describe access to data sources, how they represent
triples creation, and their distinctive features.

The Conceptual Mapping ontology has been devel-
oped following the LOT Methodology [23]. It reuses
existing standards such as DCAT [24] and WoT Secu-
rity2. The full mapping language specification is pub-
licly available under the CC BY-SA 4.0 license. Sev-
eral examples of usage, comparisons with other lan-
guages, extensions, and requirements are also available
in the ontology portal3.

The rest of this article is structured as follows. Sec-
tion 2 provides an overview of relevant works cen-
tered on mapping languages. Section 3 describes the
methodology used to develop the ontology. Section 4
presents the purpose and scope of the ontology, its
requirements, and how they are extracted. Section 5
shows details about the ontology conceptualization
and evaluation, and some examples. Section 6 illus-
trates how the ontology is published and maintained.
Finally, Section 7 summarizes the work presented and
draws some conclusions and future steps.

2. Related Work

In this section, the current scene of mapping lan-
guages is described first, regardless of the approach
they follow, i.e., RDF materialization or virtualization.
Then, previous works comparing mapping languages
are surveyed.

2.1. Mapping languages

The different scenarios in which mapping languages
are used and their specific requirements have led to
the creation of several mapping languages and tailored
to specific domain extensions. This section presents
and describes existing mapping languages, listed in Ta-
ble 1. Depending on their syntax, they can be classi-
fied into the following: RDF-based, SPARQL-based,
and based on other schema. It is worth mentioning
that some mapping languages have become W3C rec-
ommendations, namely R2RML [11] and CSVW [36].
The surveyed languages include the ones considered
relevant because of their widespread use, unique fea-
tures, and current maintenance. Deprecated or obsolete
languages are not included.

2https://www.w3.org/2019/wot/security
3https://w3id.org/conceptual-mapping/portal

https://w3id.org/kg-construct/workshop/2021/challenges.html
https://www.w3.org/2019/wot/security
https://w3id.org/conceptual-mapping/portal

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

R2O XSPARQL

TARQL

SPARQL-
Generate

D2RQ

R2RML CSVW

Helio
Mappings

RMLR2RML-FKR2RMLD2RML xR2RML

RML+FnOFunUL WoT
MappingsD-REPR

XLWrap

Facade-X

Influence Extended by W3C SPARQL-Based RDF-Based Others

ShExML SMS2

Fig. 1. Existing mapping languages and their relationships.

Table 1
Analyzed mapping languages and their corresponding references.

Classification Language Reference(s)

RDF-based

D2RQ [25, 26]
R2O [27]

R2RML [11]
xR2RML [9, 28]

RML [8, 29]
KR2RML [30]

FunUL [31]
R2RML-f [32]
D2RML [33]

WoT mappings [13]
XLWrap [34, 35]
CSVW [36]

SPARQL-based

SPARQL-Generate [12, 37]
XSPARQL [38, 39]

TARQL [40]
Facade-X [41, 42]

SMS2 [43]

Others
Helio mappings [44]

D-REPR [45]
ShExML [10, 46, 47]

XRM [48]

RDF-based mapping languages. Similarly to Con-
ceptual Mappings, these are mapping languages spec-
ified as ontologies. They are used as RDF documents
that are processed by compliant tools for performing
the translations. The evolution, extensions and influ-
ences on one another are depicted in Fig. 1. The most
well-known language in this category is R2RML [11],
which allows mapping of data stored in relational

databases to RDF. This language is heavily influenced
by previous languages (R2O [27] and D2RQ [25]).
Some serializations (e.g. SML [49], OBDA mappings
from Ontop [50]) and several extensions of R2RML
were developed in the following years after its release:
R2RML-f [32] extends R2RML to include functions
to be applied over the data; RML [8] and its user-
friendly compact syntax YARRRML [51] provide the
possibility of covering additional data formats (CSV,
XML and JSON); this language also considers the
use of functions for data transformation (e.g. lower-
case, replace, trim) by using the Function Ontology
(FnO)4 [17]; FunUL [31] proposes an extension to also
incorporate functions, but focusing on the CSV format;
KR2RML [30] is also an extension for CSV, XML and
JSON, with the addition of representing all sources
with the Nested Relational Model as an intermediate
model and the possibility of cleaning data with Python
functions; xR2RML [9] extends R2RML and RML to
include NoSQL databases and incorporates more fea-
tures to handle tree-like data; D2RML [33], also based
on R2RML and RML, is able to transform data from
XML, JSON, CSVs and REST/SPARQL endpoints,
and enables functions and conditions to create triples.

In this category, we can also find more languages
not related to R2RML. XLWrap [34] is focused
on transforming spreadsheets into different formats.
CSVW [36] enables tabular data annotation on the
Web with metadata, but also supports the generation of
RDF. Finally, WoT Mappings [13] are oriented to be
used in the context of the Web of Things.

4https://fno.io/rml/

https://fno.io/rml/

4 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SPARQL-based mapping languages. The specifi-
cation of this type of languages is usually based
on, or is an extension of, the SPARQL query lan-
guage [52]. XSPARQL [38] merges SPARQL and
XQuery to transform XML into RDF. TARQL [40]
uses the SPARQL syntax to generate RDF from CSV
files. SPARQL-Generate [12] is capable of generat-
ing RDF and document streams from a wide variety
of data formats and access protocols. Most recently,
Facade-X has been developed, not as a new language,
but as a "facade to wrap the original resource and
to make it queryable as if it was RDF" [41]. It does
not extend the SPARQL language, instead it overrides
the SERVICE operator. Lastly, authors would like to
highlight a loosely SPARQL-based language, Stardog
Mapping Syntax 2 (SMS2) [43], which represents vir-
tual Stardog graphs and is able to support sources such
as JSON, CSV, RDB, MongoDB and Elasticsearch.

Other mapping languages. This group gathers other
mapping languages implemented without relying on
ontologies or SPARQL extensions. ShExML [10, 46]
uses Shape Expressions (ShEx) [53] to map data
sources in RDBs, CSV, JSON, XML and RDF using
SPARQL queries. The Helio mapping language [44]
is based on JSON and provides the capability of us-
ing functions for data transformation and data link-
ing [54]. D-REPR [45] focuses on describing hetero-
geneous data with JSONPath and allows the use of
data transformation functions. XRM (Expressive RDF
Mapper) [48] is a commercial language that provides
a unique user-friendly syntax to create mappings in
R2RML, CSVW and RML.

2.2. Language comparison

As the number of mapping languages increased and
their adoption grew wider, comparisons between these
languages inevitably occurred. This is the case of,
for instance, SPARQL-Generate [12], which is com-
pared to RML in terms of query/mapping complexity;
and ShExML [10], which is compared to SPARQL-
Generate and YARRRML from a usability perspective.

Some studies dig deeper, providing qualitative com-
plex comparison frameworks. Hert et al. [55] provide
a comparison framework for mapping languages fo-
cused on transforming relational databases to RDF.
The framework is composed of 15 features, and the
languages are evaluated based on the presence or ab-
sence of these features.The results lead authors to di-
vide the mappings into four categories (direct map-

ping, read-only general-purpose mapping, read-write
general-purpose mapping, and special-purpose map-
ping), and ponder on the heavy reliance of most lan-
guages on SQL to implement the mapping, and the
usefulness of read-write mappings (i.e., mappings
able to write data in the database). De Meester et
al. [21] show an initial analysis of 5 similar languages
(RML+FnO, xR2RML, FunUL, SPARQL-Generate,
YARRRML) discussing their characteristics, accord-
ing to three categories: non-functional, functional and
data source support. The study concludes by remark-
ing on the need to build a more complete and precise
comparative framework and asking for a more active
participation from the community to build it. To the
best of our knowledge, there is no comprehensive work
in the literature comparing all existing languages.

3. Methodology

This section presents the methodology followed for
developing the Conceptual Mapping ontology. The on-
tology was developed following the guidelines pro-
vided by the Linked Open Terms (LOT) methodol-
ogy. LOT is a well-known and mature lightweight
methodology for the development of ontologies and
vocabularies that has been widely adopted in academic
and industrial projects [23]. It is based on the previ-
ous NeOn methodology [56] and includes four major
stages: Requirements Specification, Implementation,
Publication, and Maintenance (Fig. 2). In this section,
we describe these stages and how they have been ap-
plied and adapted to the development of the Concep-
tual Mapping ontology.

3.1. Requirements specification

This stage refers to the activities carried out for
defining the requirements that the ontology must meet.
At the beginning of the requirements identification
stage, the goal and scope of the ontology are defined.
Following, the domain is analyzed in more detail by
looking at the documentation, data that has been pub-
lished, standards, formats, etc. In addition, use cases
and user stories are identified. Then, the requirements
are specified in the form of competency questions and
statements.

In this case, the specification of requirements in-
cludes purpose, scope, and requirements. The require-
ments are specified as facts rather than competency
questions and validated with Themis [57], an ontology

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

evaluation tool that allows validating requirements ex-
pressed as tests rather than SPARQL queries. The au-
thors consider this approach to be adequate in this case
since (1) there are no use cases as this ontology is a
mechanism of representation of mapping language’s
features; and (2) there are no SPARQL queries because
they result from Competency Questions which are in
turn extracted from use cases and user stories. Further
details are shown in Section 4.

3.2. Implementation

The goal of the Implementation stage is to build
the ontology using a formal language, based on the
ontological requirements identified in the previous
stage. From the set of requirements a first version
of the model is conceptualized. The model is subse-
quently refined by running the corresponding evalua-
tions. Thus, the implementation process follows itera-
tive sprints; once it passes all evaluations and meets the
requirements, it is considered ready for publication.

The conceptualization is carried out representing the
ontology in a graphical language using the Chowlk
notation [58] (as shown in Fig. 4). The ontology is
implemented in OWL 2 using Protégé. The evalua-
tion checks different aspects of the ontology: (1) re-
quirements are validated using Themis [57], (2) in-
consistencies are found with the Pellet reasoner, (3)
OOPS! [59] is used to identify modeling pitfalls, and
(4) FOOPS! [60] is run to check the FAIRness of the
ontology. Further details are described in Section 5.

3.3. Publication

The publication stage addresses the tasks related
to making the ontology and its documentation avail-
able. The ontology documentation was generated with
Widoco [61], a built-in documentation generator in
OnToology [62], and it is published with a W3ID
URL5. The ontology and related resources can be ac-
cessed in the ontology portal. Further details are pre-
sented in Section 6.

3.4. Maintenance

Finally, the last stage of the development process,
maintenance, refers to ontology updates as new re-
quirements are found and/or errors are fixed. The on-
tology presented in this work promotes the gathering

5https://w3id.org/conceptual-mapping

Fig. 2. Workflow proposed by the LOT Methodology [23].

of issues or new requirements through the use of is-
sues in the ontology GitHub repository. Additionally,
it provides control of changes, and the documentation
enables access to previous versions. Further details are
shown in Section 6.

4. Conceptual Mapping Requirements
Specification

This section presents the purpose, scope, and re-
quirements of the Conceptual Mapping Ontology. In
addition, it also describes from where and how the re-
quirements are extracted: analysing the mapping lan-
guages (presented as a comparative framework) and
the Mapping Challenges proposed by the community.

4.1. Purpose and scope

The Conceptual Mapping ontology aims at gath-
ering the expressiveness of declarative mapping lan-
guages that describe the transformation of heteroge-
neous data sources into RDF. This ontology-based lan-
guage settles on the assumption that all mapping lan-
guages used for the same basic purpose of describing
data sources in terms of an ontology to create RDF,
must share some basic patterns and inherent character-
istics. Inevitably, not all features are common. As de-
scribed in previous sections, some languages were de-
veloped for specific purposes, others extend existing
languages to cover additional use cases, and others are
in turn based in languages that already provide them
with certain capabilities. The Conceptual Mapping on-
tology is designed to represent and articulate these core
features, which are extracted from two sources: (1) the
analysis of current mapping languages, and (2) the lim-

https://w3id.org/conceptual-mapping

6 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

itations of current languages identified by the commu-
nity. These limitations, proposed by the W3C Knowl-
edge Graph Construction Community Group6, are re-
ferred to as Mapping Challenges1 and have been par-
tially implemented by some languages. Both sources
are described throughout this section.

This ontology has also some limitations. As pre-
sented in Section 2, mapping languages can be clas-
sified into three categories according to the schema
in which they are based: RDF-based, SPARQL-based
and based on other schemes. Conceptual Mapping is
included in the first category and, as such, has the
same inherent capabilities and limitations as RDF-
based languages regarding the representation of the
language as an ontology. This implies that it is feasi-
ble to represent their expressiveness, whereas reusing
classes and/or properties or creating equivalent con-
structs. Languages based on other approaches usually
follow schemas that make them relatable to ontolo-
gies. This can be seen in the correspondence between
YARRRML and RML: RML is written in Turtle syn-
tax. YARRRML [51] is mainly used as a user-friendly
syntax to facilitate the writing of RML rules. It is based
on YAML, and can easily be translated into RML7.

Lastly, SPARQL-based languages pose a challenge.
SPARQL is a rich and powerful query language [63] to
which these mapping languages add more capabilities
(e.g., SPARQL-Generate, Facade-X). It has an innate
flexibility and capabilities sometimes not comparable
to the other languages. For this reason, representing
every single capability and feature of SPARQL-based
languages is out of the scope of this article. Given the
differences of representation paradigm between RDF
and SPARQL for creating mappings, it cannot be en-
sured that the Conceptual Mapping covers all possibil-
ities that a SPARQL-based language can.

4.2. Comparison Framework

This subsection presents a comparison framework
that collects and analyzes the main features included
in mapping language descriptions. It aims to fill the
aforementioned gap on language comparison. The di-
versity of the languages that have been analyzed is cru-
cial for extracting relevant features and requirements.
For this reason, the framework analyzes languages
from the three categories identified in Section 2.

6https://www.w3.org/community/kg-construct/
7https://rml.io/yarrrml/matey/

(a) Example reference ontology that represents the
classes City and Location, linked by the prop-
erty eg:location.

(b) Example input JSON file
"coordinates.json".

(c) Example input MySQL table "cities".

Fig. 3. Input source data and reference ontology that represents in-
formation on cities and their location.

The selected languages fulfill the following re-
quirements: (1) widely used, relevant and/or include
novel or unique features; (2) currently maintained,
and not deprecated; (3) not a serialization or a user-
friendly representation of another language. For in-
stance, D2RQ [25] and R2O [27] were superseded
by R2RML, which is included in the comparison.
XRM [48] is not included either, due to the fact that
it provides a syntax for CSVW, RML and R2RML,
which are also included.

The following RDF-based languages are included:
R2RML [11], RML [8], KR2RML [30], xR2RML [9],

https://www.w3.org/community/kg-construct/
https://rml.io/yarrrml/matey/

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

R2RML-F [32], FunUL [31], XLWrap [34], WoT
mappings [13], CSVW [36], and D2RML [33]. The
SPARQL-based languages that were analyzed are: XS-
PARQL [38], TARQL [40], SPARQL-Generate [12],
Facade-X [41] and SMS2 [43]. Finally, we selected the
following languages based on other formats: ShExML
[10], Helio Mappings [44] and D-REPR [45].

These languages have been analyzed based on their
official specification, documentation, or reference pa-
per (listed in Table 1). Specific implementations and
extensions that are not included in the official docu-
mentation are not considered in this framework. The
cells (i.e. language feature) marked "*" in the frame-
work tables indicate that there are non-official imple-
mentations or extensions that include the feature.

The framework has been built as a result of analyz-
ing the common features of the aforementioned map-
ping languages, and also the specific features that make
them unique and suitable for some scenarios. It in-
cludes information on data sources, general features
for the construction of RDF graphs, and features re-
lated to the creation of subjects, predicates, and ob-
jects. In the following subsections, the features of each
part of the framework are explained in detail. The lan-
guage comparison for data sources is provided in Ta-
ble 2, for triples creation in Table 3, and for general
features in Table 4. All these tables are presented in
Appendix B.

Throughout the section, there are examples show-
ing how different languages use the analyzed features.
The example is built upon two input sources: an online
JSON file, "coordinates.json", with geographical coor-
dinates (Fig. 3b); and a table from a MySQL database,
"cities" (Fig. 3c). The reference ontology is depicted in
Fig. 3a. It represents information about cities and their
locations. The expected RDF output of the data trans-
formation is shown in Listing 1. Each mapping rep-
resents only the relevant rules that the subsection de-
scribes. The entire mapping can be found in the exam-
ples section of the ontology documentation5.

1 <http://ex.com/loc/40.4189--3.6919> a eg:Location ;
2 eg:lat "40.4189"̂ x̂sd:decimal ;
3 eg:long "-3.6919"̂ x̂sd:decimal .
4
5 <http://ex.com/loc/43.3713--8.4188> a eg:Location ;
6 eg:lat "43.3713"̂ x̂sd:decimal ;
7 eg:long "-8.4188"̂ x̂sd:decimal .
8
9 <http://ex.com/loc/36.8333--2.45> a eg:Location ;

10 eg:lat "36.8333"̂ x̂sd:decimal ;
11 eg:long "-2.45"̂ x̂sd:decimal .
12

13 <http://ex.com/city/ACoruña> a eg:City ;
14 eg:zipcode 15001, 15002, 15003, 15004 ;
15 eg:location <http://ex.com/loc/43.3713--8.4188> .
16
17 <http://ex.com/city/Almería> a eg:City ;
18 eg:zipcode 04001, 04002 ;
19 eg:population 201322 ;
20 eg:location <http://ex.com/loc/36.8333--2.45> .
21
22 <http://ex.com/city/Madrid> a eg:City ;
23 eg:zipcode 28001, 28002, 28003, 28004, 28005, 28006;
24 eg:population 3334730 ;
25 eg:location <http://ex.com/loc/40.4189--3.6919> .

Listing 1: Expected RDF output for the data sources
and the ontology in Fig. 3.

4.2.1. Data Sources Description
Table 2 shows the ability of each mapping language

to describe a data source in terms of retrieval, features,
security, data format and protocol.

Data Retrieval. Data from data sources may be re-
trieved in a continuous manner (e.g., Streams), peri-
odically (e.g., Asynchronous sources), or just once,
when the mapping is executed (e.g., Synchronous
sources). As shown in Table 2, all mapping lan-
guages are able to represent synchronous data sources.
Additionally, SPARQL-Generate and Helio are able
to represent periodical data sources, and SPARQL-
Generate also represents continuous data sources (e.g.
it:WebSocket() in SPARQL-Generate). Other
languages do not explicitly express that feature in the
language, but a compliant engine may implement it.

Representing Data Sources. Extracting and retriev-
ing heterogeneous data involves several elements that
mapping languages need to consider: Security terms to
describe access (e.g., relational databases (RDB), API
Key, OAuth2, etc); Retrieval protocol such as local
files, HTTP(S), JDBC, etc; Features that describe the
data to define particular characteristics of the source
data (e.g. queries, regex, iterator, delimiter, etc); Data
formats such as CSV, RDB, and JSON; Encoding and
content negotiation (i.e. MIME Type).

Half of the languages do not allow the definition of
security terms. Some languages are specific for RDB
terms (R2RML and extensions, with rr:logical-
Table), and only two, Helio and WoT, can de-
fine security terms. These two languages are also
the only ones that allow the specification of MIME
Types, and can also specify the encoding along with

8 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TARQL and CSVW (e.g. csvw:encoding attribute
of csvw:Dialect in CSVW).

Regarding protocols, all languages consider local
files, except WoT mappings, which are specific for
HTTP(s). It is highly usual to consider HTTP(s) and
database access (especially with the ODBC and JDBC
protocols). Only XSPARQL, TARQL, D-REPR, and
XLWrap describe exclusively local files.

The features provided by each language are closely
related to the data formats that are covered. Queries
are usual for relational databases and NoSQL docu-
ment stores and iterators for tree-like formats. Some
languages also enable the description of delimiters and
separators for tabular formats (e.g., CSVW defines the
class Dialect to describe these features; this class is
reused by RML), and finally, less common Regular Ex-
pressions can be defined to match specific parts of the
data in languages such as CSVW, SPARQL-Generate,
Helio, D-REPR, and D2RML (e.g., RegexHandler
in Helio, format in CSVW).

The most used format is tabular (RDB and CSV).
Some languages can also process RDF graphs such
as SMS2, ShExML, RML, SPARQL-Generate, Helio,
and D2RML (e.g. QUERY in ShExML, SPARQL ser-
vice description8 in RML), and the last three languages
can also process plain text.

Data Sources Example. This example shows how
ShExML and R2RML describe heterogeneous data
sources. The sources are a table called "cities" (Fig. 3c)
that belongs to a relational database that stores in-
formation about cities: name, population, zipcode and
year in which the data was updated; and a JSON file
"coordinates.json" (Fig. 3b) available online that con-
tains the latitude and longitude of the central point of
each city. R2RML is only able to describe the database
table (Listing 3); instead ShExML is able to describe
both the RDB and the online JSON file (Listing 3).

1 <#CitiesSource> a rr:LogicalTable;
2 rr:tableName "cities" .

Listing 2: R2RML mapping file describing Fig. 3b
and Fig. 3c.

1 SOURCE cities_rdb <jdbc:mysql://localhost:3306/citydb>
2 SOURCE coord_json <https://ex.com/geodata/coordinates.
3 json>

8http://www.w3.org/ns/sparql-service-description#

4 ITERATOR it_cities <sql: SELECT * FROM cities;> {
5 FIELD c_city <city>
6 FIELD population <population>
7 FIELD year <year_modified>
8 FIELD zipcode <zipcodes>
9 }

10 ITERATOR it_coord <jsonpath: $.coordinates[*]> {
11 FIELD lat <latitude>
12 FIELD long <longitude>
13 FIELD loc_city <city>
14 }

Listing 3: ShExML mapping file describing Fig. 3b
and Fig. 3c.

4.2.2. Triples Generation
Table 3 represents how different languages describe

the generation of triples. We assess whether they gen-
erate the Subject, Predicate, and Object: in (1) a Con-
stant manner, i.e. non-dependant on the data field to
be created; or in (2) a Dynamic manner, i.e. changing
its value with each data field iteration. For Objects, the
possibility of adding Datatype and Language tags is
also considered; this feature assesses whether they can
be added, and if they are added in a dynamic (changes
with the data) or static (constant) manner. This table
also analyzes the use and cardinality of transformation
functions and the possibility of iterating over different
nested level arrays (i.e., in tree-like formats).

The categories Constant and RDF Resource (the lat-
ter within Dynamic) show which kind of resources can
be generated by the language (i.e., IRI, Blank Node,
Literal, List and/or Container). The Dynamic category
also considers: the Data References (i.e. fields from the
data source) that can appear with single of mixed for-
mats; from how many Data Sources (e.g. "1:1" when
only data from one file can be used) the term is gener-
ated; if Hierarchy Iteration over different nested levels
in tree-like formats is allowed; and if Functions can be
used to perform transformations on the data to create
the term (e.g. lowercase, toDate, etc.).

Subject Generation. Subjects can be IRIs or Blank
Nodes (BN). This is well reflected in the languages,
since, with a few exceptions that do not consider Blank
Nodes, all languages are able to generate these two
types of RDF resources, both constant and dynami-
cally. The WoT mappings can only generate constant
subjects, so the dynamic dimensions do not apply to
this language. The rest of the languages can generate
a subject with one or more data references (e.g., in
RML rr:template "http://ex.org/{id}-

http://www.w3.org/ns/sparql-service-description#

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

{name}"), ShExML, xR2RML, SPARQL-Generate,
Facade-X, and Helio with different formats. For exam-
ple, in xR2RML a CSV field that contains an array can
be expressed as: xrr:reference "Column(Mo-
vies)/JSONPath($.*). Part of the languages
even allow generating subjects with more than one
data source, this is the case of ShExML, XSPARQL,
KR2RML, SPARQL-Generate, Facade-X, Helio and
xR2RML. About a third of the languages allow hi-
erarchy iterations (ShExML, XSPARQL, KR2RML,
SPARQL-Generate, D-REPR, Facade-X, SMS2, and
D2RML), and more than a half use functions with
N:1 cardinality. Additionally, some of them even al-
low functions that can output more than one parameter
(i.e., 1:N or N:M), but it is less usual.

Predicate Generation. All languages can generate
constant predicates as IRIs. Only four languages do
not allow dynamic predicates (WoT mappings, SMS2,
ShExML, and XLWrap). For those that do, they also
allow more than one data reference. The languages
that allow subject generation using multiple formats,
data sources, functions, and hierarchy iterations, pro-
vide the same features for predicate generation.

Object Generation. Generally, languages can gen-
erate a wider range of resources for objects, since
they can be IRIs, blank nodes, literals, lists, or con-
tainers. All of them can generate constant and dy-
namic literals and IRIs. Those languages that allow
blank nodes in the subject also allow them in the
object. Additionally, ShExML, KR2RML, SPARQL-
Generate, Facade-X, xR2RML, and WoT mappings
consider lists, and the last two languages also con-
sider containers (e.g. rr:termType xrr:RdfBag
in xR2RML). Data references, sources, hierarchy it-
erations, and functions remain the same as in subject
generation, with the addition of WoT mappings that
allow dynamic objects. Lastly, datatype and language
tags are not allowed in KR2RML and XLWrap; they
are defined as constants in the rest of the languages,
and dynamically in ShExML, XSPARQL, TARQL,
RML, and Helio (e.g., rml:languageMap for dy-
namic language tags in RML).

Triples Generation Example. Assuming the descrip-
tion of the data sources shown in Fig. 3b and Fig. 3c,
this example illustrates how xR2RML and RML+FnO
describe the rules to generate triples according to
the ontology depicted in Fig. 3a. Instances of the
classes eg:City and eg:Location have to be cre-
ated, along with values for the attributes eg:lat,

eg:long and eg:zipcode. A function is required
to remove the spaces in the field "city" from the
database table (Fig. 3c) in order to create the URI
of the instances correctly. In addition, the field "zip-
codes" has to be separated to retrieve each of its values
(see expected output in Listing 1). xR2RML is capa-
ble of correctly generating zip codes (Listing 5), but
it lacks the ability to correctly generate URI without
spaces. RML+FnO is capable of doing the opposite
(Listing 4).

1 mappings:
2 Locations:
3 sources: coord-source
4 s: http://ex.com/loc/$(latitude)-$(longitude)
5 po:
6 - [rdf:type, eg:Location]
7 - [eg:lat, $(latitude), xsd:decimal]
8 - [eg:long, $(longitude), xsd:decimal]
9

10 Cities:
11 sources: cities-source
12 s:
13 - function: fun:concat
14 parameters:
15 - [fun:param1, "http://ex.com/city/"]
16 - parameter: fun:param2
17 value:
18 function: fun:replace
19 parameters:
20 - [fun:param1, $(city)]
21 - [fun:param2, " "]
22 - [fun:param3, ""]
23 po:
24 - [rdf:type, eg:City]
25 - [eg:zipcode, $(zipcodes), xsd:integer]

Listing 4: RML+FnO mapping rules (written in
YARRRML) to describe the ontology depicted in
Fig. 3a.

1 <#Locations> a rr:TriplesMap ;
2 xrr:logicalSource <#LocationSource> ;
3 rr:subjectMap [
4 rr:template "http://ex.com/loc/{$.latitude}-{$.

longitude}" ;
5 rr:class eg:Location;];
6 rr:predicateObjectMap [
7 rr:predicate eg:lat ;
8 rr:objectMap [xrr:reference "$.latitude";
9 rr:datatype xsd:decimal];];

10 rr:predicateObjectMap [
11 rr:predicate eg:long ;
12 rr:objectMap [xrr:reference "$.longitude";
13 rr:datatype xsd:decimal];].
14

10 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

15 <#Cities> a rr:TriplesMap ;
16 xrr:logicalSource <#CitiesSource> ;
17 rr:subjectMap [
18 rr:template "http://ex.com/city/{city}" ;
19 rr:class eg:City ;];
20 rr:predicateObjectMap [
21 rr:predicate eg:zipcode ;
22 rr:objectMap [
23 xrr:reference "Column(zipcodes)/JSONPath($.*)";
24 rr:datatype xsd:integer] ;].

Listing 5: xR2RML mapping rules to describe the
ontology depicted in Fig. 3a.

4.2.3. General Features for Graph Construction
Table 4 shows the features of mapping languages re-

garding the construction of RDF graphs such as linking
rules, metadata or conditions, assignment to named
graphs, and declaration of transformation functions
within the mapping.

Statements. General features that apply to state-
ments are described in this section: the capability of
a language to assign statements to named graphs, to
retrieve data from only one source or more than one
source, and to apply conditions that have to be met in
order to create the statement (e.g. if the value of a field
called "required" is TRUE, the triple is generated).

Most RDF-based languages allow static assignment
to named graphs. R2RML, RML, R2RML-F, FunUL,
and D2RML enable also dynamic definitions (e.g.,
rr:graphMap in R2RML and in its extensions men-
tioned above). Theoretically, the rest of R2RML exten-
sions should also implement this feature; however, to
the best of our knowledge, it is not mentioned in their
respective specifications.

Allowing conditional statements is not usual; it
is only considered in the SPARQL-based languages
(with the exception of SMS2), XLWrap and D2RML
(e.g. xl:breakCondition in XLWrap). Regard-
ing data sources, all languages allow data retrieval
from at least one source; ShExML, XSPARQL, CSVW,
SPARQL-Generate, Facade-X, Helio, D-REPR and
D2RML enable more sources. That is, using data in
the same statement from, e.g., one CSV file and one
JSON file.

Linking Rules. Linking rules refer to linking re-
sources that are being created in the mapping. For in-
stance, having as object of a statement a resource that
is the subject of another statement. These links are im-
plemented in most languages by joining one or more

data fields. Six languages do not allow these links:
TARQL, CSVW, KR2RML, WoT, SMS2, and XL-
Wrap. The rest is able to perform linking with at least
one data reference and one or no condition. Fewer en-
able more data references and more conditions (e.g. in
R2RML and most extensions allow the application of
a rr:joinCondition over several fields).

Linking rules using join conditions imply evaluating
if the fields selected are equal. Since the join condition
is the most common, applying the equal logical opera-
tor is the preferred choice. Only a few languages con-
sider other similarity functions to perform link discov-
ery, such as the Levenshtein distance and Jaro-Winkler,
e.g., Helio.

Transformation functions. Applying functions in
mappings allows practitioners transforming data be-
fore it is translated. For instance, to generate a label
with an initial capital letter (ex:ID001 rdfs:label
"Emily") that was originally in lower case ("emily"),
a function may be applied (e.g. GREL function toTi-
tleCase()). Only four of the analyzed languages do
not allow the use of these functions: CSVW, R2RML,
xR2RML, and WoT mappings. Of those that do,
some use functions that belong to a specification (e.g.
RML+FnO uses GREL functions9). All of them con-
sider functions with cardinalities 1:1 and N:1; and
half of them also include 1:N and N:M (i.e., output
more than one value), for instance, a regular expres-
sion that matches and returns more than one value.
Nesting functions (i.e. calling a function inside another
function) is not unusual; this is the case of SPARQL-
based languages, the R2RML extensions that imple-
ment functions (except K2RML), Helio, D-REPR, and
XLWrap. Finally, some languages even enable extend-
ing functions depending on specific user needs, such as
XSPARQL, RML+FnO, SPARQL-Generate, Facade-
X, R2RML-F, FunUL, XLWrap and D2RML.

Graph Construction Example. Assuming the de-
scription of data sources shown in Fig. 3b and Fig. 3c
and the regular triples, this example shows how He-
lio and SPARQL-Generate describe conditional state-
ments and linking rules. To generate the eg:pop-
ulation attribute (Fig. 3a), the record must have
been updated after 2020. In addition, instances of the
classes eg:City and eg:Location can be joined
using the city name, present in both data sources. How-
ever, the names do not exactly match ("Almería" and

9https://docs.openrefine.org/manual/grelfunctions

https://docs.openrefine.org/manual/grelfunctions

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

"Almeria"; "A Coruña" and "La Coruña"), which is
why a distance metric is required to match the cities
with a threshold of 0.75. The Helio mapping is not
capable of describing the condition of the population,
but instead it is able to use the Levenshtein distance
function and link the sources (Listing 7). SPARQL-
Generate can describe the condition statement thanks
to the SPARQL construct FILTER, but does not im-
plement the distance metric function (Listing 6). How-
ever, both Helio and SPARQL-Generate allow the re-
moval of spaces in the subject URIs.

1 GENERATE {
2 <city/{REPLACE(?city, " ", "")}> a eg:City .
3 <loc/{?lat}-{?long}> a eg:Location .
4
5 GENERATE {
6 <city/{REPLACE(?city, " ", "")}> eg:population ?

population.
7 } WHERE {
8 FILTER("{?year_modified}"̂ x̂sd:integer > 2020)}.
9

10 GENERATE {
11 <city/{REPLACE(?city, " ", "")}> eg:location <loc

/{?lat}-{?long}>.
12 } WHERE {
13 FILTER(?loc_city = ?city)}.
14 }

Listing 6: SPARQL-Generate query with condi-
tional rules to describe the ontology depicted in
Fig. 3a.

1 {"resource_rules" : [
2 {
3 "id" : "Locations",
4 "datasource_ids" : ["locations_source"],
5 "subject" : "http://ex.com/loc/{$.latitude}-{$.

longitude}",
6 },{
7 "id" : "Cities",
8 "datasource_ids" : ["cities_source"],
9 "subject" : "http://ex.com/city/[replace({$.city},

’ ’, ’’)]",
10 "properties" : [{
11 "predicate" : "http://example.com/geo#population

",
12 "object" : "{population}",
13 "is_literal" : "True",
14 }]
15 }],
16 "link_rules" : [
17 {
18 "condition" : "levenshtein(S({city}), T({$.city}))

>0.75",

19 "source" : "Cities",
20 "target" : "Locations",
21 "predicate" : "http://example.com/geo#location"
22 }]}

Listing 7: Helio mapping with linking rules to de-
scribe the ontology depicted in Fig. 3a.

4.3. Mapping Challenges

Following its inception, the W3C Knowledge Graph
Construction Community Group6 defined a series of
challenges for mapping languages based on the ex-
perience of members in using declarative mappings1.
These challenges are a summary of the limitations of
current languages. They have been partially addressed
independently in some of the analyzed languages, such
as RML [64] and ShExML [46]. These challenges are
summarized as follows:

– [C1] Language Tags and Datatype. It refers to
dynamically building language tags ([C1a]) and
datatypes ([C1b]), that is, from data rather than as
constant values.

– [C2] Iterators. This challenge addresses the need
to access data values ’outside’ the iteration pat-
tern ([C2a]), especially in some tree-like data
sources such as JSON; and iterating over multi-
value references ([C2b]).

– [C3] Multi-value References. It discusses how
languages handle data fields that contain multiple
values ([C3a]), their datatypes and associated lan-
guage tags ([C3b]).

– [C4] RDF Collections and Containers. This
challenge addresses the need to handle RDF col-
lections and containers.

– [C5] Joins. It refers to joining resources with zero
join conditions ([C5a]) and joining literals instead
of IRIs ([C5b]).

4.4. Conceptual Mapping Requirements

In order to extract the requirements that serve as the
basis for the development of the Conceptual Mapping
ontology, we take as input the analysis from the com-
parison framework and the Mapping Challenges de-
scribed in previous sections. From a combination of
their features, we extract 30 requirements. These re-
quirements are expressed as facts, and are available

12 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

in the ontology repository and portal10. Each require-
ment has a unique identifier, its provenance (compari-
son framework or mapping challenge id) and the cor-
responding constructs in the ontology. The constructs
are written in Turtle, and lack cardinality restrictions
for the sake of understandability. These requirements
are tested with Themis, and its corresponding tests in-
clude these restrictions. More details on the evaluation
of the requirements are provided in Section 5.3.

The requirements gathered range from general-
purpose to fine-grained details. The general-purpose
requirements refer to the basic fundamental capabil-
ities of mappings, e.g., to create the rules to gener-
ate RDF triples (cm-r8) from reference data sources
(cm-r7). The requirements with the next level of de-
tail involve some specific restrictions and functionali-
ties, e.g. to indicate the specific type (whether they are
IRIs, Blank nodes, etc.) of subjects (cm-r16), predi-
cates (cm-r17), objects (cm-r18), named graphs (cm-
r19), datatypes (cm-r20) and language tags (cm-r21);
the possibility of using linking conditions (cm-r23)
and functions (cm-r15). Finally, some requirements re-
fer to specific details or features regarding the descrip-
tion of data sources (e.g. cm-r4, cm-r6) and transfor-
mation rules (e.g. cm-r14, cm-r22, cm-r25).

Not all the observed features in the comparison
framework have been added to the set of requirements.
Some features are really specific, and supported by a
minority of languages, sometimes only one language.
As a result, we selected the (really) detailed features
in these requirements to build the core specification of
the Conceptual Mapping when they tackled the basic
functionalities of the language. The rest of the details
are left to be included as extensions. This differentia-
tion and the modeling criteria is explained further in
Section 5.

5. Conceptual Mapping Implementation

This section describes in detail the activities and
tasks carried out to implement the ontology, that con-
sists in the conceptualization of the model, the encod-
ing in a formal language, and the evaluation to fix er-
rors, inconsistencies, and ensure that it meets the re-
quirements. Additionally, an example of the ontology’s
use is presented at the end of the section.

10https://oeg-upm.github.io/Conceptual-Mapping/requirements/
requirements-core.html

5.1. Ontology Conceptualization

The ontology’s conceptualization is built upon the
requirements extracted from experts experience, a
thorough analysis of the features and capabilities of
current mapping languages presented as a compara-
tive framework; and the languages’ limitations dis-
cussed by the community and denoted as Mapping
Challenges. The resulting ontology model is depicted
in Fig. 4. This model represents the core specification
of the Conceptual Mapping ontology that contains the
essential features to cover the requirements. Some de-
tailed features are also included when considered im-
portant to the language expressiveness, or needed for
the language main functionality. Other detailed fea-
tures are considered as extensions, as explained further
in this section. For description purposes, we divide the
ontology into two parts, Statements and Data Sources,
that compose the core model. These two parts, when
not used in combination, cannot describe a complete
mapping. For that reason they are not separated into
single modules.

Data sources. A data source (DataSource) de-
scribes the source data that will be translated. For
this section, the Data Catalog (DCAT) vocabulary [24]
has been reused. DataSource is a subclass of
dcat:Distribution, which is a specific repre-
sentation of a dataset (dcat:Dataset), defined as
“data encoded in a certain structure such as lists, tables
and databases”. A source can be a streaming source
(StreamSource) that continuously generates data,
a synchronous source (SynchronousSource) or
an asynchronous source (AsynchronousSource).
Asynchronous sources, in turn, can be event sources
(EventSource) or periodic sources (Periodic
Source). The details of the data source access are
represented with the data access service class (Data
AccessService), which in turn is a subclass of
dcat:DataService. This class represents a col-
lection of operations that provides access to one or
more datasets or data processing functions, i.e., a de-
scription of how the data is accessed and retrieved. The
data access service optionally has a security scheme
(e.g., OAuth2, API Key, etc.) and an access protocol
(e.g., HTTP(s), FTP, etc.).

Data properties in the dcat:Dataset, dcat:
Distribution and dcat:DataService classes
may be reused according to the features that may be
represented in each mapping language, e.g. dcat:
endpointDescription, dcat:endpointURL

https://oeg-upm.github.io/Conceptual-Mapping/requirements/requirements-core.html
https://oeg-upm.github.io/Conceptual-Mapping/requirements/requirements-core.html

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

<<
ow

l:d
is

jo
in

tU
ni

on
O

f>
>

D
at

aS
ou

rc
e

(0
..1

) e
nc

od
in

g:
: s

tri
ng Ev

en
tS

ou
rc

e
Sy

nc
hr

on
ou

sS
ou

rc
e

Pe
rio

di
cS

ou
rc

e

D
at

aA
cc

es
sS

er
vi

ce

ha
sS

ec
ur

ity
Sc

he
m

e
(0

..N
)

ha
sD

at
aS

ou
rc

e
(1

..1
)

w
ot

:S
ec

ur
ity

Sc
he

m
e

ha
sS

ub
je

ct
 (1

..1
)

ha
sD

at
at

yp
e

(0
..1

)

St
at

em
en

tM
ap

Ev
al

ua
bl

eE
xp

re
ss

io
n

As
yn

ch
ro

no
us

So
ur

ce

(0
..1

) r
ef

re
sh

Ti
m

e:
: i

nt
eg

er
St

re
am

So
ur

ce

ha
sE

va
lu

ab
le

Ex

pr
es

si
on

 (1
..1

)

R
es

ou
rc

eM
ap

ha
sO

bj
ec

t
(1

..1
)

sk
os

:C
on

ce
pt

Fu
nc

tio
nT

ax
on

om
y

sk
os

:C
on

ce
pt

Pr
ot

oc
ol

Ta
xo

no
m

y

ha
sP

ro
to

co
l(0

..1
)

ha
sF

un
ct

io
nN

am
e

(0
..1

)

C
on

st
an

t

(0
..1

) c
on

st
an

tV
al

ue
::

rd
fs

:R
es

ou
rc

e

R
ef

er
en

ce
N

od
eM

ap

ha
sD

at
at

yp
e

(0
..1

)

Bl
an

kN
od

eM
ap

ha
sP

re
di

ca
te

(1

..1
)

N
od

eM
ap

rd
f:L

is
t

ha
sN

am
ed

G
ra

ph
 (0

..1
)

ha
sL

an
gu

ag
e

(0

..1
)

Fu
nc

tio
nE

xp
re

ss
io

n

dc
at

:D
is

tri
bu

tio
n

(0
..N

) d
ca

t:m
ed

ia
Ty

pe

ha
sF

ra
m

e
(0

..1
)

D
at

aF
ie

ld

(1
..1

) f
ie

ld
::

st
rin

g

dc
at

:D
at

aS
er

vi
ce

(0
..N

) d
ca

t:e
nd

po
in

tU
R

L

dc
at

:a
cc

es
sS

er
vi

ce
 (0

..N
)

dc
at

:d
is

tri
bu

tio
n

(0
..N

)

dc
at

:D
at

as
et

dc
at

:s
er

ve
sD

at
as

et
 (0

..N
)

ha
sF

ie
ld

(0

..N
)

rd
f:f

irs
t

Ex
pr

es
si

on
Li

st

rd
f:r

es
t

<<
ow

l:d
is

jo
in

tU
ni

on
O

f>
>

Fr
am

e

la
ng

ua
ge

(0

..1
)

So
ur

ce
Fr

am
e

(0
..1

) e
xp

re
ss

io
n:

: s
tri

ng

ha
sN

es
te

dF
ra

m
e

(0
..1

)

C
om

bi
ne

dF
ra

m
e

co
m

bi
ne

sF
ra

m
e

(2
..2

)

Jo
in

C
om

bi
na

tio
n

(0
..1

) t
yp

e:
: s

tri
ng

U
ni

on
C

om
bi

na
tio

n

C
ar

te
ss

ia
nP

ro
du

ct
C

om
bi

na
tio

n

Li
te

ra
lM

ap

C
on

ta
in

er
M

ap

Li
st

M
ap

pr
op

er
ty

 (1
..1

)

Li
nk

in
gM

apta
rg

et
 (1

..1
)

jo
in

sB
y

(2
..2

)

be
lo

ng
sT

oF
ra

m
e

(1
..1

)

ha
sB

oo
le

an
C

on
di

tio
n

(1
..N

)

C
on

di
tio

na
lS

ta
te

m
en

tM
ap

in
ve

rs
eP

ro
pe

rty
 (0

..1
)

ha
sI

np
ut

 (0
..1

)

so
ur

ce
 (1

..1
)

ha
sB

oo
le

an
C

on
di

tio
n

(0
..N

)

N
am

es
pa
ce
s:

ba
se

: h
ttp

://
vo

ca
b.

lin
ke

dd
at

a.
es

/d
ef

/c
on

ce
pt

ua
l-m

ap
pi

ng

rd
fs

: h
ttp

://
w

w
w.

w
3.

or
g/

20
00

/0
1/

rd
f-s

ch
em

a#

rd
f:

ht
tp

://
w

w
w.

w
3.

or
g/

19
99

/0
2/

22
-rd

f-s
yn

ta
x-

ns

sk
os

: h
ttp

://
w

w
w.

w
3.

or
g/

20
04

/0
2/

sk
os

/c
or

e#

w
ot

: h
ttp

s:
//w

w
w.

w
3.

or
g/

20
19

/w
ot

/s
ec

ur
ity

ow

l:
ht

tp
://

w
w

w.
w

3.
or

g/
20

02
/0

7/
ow

l#

dc
at

: h
ttp

://
w

w
w.

w
3.

or
g/

ns
/d

ca
t#

Le
ge
nd

R
eu

se
d

C
la

ss

D
at

a
Pr

op
er

ty

C
la

ss

D
at

a
Pr

op
er

ty

su
bC

la
ss

O
f

O
bj

ec
t P

ro
pe

rty
<<

st
er

eo
ty

pe
>>

D
at

a
So

ur
ce

s

St
at

em
en

ts

Ba
gM

ap

Al
tM

ap
Se

qM
ap

rm
l:R

ef
er

en
ce

Fo
rm

ul
at

io
n

Fi
g.

4.
:V

is
ua

lr
ep

re
se

nt
at

io
n

of
th

e
C

on
ce

pt
ua

lM
ap

pi
ng

on
to

lo
gy

cr
ea

te
d

us
in

g
th

e
C

ho
w

lk
di

ag
ra

m
no

ta
tio

n
[5

8]
.

14 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and dcat:accessURL. A data access service is re-
lated to a security scheme. The class wot:Securi-
tyScheme (from the Web of Things (WoT) Secu-
rity ontology2) has been reused. This class has dif-
ferent types of security schemes as subclasses and
includes properties to specify the information on
the scheme (e.g. the encryption algorithm, the for-
mat of the authentication information, the location of
the authentication information). The security protocol
hasProtocol has as set of predefined values that
have been organized as a SKOS concept scheme. It
contains almost 200 security protocols, e.g., HTTP(s),
JDBC, FTP, GEO, among others. This SKOS list can
be extended according to the users’ needs by adding
new concepts.

In order to represent the fragments of data that are
referenced in a statement map, the class Frame has
been defined. They are connected with the property
hasFrame. A frame can be a SourceFrame (base
case) or a CombinedFrame, the latter representing
two source frames or combined frames that are com-
bined by means of a join (JoinCombination), a
union (UnionCombination) or a cartessian prod-
uct (CartessianProductCombination).

A source frame corresponds to a data source (with
hasDataSource) and defines which data is re-
trieved from the source and how it is fragmented (with
expression). Among others, JSONPaths, XPaths,
queries, or regular expressions can be expressed with
this feature. The language of the expression is de-
fined with language, which domain is the reused
class from RML rml:ReferenceFormulation.
A source frame may be related to another source frame
with hasNestedFrame, e.g. a frame is accessed
firstly with a SPARQL query, and their results as a
CSV file with this property. A source fragment may
refer to many data fields (with hasField, which is
the inverse property of belongsToFrame).

Statements. The central class of this section is the
StatementMap, which represents a rule that de-
fines for a triple its subject (hasSubject), predi-
cate (hasPredicate), and object (hasObject).
Optionally, it can also specify the object datatype
(hasDatatype), language (hasLanguage) and
assigned named graph (hasNamedGraph). There-
fore, statement maps are similar to RDF statements
as both of them are comprised by a subject, predi-
cate and object. In statement maps, objects are re-
sources (ResourceMap), and subjects and pred-
icates are more specific, certain subclasses of the

resource map: predicates are reference node maps
(ReferenceNodeMap) that represent resources with
an IRI, i.e., ontology properties. Subjects are node
maps (NodeMap) that may be blank nodes (Blank
Node) or also reference node maps. An object may
be a literal (LiteralMap), a blank node, a container
(ContainerMap) or a collection that defines a list
(ListMap). The language is expressed as a literal,
and the datatype is also a resource with an IRI, i.e. a
reference node map.

Resource maps are expressed with an evaluable
expression (EvaluableExpression) that may
be a constant value (Constant), a function ex-
pression (FunctionExpression), or a data field
(DataField) that belongs to some data source frag-
ment (belongsToFrame). For function expres-
sions, the function name (hasFuntionName) is
taken from a set of predefined names organized in a
SKOS concept scheme. This SKOS list can be ex-
tended according to the users’ needs by adding new
concepts for functions that have not been defined.
Recursion in this function expression is represented
through its input (hasInput) as an expression list
(ExpressionList). Expression lists have been rep-
resented as a subclass of RDF lists (rdf:List), and
the properties (rdf:first) and (rdf:rest) have
been reused. Expression lists may have nested expres-
sion lists inside.

A special case of a statement map is a conditional
statement map (ConditionalStatementMap), a
statement map that must satisfy a condition for the
triples to be generated. The condition (hasBoolean
Condition) is a function expression (e.g. if a value
from a field called “present” is set to “False”, the state-
ment is not generated). Another relevant class is the
linking map (LinkingMap), that enables linking sub-
jects from a source (source) and a target (target)
statement maps, i.e., two resources are linked and
triples are generated if a linking condition is satisfied.
Similarly to the conditional statement map, this condi-
tion is represented as a function expression.

5.2. Ontology Design Patterns

The following ontology design patterns have been
applied in the conceptualization as they are common
solutions to the problem of representing taxonomies
and linked lists:

– The SKOS vocabulary has been reused to rep-
resent some coding schemes such as the proto-

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

col taxonomy and the function taxonomy. The
design pattern consists on having an instance
of skos:ConceptScheme for each taxon-
omy, then each concept or term in the taxon-
omy, skos:Concept, is related to the corre-
sponding concept scheme through the property
skos:inScheme. The class that uses the taxon-
omy is then related to skos:Concept through
an object property, e.g., class DataAccessSer-
vice and object property hasProtocol.

– The class ExpressionList uses the design
pattern for lists developed in RDF where the prop-
erties rdf:first and rdf:rest are used to
represent a linked list. The base case (first) is an
evaluable expression whereas the rest of the list is
(recursively) an ExpressionList.

5.3. Ontology evaluation

The ontology, once implemented, has been evalu-
ated in different ways to ensure that it is correctly im-
plemented, it has no errors or pitfalls, and meets the
requirements.

Reasoner. We used the reasoner Pellet in Protégé to
look for inconsistencies in the model, and the results
showed no errors.

OOPS!. This tool was used to identify modeling pit-
falls in the ontology. We executed the tool several
times to fix the pitfalls, until there were no impor-
tant ones. Currently, the results of OOPS! show pitfalls
from the reused ontologies, but none important for the
newly created terms and axioms. One minor pitfall is
returned, P13, regarding the lack of inverse relation-
ships, which we consider that are not needed in the
ontology. The rest of the pitfalls are as follows: P08
(missing annotations) from DCTERMS; P11 (missing
domain or range in properties) for DCTERMS, DCAT
and SKOS; and P20 (misusing ontology annotations)
for DCAT.

Themis. Themis is able to evaluate whether the re-
quirements are implemented in the ontology. To that
end, the requirements must be provided in a specific
syntax or described with the Verification Test Case
(VTC) ontology11. The requirements of the Concep-
tual Mapping were translated to create the correspond-

11https://albaizq.github.io/test-verification-ontology/OnToology/
ontology/verification-test-description.ttl/documentation/index-en.
html

SourceFramecsvw:Dialect

Namespaces:
base: http://vocab.linkeddata.es/def/conceptual-mapping#
csvw: http://www.w3.orgns/csvw#

Legend

Reused Class

Data Property

Class

Data Property
subClassOf

CSVSourceFrame

csvw:trim:: boolean
csvw:skipRows:: nonNegativeInteger
csvw:skipInitialSpace:: boolean
csvw:skipColumns:: nonNegativeInteger
csvw:skipBlankRows:: boolean
csvw:quoteChar:: string
csvw:lineTerminators:: string
csvw:headerRowCount:: nonNegativeInteger
csvw:header:: boolean
csvw:doubleQuote:: boolean
csvw:delimiter:: string
csvw:commentPrefix:: string
csvw:separator:: string

Fig. 5. CSV extension conceptualization.

ing tests, and were tested in the tool with success. The
requirements and associated test along with the com-
plete set of tests annotated with the VTC ontology are
available in the GitHub repository12.

FOOPS!. Additionally, we tried running FOOPS! to
check the FAIRness of the ontology, resulting in 73%,
which is acceptable. To improve the score, the ontol-
ogy should be added to a registry and have more meta-
data describing it, and use a persistent base IRI.

With these evaluations, we can conclude that the on-
tology is correctly encoded and implemented, and that
it meets the requirements specified in Section 4.

5.4. Extensibility

The Conceptual Mapping ontology has been de-
signed as a core ontology. However, as time passes,
new requirements may emerge. In order to include
these new requirements, new modules of the Concep-
tual Mapping ontology shall be developed. It is worth
mentioning that this is a common practice for ontolo-
gies, which is highly suitable for adapting an exist-
ing ontology to new scenarios, by ontology modules

12https://github.com/oeg-upm/Conceptual-Mapping/tree/main/
requirements

https://albaizq.github.io/test-verification-ontology/OnToology/ontology/verification-test-description.ttl/documentation/index-en.html
https://albaizq.github.io/test-verification-ontology/OnToology/ontology/verification-test-description.ttl/documentation/index-en.html
https://albaizq.github.io/test-verification-ontology/OnToology/ontology/verification-test-description.ttl/documentation/index-en.html
https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements

16 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

specialized for a specific set of requirements. A clear
example of this is the SAREF ontology13, that has a
core module14 and then specific extensions15 for cer-
tain domains, such as energy (SAREF4ENER), build-
ings (SAREF4BLDG), etc.

In the case of the Conceptual Mappings a sample
extension16 is provided to showcase this feature. The
extension focuses on describing CSV, a detailed fea-
ture present in some languages but not included in the
core specification presented in previous sections. To
this end, the CSVW proposal has been blended as an
ontology module linked to the core Conceptual Map-
ping ontology. This module is depicted in Fig. 5.

5.5. Ontology usage example

This section builds a mapping in three steps (data
sources in Listing 8, triples in Listing 9 and special
statements in Listing 10) to represent how the pro-
posed language can describe data with different fea-
tures. The mapping uses the data sources "coordi-
nates.json" (Fig. 3b) and "cities"(Fig. 3c) as input and
the ontology depicted in Fig. 3a as reference, to create
the output RDF shown in Listing 1. Additionally, Ap-
pendix A contains a second example to illustrate dif-
ferent features than the ones represented in the exam-
ple of this section, to provide more insights about the
expressiveness of this language.

Data sources. Listing 8 shows the description of
the json file "coordinates.json" indicating the proto-
col from the SKOS concept scheme (cmp:https),
media type ("application/json"), JSONPath to extract
data, access URL "https://ex.com/geodata/coordinates-
.json", and fields that are going to be used in the trans-
formation. There is no security scheme. The MySQL
table "cities" also has no security scheme, the protocol
needed is cmp:jdbc, the database access is specified
in the endpoint URL, and the table as an SQL query.
The fields are also specified, with the special case of
"zipcodes" that needs a cm:hasNestedFrame to
extract multiple values inside the field.

1 # Locations
2 :FrameLoc a cm:SourceFrame;
3 cm:expression "$.coordinates[*]";
4 cm:language ql:JSONPath ;

13https://saref.etsi.org/
14https://saref.etsi.org/core/v3.1.1/
15https://saref.etsi.org/extensions.html
16http://vocab.linkeddata.es/def/conceptual-mapping-csv

5 cm:hasField :lat;
6 cm:hasField :long;
7 cm:hasField :loc_city;
8 cm:hasDataSource [a cm:SynchronousSource;
9 dcat:mediaType "text/json";

10 dcat:accessService [
11 cm:hasProtocol cmp:https;
12 dcat:endpointURL "https://ex.com/geodata/

coordinates.json"
13 cm:hasSecurityScheme [a wotsec:NoSecurityScheme

;];
14] ;
15] .
16
17 :lat a cm:DataField ; cm:field "$.latitude" .
18 :long a cm:DataField ; cm:field "$.longitude" .
19 :loc_city a cm:DataField; cm:field "$.city" .
20
21 # Cities
22 :FrameCities a cm:SourceFrame ;
23 cm:expression "SELECT * FROM cities;";
24 cm:hasField :c_city;
25 cm:hasField :population;
26 cm:hasField :year;
27 cm:hasNestedFrame [
28 cm:expression "$.zipcodes[*]";
29 cm:hasField :zipcode];
30 cm:hasDataSource [a cm:SynchronousSource;
31 dcat:mediaType "text/plain";
32 dcat:accessService [
33 cm:hasProtocol cmp:jdbc;
34 dcat:endpointURL "jdbc:mysql://localhost:3306/

citydb";
35 cm:hasSecurityScheme [a wotsec:NoSecurityScheme

;]].
36
37 :c_city a cm:DataField; cm:field "city" .
38 :population a cm:DataField; cm:field "population" .
39 :year a cm:DataField; cm:field "year_modified" .
40 :zipcode a cm:DataField cm:field "zipcodes" .

Listing 8: Description with the Conceptual Map-
ping of two data sources (a JSON file and a relational
database), their access and fields.

Statements. Listing 9 contains the rules needed to
create instances of the classes eg:Location and
eg:City; and their following attributes: eg:lat
and eg:long for the former; eg:zipcode for the
latter. To correctly generate the URI for the instances
of eg:City, a replace function inside a concatenate
function is needed to (1) remove the blank spaces in
the field "city" and (2) add the field to the base URI
"http://ex.com/city/".

1 # Locations

https://saref.etsi.org/
https://saref.etsi.org/core/v3.1.1/
https://saref.etsi.org/extensions.html
http://vocab.linkeddata.es/def/conceptual-mapping-csv

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2 :SubjectLoc a cm:ReferenceNodeMap ;
3 cm:hasEvaluableExpression [
4 cm:hasFunctionName cmf:concat;
5 cm:hasInput ([cm:constantValue "http://ex.com/loc/

"] :lat [cm:constantValue "-"] :long)].
6
7 :StatementLoc1 a cm:StatementMap ;
8 cm:hasFrame :FrameLoc ;
9 cm:subject :SubjectLoc ;

10 cm:predicate [a cm:ReferenceNodeMap;
11 cm:hasEvaluableExpression [cm:constantValue rdf:

type]];
12 cm:object [cm:hasEvaluableExpression [cm:

constantValue eg:Location]].
13
14 :StatementLoc2 a cm:StatementMap ;
15 cm:hasFrame :FrameLoc ;
16 cm:subject :SubjectLoc ;
17 cm:predicate [a cm:ReferenceNodeMap;
18 cm:hasEvaluableExpression [cm:constantValue eg:lat

]];
19 cm:object [a cm:Literal; cm:hasEvaluableExpression

:lat];
20 cm:hasDatatype [cm:hasEvaluableExpression xsd:

decimal].
21
22 :StatementLoc3 a cm:StatementMap ;
23 cm:hasFrame :FrameLoc ;
24 cm:subject :SubjectLoc ;
25 cm:predicate [a cm:ReferenceNodeMap;
26 cm:hasEvaluableExpression [cm:constantValue eg:

long]];
27 cm:object [a cm:Literal; cm:hasEvaluableExpression

:long];
28 cm:hasDatatype [cm:hasEvaluableExpression xsd:

decimal].
29
30 # Cities
31 :city_ns a cm:FunctionExpression ;
32 cm:functionName cmf:replace ;
33 cm:hasInput (c_city " " "")
34
35 :SubjectCities a cm:ReferenceNodeMap;
36 cm:hasEvaluableExpression [
37 cm:hasFunctionName cmf:concat;
38 cm:hasInput ([cm:constantValue "http://ex.com/city

/"] :city_ns)].
39
40 :StatementCit1 a cm:StatementMap ;
41 cm:hasFrame :FrameCities ;
42 cm:subject :SubjectCities ;
43 cm:predicate [a cm:ReferenceNodeMap;
44 cm:hasEvaluableExpression [cm:constantValue rdf:

type]];
45 cm:object [a cm:ReferenceNodeMap;
46 cm:hasEvaluableExpression [cm:constantValue eg:

City]] .
47
48 :StatementCit2 a cm:StatementMap ;
49 cm:hasFrame :FrameCities ;
50 cm:subject :SubjectCities ;

51 cm:predicate [a cm:ReferenceNodeMap;
52 cm:hasEvaluableExpression [cm:constantValue rdfs:

label]];
53 cm:object [a cm:ReferenceNodeMap;
54 cm:hasEvaluableExpression [cm:constantValue :

c_city]] .
55 cm:hasLanguage [cm:hasEvaluableExpression [cm:

constantValue "es"]].
56
57 :StatementCit3 a cm:StatementMap ;
58 cm:hasFrame :FrameCities ;
59 cm:subject :SubjectCities ;
60 cm:predicate [a cm:ReferenceNodeMap;
61 cm:hasEvaluableExpression [cm:constantValue eg:

zipcode]];
62 cm:object [a cm:Literal;
63 cm:hasEvaluableExpression [cm:constantValue :

zipcode]];
64 cm:hasDatatype [cm:hasEvaluableExpression xsd:

integer].

Listing 9: Description with the Conceptual Map-
ping of the creation of regular statements from the data
sources described in Listing 8.

Special statements. Listing 10 describes how a con-
ditional statement and a linking rule are generated.
This description is represented by means of functions.
With the property cm:hasBooleanCondition,
the conditional statement declares that the field :year
has to be greater than 2020. The linking rule per-
forms the link between the instances of eg:City and
eg:Location with the predicate eg:location,
using a distance metric (levenshtein function) that has
to be greater then a threshold of "0.75".

1 :StatementCit4 a cm:ConditionalStatementMap ;
2 cm:hasFrame :FrameCities ;
3 cm:subject :SubjectCities ;
4 cm:predicate [a cm:ReferenceNodeMap;
5 cm:hasEvaluableExpression [cm:constantValue eg:

population]];
6 cm:object [a cm:Literal;
7 cm:hasEvaluableExpression [cm:constantValue :

population]];
8 cm:hasDatatype [cm:hasEvaluableExpression xsd:

integer];
9 cm:hasBooleanCondition [

10 cm:functionName cmf:greater_than ;
11 cm:hasInput (:year 2020)] .
12
13 :LinkExp1 a cm:LinkingExpression ;
14 cm:source :StatementCit1 ;
15 cm:target :StatementLoc1 ;
16 cm:property eg:location ;
17 cm:hasBooleanCondition [

18 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

18 cm:functionName cmf:greater_than ;
19 cm:hasInput (:levfun 0.75)] .
20
21 :levfun a cm:FunctionExpression ;
22 cm:functionName cmf:levenshtein_distance ;
23 cm:hasInput (:c_city :loc_city) .

Listing 10: Conditional and linking rules described
with the Conceptual Mapping that complement the
data source description and regular statements de-
scribed in Listing 8 and Listing 9.

6. Conceptual Mapping Publication and
Maintenance

The ontology is considered ready for publication
when it passes all evaluations. This means that it is cor-
rectly implemented in the formal language (OWL) and
meets the requirements.

In order to publish the ontology, the first step
required is to create the ontology documentation.
We used Widoco [61], integrated inside the OnTool-
ogy [62] system, to automatically generate and update
the HTML documentation every time there is a commit
in the GitHub repository where the ontology is stored.
This documentation contains the ontology metadata,
links to the previous version, a description of the on-
tology, the diagram, and detailed examples of the ca-
pabilities of the language. It is published using a W3ID
URL5 and under the CC BY-SA 4.0 license.

The HTML documentation is not the only documen-
tation resource provided. An overview of all resources
is provided in the ontology portal3. This portal shows
in a table the ontologies associated with the Concep-
tual Mapping ontology. For now, the core (Conceptual
Mapping) and an extension to describe CSV files in
detail (Conceptual Mapping - CSV Description) are
available. For each ontology, links to the HTML doc-
umentation, the requirements, the GitHub repository,
the Issue Tracker, and the releases are provided.

The maintenance is supported by the Issue Tracker17,
where proposals for new requirements, additions, dele-
tions or modifications can be added as GitHub issues.
This approach allows authors to review the proposals
and discuss their possible implementation.

17https://github.com/oeg-upm/Conceptual-Mapping/issues

7. Conclusion and Future Work

This paper presents the Conceptual Mapping, an
ontology-based mapping language that aims to gather
the expressiveness of current declarative mapping lan-
guages. In order to build this ontology, we first con-
ducted an extensive analysis of the state-of-the-art
mapping specifications (presented as a comparison
framework) and mapping challenges proposed by the
community, improving the understanding of current
mapping languages and expanding previous studies on
the comparison of language characteristics. Then, this
analysis allowed us to develop a unique model that
aims to integrate the common features of existing lan-
guages, acknowledging the limitations of representing
the full potential of SPARQL-based languages such as
SPARQL-Generate or Facade-X. Next, the approach
was evaluated by validating that the constructs pro-
vided by this language can address the requirements
extracted from the two-fold analysis. Thus, we ensure
that this language covers the required expressiveness.
The language is formalized as an ontology that is avail-
able along with a documentation online.

Our future work lines include exploring the limita-
tions of the current scope and addressing the gap to
be able to represent the expressiveness of SPARQL-
based languages. Similarly to a programming lan-
guage, SPARQL-based languages can specify "instruc-
tions" to describe and transform data that is not ac-
cessible by other languages, because of inner restric-
tions or simply because they lack the necessary con-
structs. At some point, modelling constructs for each
specific use case becomes unfeasible, unpractical and
very likely, too verbose. Despite the difficulties, we
want to keep updating with modules our ontology with
new issues and addressing the limitations to a reason-
able extent. We also want to explore the possibility of
implementing this ontology as a common interchange
language for mapping translation purposes [65, 66]
that we believe can help build bridges toward map-
ping interoperability. We also consider the integration
of the mapping translation step into the common work-
flow for constructing virtual and materialized Knowl-
edge Graphs, using this conceptual model as the core
resource for carrying out this process. Furthermore,
we want to integrate this ontology into previous work
on mapping rules management, MappingPedia [67],
with the translation step between different specifica-
tions. In this manner, we aim to help users and practi-
tioners during the selection of mapping languages and
engines, not forcing them to select the ones that are

https://github.com/oeg-upm/Conceptual-Mapping/issues

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

only under their control, but being able to select the
ones that best fit their own specific use cases. Finally,
we want to specify the correspondence of concepts be-
tween the considered mapping languages and the Con-
ceptual Mapping, and to formally define the semantics
and operators required to perform the mapping trans-
lation, adapting previous works on schema and data
translations [68, 69].

Acknowledgements

We are thankful for the feedback provided by Anas-
tasia Dimou during the elaboration of this paper. The
work presented in this paper is supported by the Span-
ish Ministerio de Ciencia e Innovación funds under
the Spanish I+D+I national project KnowledgeSpaces:
Técnicas y herramientas para la gestión de grafos de
conocimientos para dar soporte a espacios de datos
(PID2020-118274RB-I). Also, this work is partially
funded by the EuropeanUnion’s Horizon 2020 Re-
search and Innovation Programme through the AURO-
RAL project, Grant Agreement No. 101016854. David
Chaves-Fraga is supported by the Spanish Minister
of Universities (Ministerio de Universidades) and by
NextGenerationEU funds through the Margarita Salas
postdoctoral fellowship.

References

[1] U. Simsek, J. Umbrich and D. Fensel, Towards a Knowledge
Graph Lifecycle: A pipeline for the population of a commer-
cial Knowledge Graph, in: Proceedings of the Conference on
Digital Curation Technologies (Qurator 2020), Berlin, Ger-
many, January 20th - 21st, 2020, A. Paschke, C. Neudecker,
G. Rehm, J.A. Qundus and L. Pintscher, eds, CEUR Workshop
Proceedings, Vol. 2535, CEUR-WS.org, 2020. http://ceur-ws.
org/Vol-2535/paper_10.pdf.

[2] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G.D. Melo,
C. Gutierrez, S. Kirrane, J.E. Labra-Gayo, R. Navigli, S. Neu-
maier et al., Knowledge graphs, ACM Computing Surveys
(CSUR) 54(4) (2021), 1–37. https://doi.org/10.1145/3447772.

[3] F. Michel, J. Montagnat and C.F. Zucker, A survey of RDB to
RDF translation approaches and tools, Technical Report, 2014.
https://hal.archives-ouvertes.fr/hal-00903568.

[4] J. Arenas-Guerrero, M. Scrocca, A. Iglesias-Molina, J. Toledo,
L.P. Gilo, D. Dona, O. Corcho and D. Chaves-Fraga, Knowl-
edge Graph Construction with R2RML and RML: An ETL
System-based Overview, in: Proceedings of the 2nd Inter-
national Workshop on Knowledge Graph Construction co-
located with 18th Extended Semantic Web Conference (ESWC
2021), Online, CEUR Workshop Proceedings, Vol. 2873,
CEUR-WS.org, 2021. http://ceur-ws.org/Vol-2873/paper11.
pdf.

[5] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenz-
erini and R. Rosati, Linking Data to Ontologies, in: Journal on
Data Semantics X, S. Spaccapietra, ed., Springer, Berlin, Hei-
delberg, 2008, pp. 133–173. doi:10.1007/978-3-540-77688-
8_5.

[6] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi,
R. Rosati and M. Zakharyaschev, Ontology-Based Data Ac-
cess: A Survey, in: Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
18, Stockholm, Sweden, International Joint Conferences on
Artificial Intelligence Organization, 2018, pp. 5511–5519.
doi:10.24963/ijcai.2018/777.

[7] A. Chebotko, S. Lu and F. Fotouhi, Semantics preserving
SPARQL-to-SQL translation, Data & Knowledge Engineering
68(10) (2009), 973–1000. doi:10.1016/j.datak.2009.04.001.

[8] A. Dimou, M.V. Sande, P. Colpaert, R. Verborgh, E. Man-
nens and R. Van De Walle, RML: A generic language for
integrated RDF mappings of heterogeneous data, in: Work-
shop on Linked Data on the Web co-located with the 23rd
International World Wide Web Conference (LDOW@WWW
2014), Seoul, Korea, CEUR Workshop Proceedings, Vol. 1184,
CEUR-WS.org, 2014. http://ceur-ws.org/Vol-1184/ldow2014_
paper_01.pdf.

[9] F. Michel, L. Djimenou, C.F. Zucker and J. Montagnat, Trans-
lation of relational and non-relational databases into RDF
with xR2RML, in: 11th International Confenrence on Web
Information Systems and Technologies (WEBIST’15), Lis-
bon, Portugal, SciTePress, 2015, pp. 443–454, INSTICC.
doi:10.5220/0005448304430454.

[10] H. García-González, I. Boneva, S. Staworko, J.E. Labra-Gayo
and J.M. Cueva-Lovelle, ShExML: improving the usability
of heterogeneous data mapping languages for first-time users,
PeerJ Computer Science 6 (2020), e318. doi:10.7717/peerj-
cs.318.

[11] S. Das, S. Sundara and R. Cyganiak, R2RML: RDB to RDF
Mapping Language, W3C Recommendation 27 September
2012, www.w3.org/TR/r2rml (2012).

[12] M. Lefrançois, A. Zimmermann and N. Bakerally, A SPARQL
extension for generating RDF from heterogeneous formats,
in: Proceedings of the 14th European Semantic Web Confer-
ence, Portorož, Slovenia, Springer, Cham, 2017, pp. 35–50.
doi:10.1007/978-3-319-58068-5_3.

[13] A. Cimmino, M. Poveda-Villalón and R. García-Castro, eWoT:
A Semantic Interoperability Approach for Heterogeneous IoT
Ecosystems Based on the Web of Things, Sensors 20(3) (2020).
doi:10.3390/s20030822.

[14] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi and
K. Kajimoto, Web of Things (WoT) Architecture, W3C
Recommendation 9 April 2020, https://www.w3.org/TR/wot-
architecture/ (2020).

[15] S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay and M. Ko-
vatsch, Web of Things (WoT) Thing Description. W3C Recom-
mendation 9 April 2020., https://www.w3.org/TR/wot-thing-
description/ (2020).

[16] F. Priyatna, R. Alonso-Calvo, S. Paraiso-Medina and O. Cor-
cho, Querying clinical data in HL7 RIM based relational
model with morph-RDB, Journal of biomedical semantics 8(1)
(2017), 1–12. doi:10.1186/s13326-017-0155-8.

[17] B. De Meester, W. Maroy, A. Dimou, R. Verborgh and
E. Mannens, Declarative data transformations for linked
data generation: The case of DBpedia, in: Proceedings

http://ceur-ws.org/Vol-2535/paper_10.pdf
http://ceur-ws.org/Vol-2535/paper_10.pdf
https://doi.org/10.1145/3447772
https://hal.archives-ouvertes.fr/hal-00903568
http://ceur-ws.org/Vol-2873/paper11.pdf
http://ceur-ws.org/Vol-2873/paper11.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf

20 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

of the 14th European Semantic Web Conference, Portorož,
Slovenia, Vol. 10250, Springer, Cham, 2017, pp. 33–48.
doi:10.1007/978-3-319-58451-5_3.

[18] K. Kyzirakos, D. Savva, I. Vlachopoulos, A. Vasileiou, N. Kar-
alis, M. Koubarakis and S. Manegold, GeoTriples: Transform-
ing geospatial data into RDF graphs using R2RML and RML
mappings, Journal of Web Semantics 52-53 (2018), 16–32, El-
sevier. doi:10.1016/j.websem.2018.08.003.

[19] F. Michel, F. Gandon, V. Ah-Kane, A. Bobasheva, E. Cabrio,
O. Corby, R. Gazzotti, A. Giboin, S. Marro, T. Mayer et al.,
Covid-on-the-Web: Knowledge graph and services to advance
COVID-19 research, in: Proceedings of the 19th International
Semantic Web Conference, Athens, Greece, Springer, Cham,
2020, pp. 294–310. doi:10.1007/978-3-030-62466-8_19.

[20] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruck-
haus and O. Corcho, GTFS-Madrid-Bench: A benchmark
for virtual knowledge graph access in the transport do-
main, Journal of Web Semantics 65 (2020), 100596, Elsevier.
doi:10.1016/j.websem.2020.100596.

[21] B. De Meester, P. Heyvaert, R. Verborgh and A. Dimou,
Mapping languages analysis of comparative characteristics,
in: 1st International Workshop on Knowledge Graph Build-
ing and Large Scale RDF Analytics, co-located with the 16th
Extended Semantic Web Conference (ESWC 2019), Portorož,
Slovenia, CEUR Workshop Proceedings, Vol. 2489, CEUR-
WS.org, 2019. http://ceur-ws.org/Vol-2489/paper4.pdf.

[22] A. Iglesias-Molina, D. Chaves-Fraga, F. Priyatna and O. Cor-
cho, Enhancing the Maintainability of the Bio2RDF Project
Using Declarative Mappings., in: 12th International Confer-
ence on Semantic Web Applications and Tools for Health Care
and Life Sciences, Edinburgh, Scotland, UK, CEUR Workshop
Proceedings, Vol. 2849, CEUR-WS.org, 2019. http://ceur-ws.
org/Vol-2849/paper-01.pdf.

[23] M. Poveda-Villalón, A. Fernández-Izquierdo, M. Fernández-
López and R. García-Castro, LOT: An industrial oriented
ontology engineering framework, Engineering Applications
of Artificial Intelligence 111 (2022), 104755, Elsevier.
doi:10.1016/j.engappai.2022.104755.

[24] R. Albertoni, D. Browning, S. Cox, A. González Beltrán,
A. Perego, P. Winstanley, F. Maali and J. Erickson, Data Cat-
alog Vocabulary (DCAT), W3C Recommendation 04 February
2020, https://www.w3.org/TR/vocab-dcat-2/ (2020).

[25] C. Bizer and A. Seaborne, D2RQ-treating non-RDF
databases as virtual RDF graphs, in: 3rd International Se-
mantic Web Conference (ISWC2004) Posters, Hiroshima,
Japan, 2004. http://iswc2004.semanticweb.org/posters/
PID-SMCVRKBT-1089637165.pdf.

[26] R. Cyganiak, C. Bizer, J. Garbers, O. Maresch and
C. Becker, The D2RQ Mapping Language, 2012. http://d2rq.
org/d2rq-language.

[27] J. Barrasa, Ó. Corcho and A. Gómez-Pérez, R2O, an extensi-
ble and semantically based database-to-ontology mapping lan-
guage, in: Proceedings of the 2nd Workshop on Semantic Web
and Databases, Toronto, Canada, Vol. 14, Springer-Verlag,
2004, pp. 1069–1070. doi:10.1007/b106149.

[28] F. Michel, L. Djimenou, C.F. Zucker and J. Montagnat,
xR2RML: Relational and Non-Relational Databases to RDF
Mapping Language, 2017. https://www.i3s.unice.fr/~fmichel/
xr2rml_specification_v5.html.

[29] A. Dimou, M. Vander Sande, B. De Meester, P. Heyvaert and
T. Delva, RDF Mapping Language (RML), 2020. https://rml.
io/specs/rml/.

[30] J. Slepicka, C. Yin, P.A. Szekely and C.A. Knoblock,
KR2RML: An Alternative Interpretation of R2RML for Het-
erogenous Sources., in: Proceedings of the 6th Interna-
tional Workshop on Consuming Linked Data co-located with
14th International Semantic Web Conference (ISWC 2015),
Bethlehem, Pennsylvania, US, CEUR Workshop Proceedings,
Vol. 1426, CEUR-WS.org, 2015. http://ceur-ws.org/Vol-1426/
paper-08.pdf.

[31] A.C. Junior, C. Debruyne, R. Brennan and D. O’Sullivan,
FunUL: a method to incorporate functions into uplift map-
ping languages, in: Proceedings of the 18th International Con-
ference on Information Integration and Web-based Applica-
tions and Services, Singapore, Singapore, ACM New York,
NY, USA, 2016, pp. 267–275. doi:10.1145/3011141.3011152.

[32] C. Debruyne and D. O’Sullivan, R2RML-F: towards sharing
and executing domain logic in R2RML mappings, in: Work-
shop on Linked Data on the Web co-located with 25th Inter-
national World Wide Web Conference (LDOW@WWW 2016),
Florence, Italy, CEUR Workshop Proceedings, Vol. 1593,
CEUR-WS.org, 2016. http://ceur-ws.org/Vol-1593/article-13.
pdf.

[33] A. Chortaras and G. Stamou, D2RML: Integrating Heteroge-
neous Data and Web Services into Custom RDF Graphs., in:
Workshop on Linked Data on the Web co-located with The Web
Conference 2018 (LDOW@WWW 2018), Lyon, France, CEUR
Workshop Proceedings, Vol. 2073, CEUR-WS.org, 2018. http:
//ceur-ws.org/Vol-2073/article-07.pdf.

[34] A. Langegger and W. Wöß, XLWrap–querying and integrat-
ing arbitrary spreadsheets with SPARQL, in: Proceedings of
the 8th International Semantic Web Conference (ISWC 2009)
Chantilly, VA, USA, Vol. 5823, Springer, Berlin, Heidelberg,
2009, pp. 359–374. doi:10.1007/978-3-642-04930-9_23.

[35] A. Langegger, XLWrap – Spreadsheet-to-RDF Wrapper, 2009.
https://xlwrap.sourceforge.io/.

[36] J. Tennison, G. Kellogg and I. Herman, Model for tabular data
and metadata on the web, W3C Recommendation 17 Decem-
ber 2015, https://www.w3.org/TR/tabular-data-model/ (2015).

[37] M. Lefrançois, A. Zimmermann, N. Bakerally, E.M. Khalfi
and O. Qawasmeh, SPARQL-Generate - query and gener-
ate both RDF and text, 2022. https://ci.mines-stetienne.fr/
sparql-generate/index.html.

[38] S. Bischof, S. Decker, T. Krennwallner, N. Lopes and
A. Polleres, Mapping between RDF and XML with XS-
PARQL, Journal on Data Semantics 1(3) (2012), 147–185.
doi:10.1007/s13740-012-0008-7.

[39] A. Polleres, T. Krennwallner, N. Lopes, J. Kopecky and
S. Decker, XSPARQL Language Specification, 2009. https:
//www.w3.org/Submission/xsparql-language-specification/.

[40] TARQL: SPARQL for Tables, 2019. http://tarql.github.io/.
[41] E. Daga, L. Asprino, P. Mulholland and A. Gangemi, Facade-

X: An Opinionated Approach to SPARQL Anything, in: Vol-
ume 53: Further with Knowledge Graphs, Vol. 53, M. Alam,
P. Groth, V. de Boer, T. Pellegrini and H.J. Pandit, eds, IOS
Press, 2021, pp. 58–73. doi:10.3233/ssw210035.

[42] SPARQL Anything, 2022. https://sparql-anything.readthedocs.
io/en/latest/.

http://ceur-ws.org/Vol-2489/paper4.pdf
http://ceur-ws.org/Vol-2849/paper-01.pdf
http://ceur-ws.org/Vol-2849/paper-01.pdf
http://iswc2004.semanticweb.org/posters/PID-SMCVRKBT-1089637165.pdf
http://iswc2004.semanticweb.org/posters/PID-SMCVRKBT-1089637165.pdf
http://d2rq.org/d2rq-language
http://d2rq.org/d2rq-language
https://www.i3s.unice.fr/~ fmichel/xr2rml_specification_v5.html
https://www.i3s.unice.fr/~ fmichel/xr2rml_specification_v5.html
https://rml.io/specs/rml/
https://rml.io/specs/rml/
http://ceur-ws.org/Vol-1426/paper-08.pdf
http://ceur-ws.org/Vol-1426/paper-08.pdf
http://ceur-ws.org/Vol-1593/article-13.pdf
http://ceur-ws.org/Vol-1593/article-13.pdf
http://ceur-ws.org/Vol-2073/article-07.pdf
http://ceur-ws.org/Vol-2073/article-07.pdf
https://xlwrap.sourceforge.io/
https://ci.mines-stetienne.fr/sparql-generate/index.html
https://ci.mines-stetienne.fr/sparql-generate/index.html
https://www.w3.org/Submission/xsparql-language-specification/
https://www.w3.org/Submission/xsparql-language-specification/
http://tarql.github.io/
https://sparql-anything.readthedocs.io/en/latest/
https://sparql-anything.readthedocs.io/en/latest/

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[43] S. Union, SMS2 (Stardog Mapping Syntax 2), 2021.
https://docs.stardog.com/archive/7.5.0/virtual-graphs/
mapping-data-sources.html.

[44] A. Cimmino and R. García-Castro, Helio Map-
pings, 2020. https://github.com/oeg-upm/helio/wiki/
Helio-Materialiser-for-Users#helio-mappings.

[45] B. Vu, J. Pujara and C.A. Knoblock, D-REPR: A Language for
Describing and Mapping Diversely-Structured Data Sources
to RDF, in: Proceedings of the 10th International Confer-
ence on Knowledge Capture (K-CAP 2019), Marina del Rey,
CA, USA, ACM New York, NY, USA, 2019, pp. 189–196.
doi:10.1145/3360901.3364449.

[46] H. García-González, A ShExML perspective on mapping
challenges: already solved ones, language modifications and
future required actions, in: Proceedings of the 2nd Inter-
national Workshop on Knowledge Graph Construction co-
located with 18th Extended Semantic Web Conference (ESWC
2021), Online, CEUR Workshop Proceedings, Vol. 2873,
CEUR-WS.org, 2021, pp. 1–14. http://ceur-ws.org/Vol-2873/
paper2.pdf.

[47] H. García-González, Shape Expressions Mapping Language
(ShExML), 2022. http://shexml.herminiogarcia.com/spec/.

[48] Z. GmbH, Expressive RDF Mapper (XRM), 2022. https://
zazuko.com/products/expressive-rdf-mapper/.

[49] C. Stadler, J. Unbehauen, P. Westphal, M.A. Sherif and
J. Lehmann, Simplified RDB2RDF mapping, in: Workshop on
Linked Data on the Web co-located with the 24th International
World Wide Web Conference (LDOW@WWW 2015), Flo-
rence, Italy, CEUR Workshop Proceedings, Vol. 1409, CEUR-
WS.org, 2015. http://ceur-ws.org/Vol-1409/article-07.pdf.

[50] M. Rodriguez-Muro and M. Rezk, Efficient SPARQL-to-SQL
with R2RML mappings, Journal of Web Semantics 33 (2015),
141–169. doi:10.1016/j.websem.2015.03.001.

[51] P. Heyvaert, B. De Meester, A. Dimou and R. Verborgh,
Declarative Rules for Linked Data Generation at your Fin-
gertips!, in: The Semantic Web: ESWC 2018 Satellite Events,
Crete, Greece, Vol. 11155, Springer, Cham, 2018, pp. 213–
217. doi:10.1007/978-3-319-98192-5_40.

[52] S. Harris, A. Seaborne and E. Prud’hommeaux, SPARQL
1.1, Query Language, W3C Recommendation 21 March 2013,
https://www.w3.org/TR/sparql11-query/ (2013).

[53] E. Prud’hommeaux, J.E. Labra Gayo and H. Solbrig, Shape
expressions: an RDF validation and transformation language,
in: Proceedings of the 10th International Conference on
Semantic Systems (SEMANTiCS 2014), Leipzig, Germany,
Association for Computing Machinery, 2014, pp. 32–40.
doi:10.1145/2660517.2660523.

[54] A. Cimmino and R. Corchuelo, A hybrid genetic-bootstrapping
approach to link resources in the web of data, in: Interna-
tional Conference on Hybrid Artificial Intelligence Systems
(HAIS 2018), Oviedo, Spain, Vol. 10870, Springer, Cham,
2018, pp. 145–157. doi:10.1007/978-3-319-92639-1_13.

[55] M. Hert, G. Reif and H.C. Gall, A comparison of
RDB-to-RDF mapping languages, in: Proceedings of the
7th International Conference on Semantic Systems, Graz,
Austria, ACM New York, NY, USA, 2011, pp. 25–32.
doi:10.1145/2063518.2063522.

[56] M.C. Suárez-Figueroa, A. Gómez-Pérez and M. Fernandez-
Lopez, The NeOn Methodology framework: A scenario-based
methodology for ontology development, Applied ontology
10(2) (2015), 107–145. doi:10.3233/AO-150145.

[57] A. Fernández-Izquierdo, A. Cimmino and R. García-
Castro, Supporting Demand-Response strategies with
the DELTA ontology, in: 2021 IEEE/ACS 18th Interna-
tional Conference on Computer Systems and Applica-
tions (AICCSA), Tangier, Morocco, IEEE, 2021, pp. 1–8.
doi:10.1109/AICCSA53542.2021.9686935.

[58] S. Chávez-Feria, R. García-Castro and M. Poveda-Villalón,
Chowlk: from UML-based ontology conceptualizations to
OWL, in: The Semantic Web: 19th International Conference,
ESWC 2022, Hersonissos, Crete, Greece, Springer, Cham,
2022, pp. 338–352. doi:10.1007/978-3-031-06981-9_20.

[59] M. Poveda-Villalón, A. Gómez-Pérez and M.C. Suárez-
Figueroa, Oops!(ontology pitfall scanner!): An on-line tool
for ontology evaluation, International Journal on Semantic
Web and Information Systems (IJSWIS) 10(2) (2014), 7–34.
doi:10.4018/ijswis.2014040102.

[60] D. Garijo, O. Corcho and M. Poveda-Villalón, FOOPS!: An
Ontology Pitfall Scanner for the FAIR principles, in: Inter-
national Semantic Web Conference (ISWC) 2021: Posters,
Demos, and Industry Tracks, CEUR Workshop Proceedings,
Vol. 2980, CEUR-WS.org, 2021. http://ceur-ws.org/Vol-2980/
paper321.pdf.

[61] D. Garijo, WIDOCO: a wizard for documenting ontologies,
in: 6th International Semantic Web Conference, Vienna, Aus-
tria, Springer, Cham, 2017, pp. 94–102. doi:10.1007/978-3-
319-68204-4_9.

[62] A. Alobaid, D. Garijo, M. Poveda-Villalón, I. Santana-
Perez, A. Fernández-Izquierdo and O. Corcho, Automat-
ing ontology engineering support activities with On-
Toology, Journal of Web Semantics 57 (2019), 100472.
doi:10.1016/j.websem.2018.09.003.

[63] J. Pérez, M. Arenas and C. Gutierrez, Semantics and com-
plexity of SPARQL, ACM Transactions on Database Systems
(TODS) 34(3) (2009), 1–45. doi:10.1145/1567274.1567278.

[64] T. Delva, D. Van Assche, P. Heyvaert, B. De Meester and
A. Dimou, Integrating nested data into knowledge graphs with
RML fields, in: Proceedings of the 2nd International Work-
shop on Knowledge Graph Construction co-located with 18th
Extended Semantic Web Conference (ESWC 2021), Online,
CEUR Workshop Proceedings, Vol. 2873, CEUR-WS.org,
2021, pp. 1–16. http://ceur-ws.org/Vol-2873/paper9.pdf.

[65] O. Corcho, F. Priyatna and D. Chaves-Fraga, Towards a new
generation of ontology based data access, Semantic Web 11(1)
(2020), 153–160. doi:10.3233/SW-190384.

[66] A. Iglesias-Molina, A. Cimmino and O. Corcho, Devis-
ing Mapping Interoperability with Mapping Translation, in:
Proceedings of the 3rd International Workshop on Knowl-
edge Graph Construction co-located with 19th Extended Se-
mantic Web Conference (ESWC 2022), Hersonissos, Greece,
CEUR Workshop Proceedings, Vol. 3141, CEUR-WS.org,
2022, pp. 1–8. http://ceur-ws.org/Vol-3141/paper6.pdf.

[67] F. Priyatna, E. Ruckhaus, N. Mihindukulasooriya, Ó. Cor-
cho and N. Saturno, Mappingpedia: A collaborative environ-
ment for R2RML mappings, in: ESWC 2017: The Seman-
tic Web: ESWC 2017 Satellite Events, Portorož, Slovenia,
Springer, Cham, 2017, pp. 114–119. doi:10.1007/978-3-319-
70407-4_22.

[68] M. Arenas, J. Pérez, J.L. Reutter and C. Riveros, Foun-
dations of schema mapping management, in: Proceedings
of the twenty-ninth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, Indianapolis,

https://docs.stardog.com/archive/7.5.0/virtual-graphs/mapping-data-sources.html
https://docs.stardog.com/archive/7.5.0/virtual-graphs/mapping-data-sources.html
https://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-Users#helio-mappings
https://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-Users#helio-mappings
http://ceur-ws.org/Vol-2873/paper2.pdf
http://ceur-ws.org/Vol-2873/paper2.pdf
http://shexml.herminiogarcia.com/spec/
https://zazuko.com/products/expressive-rdf-mapper/
https://zazuko.com/products/expressive-rdf-mapper/
http://ceur-ws.org/Vol-1409/article-07.pdf
http://ceur-ws.org/Vol-2980/paper321.pdf
http://ceur-ws.org/Vol-2980/paper321.pdf
http://ceur-ws.org/Vol-2873/paper9.pdf
http://ceur-ws.org/Vol-3141/paper6.pdf

22 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

USA, ACM New York, NY, USA, 2010, pp. 227–238.
doi:10.1145/1807085.1807116.

[69] M. Arenas, J. Pérez and C. Riveros, The recovery of a

schema mapping: bringing exchanged data back, ACM Trans-
actions on Database Systems (TODS) 34(4) (2009), 1–48.
doi:10.1145/1620585.1620589.

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix A. Example - Routes

The following example (Listing 11) illustrates features of the ontology that do not appear in the exam-
ple shown in Section 5.5. Together, both examples shows the core features of the ontology, further possibil-
ities can be achieved by combining the shown constructs. This example shows how to describe a JSON file,
"trips.json"(Fig. 6a) and CSV file (Fig. 6b) following the ontology described by Fig. 6c. This ontology is com-
posed of one class trans:Route. The routes are described with the properties trans:lineIdentifier,
trans:tripHeadsign, trans:startTime, trans:stopIdentifier and trans:tripIdentifier.
The fields created contain information from different levels of iteration from the JSON file and fields from the CSV
file.

The mapping presented joins two sources (:FrameRouteStop). It uses a CombinedFrame, that joins two
SourceFrame, one that describes a json file, "trips.json" (:FrameRoute), and another that describes a csv file,
"route_stop.csv" (:FrameStop). The join is performed by joining the fields :s_route_id and :r_route_id.
The JSON file is retrieved from an API using wotsec:APIKeySecurityScheme, and is retrieved asyn-
chronously every 300000 ms (5 minutes).

Finally, the mapping rules create the values from the data properties of the class trans:Route from two
different sources joined as one frame, separately or in one single object, like :StatementRoute6. Additionally,
:StatementRoute5 creates a list of values for the stops ids using a split function to separate the original value.

Fig. 6. Data sources (a,b) and reference ontology used for the example represented in Listing 11.

1 :FrameRoute a cm:SourceFrame ;
2 cm:expression "$.trips[*]" ;
3 cm:language ql:JSONPath ;
4 cm:hasField :line_id ;
5 cm:hasField :trip_headsign ;
6 cm:hasNestedFrame [
7 cm:expression "route[*]" ;
8 cm:hasField :r_route_id ;
9 cm:hasField :direction_id] ;

10 cm:hasDataSource [a cm:SynchronousSource ;
11 cm:encoding "utf-8" ;
12 dcat:mediaType "application/json" ;
13 dcat:accessService [
14 cm:hasProtocol cmp:https ;
15 dcat:endpointURL <https://ex.com/transport/trips.json> ;
16 cm:hasSecurityScheme [a wotsec:APIKeySecurityScheme ;
17 wotsec:in "header" ;
18 wotsec:name "api_key"];] ;] .

24 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

19
20 :FrameStop a cm:SourceFrame ;
21 cm:language ql:CSV ;
22 cm:hasField :s_route_id ;
23 cm:hasField :stops_ids ;
24 cm:hasField :start_time ;
25 cm:hasDataSource [a cm:SynchronousSource ;
26 dcat:mediaType "text/csv" ;
27 dcat:accessService [
28 cm:hasProtocol cmp:file ;
29 dcat:endpointURL "file:///user/data/route_stop.csv" ;
30 cm:hasSecurityScheme [a wotsec:NoSecurityScheme ;];] ;] .
31
32 :FrameRouteStop a cm:JoinCombination ;
33 cm:combinesFrame :FrameStop ;
34 cm:combinesFrame :FrameRoute ;
35 cm:joinsBy :s_route_id ;
36 cm:joinsBy :r_route_id .
37
38 :s_route_id a cm:DataField; cm:field "route_id" .
39 :stops_ids a cm:DataField; cm:field "stops_ids" .
40 :start_time a cm:DataField; cm:field "start_time" .
41 :line_id a cm:DataField; cm:field "line_id" .
42 :trip_headsign a cm:DataField; cm:field "trip_headsign" .
43 :r_route_id a cm:DataField; cm:field "route_id" .
44 :direction_id a cm:DataField; cm:field "direction_id" .
45
46 # Rules
47 :SubjectRoute a cm:ReferenceNodeMap ;
48 cm:hasEvaluableExpression [
49 cm:hasFunctionName cmf:concat;
50 cm:hasInput ([cm:constantValue "http://ex.com/route/"] :s_route_id] .
51
52 :StatementRoute1 a cm:StatementMap ;
53 cm:hasFrame :FrameRouteStop ;
54 cm:subject :SubjectRoute ;
55 cm:predicate [a cm:ReferenceNodeMap;
56 cm:hasEvaluableExpression [cm:constantValue rdf:type]];
57 cm:object [cm:hasEvaluableExpression [cm:constantValue trans:Route]].
58
59 :StatementRoute2 a cm:StatementMap ;
60 cm:hasFrame :FrameRouteStop ;
61 cm:subject :SubjectRoute ;
62 cm:predicate [a cm:ReferenceNodeMap;
63 cm:hasEvaluableExpression [cm:constantValue trans:lineIdentifier]];
64 cm:object [cm:hasEvaluableExpression [cm:constantValue :line_id]].
65
66 :StatementRoute3 a cm:StatementMap ;
67 cm:hasFrame :FrameRouteStop ;
68 cm:subject :SubjectRoute ;
69 cm:predicate [a cm:ReferenceNodeMap;
70 cm:hasEvaluableExpression [cm:constantValue trans:tripHeadsign]];
71 cm:object [cm:hasEvaluableExpression [cm:constantValue :trip_headsign]];
72 cm:language [cm:hasEvaluableExpression [cm:constantValue "es"]].
73
74 :StatementRoute4 a cm:StatementMap ;
75 cm:hasFrame :FrameRouteStop ;
76 cm:subject :SubjectRoute ;
77 cm:predicate [a cm:ReferenceNodeMap;
78 cm:hasEvaluableExpression [cm:constantValue trans:startTime]];
79 cm:object [cm:hasEvaluableExpression [cm:constantValue :start_time]];

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

80 cm:datatype [cm:hasEvaluableExpression [cm:constantValue xsd:time]].
81
82 :StatementRoute5 a cm:StatementMap ;
83 cm:hasFrame :FrameRouteStop ;
84 cm:subject :SubjectRoute ;
85 cm:predicate [a cm:ReferenceNodeMap;
86 cm:hasEvaluableExpression [cm:constantValue trans:stopIdentifier]];
87 cm:object [a cm:ListMap; cm:hasEvaluableExpression :city_ns].
88
89 :city_ns a cm:FunctionExpression ;
90 cm:functionName cmf:split ;
91 cm:hasInput (:stop_ids ";") .
92
93 :StatementRoute6 a cm:StatementMap ;
94 cm:hasFrame :FrameRouteStop ;
95 cm:subject :SubjectRoute ;
96 cm:predicate [a cm:ReferenceNodeMap;
97 cm:hasEvaluableExpression [cm:constantValue trans:tripIdentifier]];
98 cm:object [cm:hasEvaluableExpression :trip_id].
99

100 :trip_id a FunctionExpression;
101 cm:hasFunctionName cmf:concat;
102 cm:hasInput (:s_route_id [cm:constantValue "_"]
103 :direction_id [cm:constantValue "_"] :start_time) .

Listing 11: Routes mapping example, uses as input the data sources and ontology in Fig. 6 and outputs Listing 12.

1 <http://ex.com/route/51-go> a trans:Route ;
2 trans:lineIdentifier "51" ;
3 trans:tripHeadsign "Sol"@es ;
4 trans:startTime "07:00:00"̂ x̂sd:time ;
5 trans:stopIdentifier ("113" "440" "438") ;
6 trans:tripIdentifier "51-go_1_07:00:00" .
7
8 <http://ex.com/route/51-return> a trans:Route ;
9 trans:lineIdentifier "51" ;

10 trans:tripHeadsign "Sol"\@es ;
11 trans:startTime "07:30:00"̂ x̂sd:time ;
12 trans:stopIdentifier ("5682" "2002" "90") ;
13 trans:tripIdentifier "51-go_0_07:30:00" .
14
15 <http://ex.com/route/52-go> a trans:Route ;
16 trans:lineIdentifier "52" ;
17 trans:tripHeadsign "Cibeles"\@es ;
18 trans:startTime "07:00:00"̂ x̂sd:time ;
19 trans:stopIdentifier ("2508" "2509" "2510") ;
20 trans:tripIdentifier "52-go_1_07:00:00" .
21
22 <http://ex.com/route/52-return> a trans:Route ;
23 trans:lineIdentifier "52" ;
24 trans:tripHeadsign "Cibeles"\@es ;
25 trans:startTime "07:30:00"̂ x̂sd:time ;
26 trans:stopIdentifier ("90" "70" "162") ;
27 trans:tripIdentifier "52-go_0_07:30:00" .

Listing 12: Result from Routes mapping represented in Listing 11.

26 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix B. Framework Comparison of Existing Mapping Languages

Ta
bl

e
2

D
at

a
re

tr
ie

va
la

nd
da

ta
so

ur
ce

ex
pr

es
si

on
fo

r
th

e
an

al
ys

ed
m

ap
pi

ng
la

ng
ua

ge
s

fr
om

th
e

re
fe

re
nc

es
st

at
ed

in
Ta

bl
e

1.
(*

)
in

di
ca

te
s

fe
at

ur
es

no
t

ex
pl

ic
itl

y
de

cl
ar

ed
in

th
e

la
ng

ua
ge

,b
ut

th
at

ar
e

im
pl

em
en

te
d

by
co

m
pl

ia
nt

to
ol

s.

Fe
at

ur
e

\L
an

gu
ag

e
Sh

E
xM

L
X

SP
A

R
Q

L
TA

R
Q

L
C

SV
W

R
2R

M
L

R
M

L
K

R
2R

M
L

xR
2R

M
L

SP
A

R
Q

L
-

G
en

er
at

e
R

2R
M

L
-F

Fu
nU

L
H

el
io

W
oT

D
-R

E
PR

X
LW

ra
p

D
2R

M
L

SP
A

R
Q

L
-

A
ny

th
in

g
SM

S2

R
et

ri
ev

al
of

da
ta

St
re

am
s

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
*a

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
fa

ls
e

Sy
nc

hr
on

ou
s

so
ur

ce
s

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

A
sy

nc
hr

on
ou

s
so

ur
ce

s
-

-
-

-
-

-
-

-
E

ve
nt

s,
Pe

ri
od

ic
-

-
Pe

ri
od

ic
-

-
-

-
-

-

E
xp

re
ss

in
g

da
ta

so
ur

ce
s

Se
cu

ri
ty

te
rm

s
-

-
-

-
B

as
ic

(D
B

)
B

as
ic

(D
B

)
B

as
ic

(D
B

)
B

as
ic

(D
B

)
-

B
as

ic
(D

B
)

-
A

PI
K

ey
,O

A
ut

h2
,

B
ea

re
r,

B
as

ic
A

PI
K

ey
,O

A
ut

h2
,

B
ea

re
r,

B
as

ic
-

-
B

as
ic

(D
B

)
-

B
as

ic
(D

B
)

E
nc

od
in

g
fa

ls
e

fa
ls

e
tr

ue
*b

tr
ue

fa
ls

e
tr

ue
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

tr
ue

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
M

IM
E

Ty
pe

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e

Fe
at

ur
es

de
sc

ri
bi

ng
da

ta
It

er
at

or
,

Q
ue

ri
es

-
D

el
im

ite
r,

Se
pa

ra
to

r
D

el
im

ite
r,

Se
pa

ra
to

r,
R

eg
ex

Q
ue

ri
es

D
el

im
ite

r,
R

eg
ex

,
It

er
at

or
,Q

ue
ri

es
,

Se
pa

ra
to

r
Q

ue
ri

es
R

eg
ex

,
It

er
at

or
,Q

ue
ri

es

D
el

im
ite

r,
R

eg
ex

,
It

er
at

or
,Q

ue
ri

es
,

Se
pa

ra
to

r

It
er

at
or

,
Q

ue
ri

es
It

er
at

or
,

Q
ue

ri
es

D
el

im
ite

r,
R

eg
ex

,
It

er
at

or
,Q

ue
ri

es
,

Se
pa

ra
to

r
It

er
at

or
D

el
im

ite
r,

R
eg

ex
,I

te
ra

to
r

Se
pa

ra
to

r
D

el
im

ite
r,

R
eg

ex
,

It
er

at
or

,Q
ue

ri
es

D
el

im
ite

r,
R

eg
ex

,
It

er
at

or
,Q

ue
ri

es
,

Se
pa

ra
to

r

D
el

im
ite

r,
R

eg
ex

,
It

er
at

or
,Q

ue
ri

es
,

Se
pa

ra
to

r

R
et

ri
ev

al
pr

ot
oc

ol
fil

e,
ht

tp
(s

),
od

bc
/jd

bc
fil

e
fil

e
fil

e,
ht

tp
(s

)
fil

e,
ht

tp
(s

),
od

bc
/jd

bc
fil

e,
ht

tp
(s

),
od

bc
/jd

bc
fil

e,
od

bc
/jd

bc
fil

e,
od

bc
/jd

bc

fil
e,

ht
tp

(s
),

od
bc

/jd
bc

W
eb

So
ck

et
,M

Q
T

T

fil
e,

ht
tp

(s
),

od
bc

/jd
bc

fil
e,

ht
tp

(s
)

fil
e,

an
y

U
R

I-
ba

se
d

ht
tp

(s
)

fil
e

fil
e

fil
e,

ht
tp

(s
),

od
bc

/jd
bc

fil
e,

ht
tp

(s
)

fil
e,

od
bc

/jd
bc

D
at

a
fo

rm
at

s
Ta

bu
la

r,
Tr

ee
,G

ra
ph

Tr
ee

(X
M

L
)

Ta
bu

la
r

(C
SV

)
Ta

bu
la

r
Ta

bu
la

r
Ta

bu
la

r,
Tr

ee
,G

ra
ph

Ta
bu

la
r,

Tr
ee

Ta
bu

la
r,

Tr
ee

Ta
bu

la
r,

Tr
ee

,
Pl

ai
n

Te
xt

,G
ra

ph
Ta

bu
la

r
Ta

bu
la

r,
G

ra
ph

Ta
bu

la
r,

Tr
ee

,
Pl

ai
n

Te
xt

,G
ra

ph
Tr

ee
(J

SO
N

)
Ta

bu
la

r(
C

SV
),

Tr
ee

Ta
bu

la
r

(C
SV

,E
xc

el
)

Ta
bu

la
r,

Tr
ee

,
Pl

ai
n

Te
xt

,G
ra

ph
Ta

bu
la

r,
Tr

ee
,

Pl
ai

n
Te

xt
,G

ra
ph

Ta
bu

la
r,

Tr
ee

,
Pl

ai
n

Te
xt

,G
ra

ph

a I
m

pl
em

en
te

d
by

R
M

L
Sr

ea
m

er
,a

va
ila

bl
e

at
ht

tp
s:

//g
ith

ub
.c

om
/R

M
L

io
/R

M
L

St
re

am
er

.
b C

om
m

an
d

lin
e

in
pu

to
pt

io
n
-
-
e
n
c
o
d
i
n
g

[4
0]

.

A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Ta
bl

e
3:

Fe
at

ur
es

fo
rs

ub
je

ct
,p

re
di

ca
te

,a
nd

ob
je

ct
ge

ne
ra

tio
n

of
th

e
st

ud
ie

d
m

ap
pi

ng
la

ng
ua

ge
s

fr
om

th
e

re
fe

re
nc

es
st

at
ed

in
Ta

bl
e

1.

Fe
at

ur
e

&
L

an
gu

ag
e

Sh
E

xM
L

X
SP

A
R

Q
L

TA
R

Q
L

C
SV

W
R

2R
M

L
R

M
L

K
R

2R
M

L
xR

2R
M

L
SP

A
R

Q
L

-

G
en

er
at

e
R

2R
M

L
-F

Fu
nU

L
H

el
io

W
oT

D
-R

E
PR

X
LW

ra
p

D
2R

M
L

SP
A

R
Q

L
-

A
ny

th
in

g
SM

S2

Su
bj

ec
t

C
on

st
an

t
IR

I
B

N
,I

R
I

B
N

,I
R

I
IR

I
B

N
,I

R
I

B
N

,I
R

I
-

B
N

,I
R

I
B

N
,I

R
I

B
N

,I
R

I
B

N
,I

R
I

IR
I

IR
I

B
N

,I
R

I
B

N
,I

R
I

B
N

,I
R

I
B

N
,I

R
I

B
N

,I
R

I

D
yn

am
ic

R
D

F
R

es
ou

rc
e

IR
I

B
N

,I
R

I
B

N
,I

R
I

IR
I

B
N

,I
R

I
B

N
,I

R
I

IR
I

B
N

,I
R

I
IR

I
B

N
,I

R
I

B
N

,I
R

I
IR

I
-

B
N

,I
R

I
B

N
,I

R
I

B
N

,I
R

I
IR

I
B

N
,I

R
I

D
at

a
R

ef
er

en
ce

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at
-

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

D
at

a
So

ur
ce

s
1.

.*
1.

.*
1.

.1
1.

.1
1.

.1
1.

.1
1.

.*
1.

.*
1.

.*
1.

.1
1.

.1
1.

.*
-

1.
.1

1.
.1

1.
.1

1.
.*

1.
.1

H
ie

ra
rc

hy
It

er
at

io
n

tr
ue

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e
tr

ue
tr

ue
tr

ue

Fu
nc

tio
ns

-
1.

.*
1.

.*
-

-
1.

.*
1.

.*
-

1.
.*

1.
.*

1.
.*

1.
.*

-
1.

.*
1.

.*
1.

.*
1.

.*
1.

.*

Pr
ed

ic
at

e

C
on

st
an

t
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I

D
yn

am
ic

R
D

F
R

es
ou

rc
e

-
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
IR

I
-

IR
I

-
IR

I
IR

I
IR

I

D
at

a
R

ef
er

en
ce

-
1.

.*
R

ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at
-

1.
.*

R
ef

1.
.1

Fo
rm

at
-

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at
-

D
at

a
So

ur
ce

s
-

1.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.
.*

1.
.1

1.
.*

1.
.1

1.
.1

1.
.*

-
1.

.1
-

1.
.1

1.
.*

-

H
ie

ra
rc

hy
It

er
at

io
n

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
fa

ls
e

tr
ue

tr
ue

fa
ls

e

Fu
nc

tio
ns

-
1.

.*
1.

.*
-

-
1.

.*
1.

.*
-

1.
.*

1.
.*

1.
.*

1.
.*

-
1.

.*
-

1.
.*

1.
.*

-

O
bj

ec
t

C
on

st
an

t
IR

I,
L

ite
ra

l
B

N
,I

R
I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l

IR
I,

L
ite

ra
l

IR
I,

L
ite

ra
l

IR
I,

L
ite

ra
l

IR
I,

L
ite

ra
l

B
N

,I
R

I,
L

ite
ra

l,

L
is

t,
C

on
ta

in
er

B
N

,I
R

I,

L
ite

ra
l,

L
is

t
IR

I,
L

ite
ra

l
IR

I,
L

ite
ra

l
IR

I,
L

ite
ra

l
B

N
,I

R
I,

L
ite

ra
l,

L
is

t,
C

on
ta

in
er

B
N

,I
R

I,

L
ite

ra
l

IR
I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l,

L
is

t

B
N

,I
R

I,

L
ite

ra
l

D
yn

am
ic

R
D

F
R

es
ou

rc
e

IR
I,

L
ite

ra
l,

L
is

ts

B
N

,I
R

I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l

IR
I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l

IR
I,

L
ite

ra
l,

L
is

t

B
N

,I
R

I,
L

ite
ra

l,

L
is

t,
C

on
ta

in
er

B
N

,I
R

I,

L
ite

ra
l,

L
is

t

B
N

,I
R

I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l

IR
I,

L
ite

ra
l

IR
I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l

IR
I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l

B
N

,I
R

I,

L
ite

ra
l,

L
is

t

B
N

,I
R

I,

L
ite

ra
l

D
at

a
R

ef
er

en
ce

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at
-

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

1.
.*

R
ef

1.
.*

Fo
rm

at

1.
.*

R
ef

1.
.1

Fo
rm

at

D
at

a
So

ur
ce

s
1.

.*
1.

.*
1.

.1
1.

.1
1.

.1
1.

.1
1.

.*
1.

.*
1.

.*
1.

.1
1.

.1
1.

.*
-

1.
.1

1.
.1

1.
.1

1.
.*

1.
.1

H
ie

ra
rc

hy
It

er
at

io
n

tr
ue

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e
tr

ue
tr

ue
tr

ue

Fu
nc

tio
ns

1
1.

.*
1.

.*
-

-
1.

.*
1.

.*
-

1.
.*

1.
.*

1.
.*

1.
.*

-
1.

.*
1.

.*
1.

.*
1.

.*
1.

.*

D
at

at
yp

e
an

d
L

an
gu

ag
e

st
at

ic
,

dy
na

m
ic

st
at

ic
,

dy
na

m
ic

st
at

ic
,

dy
na

m
ic

st
at

ic
st

at
ic

st
at

ic
,

dy
na

m
ic

-
st

at
ic

st
at

ic
st

at
ic

st
at

ic
st

at
ic

,

dy
na

m
ic

st
at

ic
st

at
ic

-
st

at
ic

st
at

ic
st

at
ic

28 A. Iglesias-Molina et al. / An Ontological Approach for Representing Declarative Mapping Languages

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Ta
bl

e
4:

St
at

em
en

ts
,l

in
ki

ng
ru

le
s,

an
d

fu
nc

tio
n

pr
op

er
tie

s
of

th
e

st
ud

ie
d

m
ap

pi
ng

la
ng

ua
ge

s
fr

om
th

e
re

fe
re

nc
es

st
at

ed
in

Ta
bl

e
1.

Fe
at

ur
e

\L
an

gu
ag

e
Sh

E
xM

L
X

SP
A

R
Q

L
TA

R
Q

L
C

SV
W

R
2R

M
L

R
M

L
K

R
2R

M
L

xR
2R

M
L

SP
A

R
Q

L
-

G
en

er
at

e
R

2R
M

L
-F

Fu
nU

L
H

el
io

W
oT

D
-R

E
PR

X
LW

ra
p

D
2R

M
L

SP
A

R
Q

L
-

A
ny

th
in

g
SM

S2

St
at

em
en

ts

A
ss

ig
n

to
na

m
ed

gr
ap

hs
st

at
ic

-
-

-
st

at
ic

,

dy
na

m
ic

st
at

ic
,

dy
na

m
ic

st
at

ic
st

at
ic

-
st

at
ic

,

dy
na

m
ic

st
at

ic
,

dy
na

m
ic

-
-

-
st

at
ic

st
at

ic
,

dy
na

m
ic

-
-

R
et

ri
ev

e
da

ta
fr

om

on
e

so
ur

ce
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue

R
et

ri
ev

e
da

ta
fr

om

on
e

or
m

or
e

so
ur

ce
s

tr
ue

tr
ue

fa
ls

e
tr

ue
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
fa

ls
e

fa
ls

e
tr

ue
fa

ls
e

tr
ue

fa
ls

e
tr

ue
tr

ue
fa

ls
e

A
llo

w
co

nd
iti

on
s

to
fo

rm
st

at
em

en
ts

tr
ue

tr
ue

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

tr
ue

tr
ue

tr
ue

fa
ls

e

L
in

ki
ng

ru
le

s

U
se

on
e

da
ta

re
fe

re
nc

e
tr

ue
tr

ue
fa

ls
e

tr
ue

tr
ue

tr
ue

fa
ls

e
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue
fa

ls
e

tr
ue

tr
ue

fa
ls

e

U
se

on
e

or
m

or
e

da
ta

re
fe

re
nc

e
tr

ue
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
fa

ls
e

tr
ue

tr
ue

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e
tr

ue
fa

ls
e

fa
ls

e
tr

ue
fa

ls
e

N
o

co
nd

iti
on

to
lin

k
tr

ue
tr

ue
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

L
in

k
w

ith
on

e
co

nd
iti

on
tr

ue
tr

ue
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

fa
ls

e
tr

ue
fa

ls
e

tr
ue

tr
ue

fa
ls

e

L
in

k
w

ith
on

e
or

m
or

e
co

nd
iti

on
s

fa
ls

e
tr

ue
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

fa
ls

e
tr

ue
fa

ls
e

tr
ue

tr
ue

fa
ls

e

U
se

on
ly

eq
ua

l

fu
nc

tio
n

in
co

nd
iti

on
tr

ue
tr

ue
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

fa
ls

e
tr

ue
fa

ls
e

tr
ue

tr
ue

fa
ls

e

U
se

an
y

si
m

ila
ri

ty

fu
nc

tio
n

in
co

nd
iti

on
fa

ls
e

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
fa

ls
e

fa
ls

e
fa

ls
e

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
tr

ue
fa

ls
e

Fu
nc

tio
ns

C
ar

di
na

lit
y

1:
1,

N
:1

1:
1,

N
:1

,

1:
N

,N
:M

1:
1,

N
:1

-
-

1:
1,

N
:1

*a
1:

1,
N

:1
,

1:
N

,N
:M

-
1:

1,
N

:1
,

1:
N

,N
:M

1:
1,

N
:1

1:
1,

N
:1

1:
1,

N
:1

-
1:

1,
N

:1
,

1:
N

,N
:M

1:
1,

N
:1

,

1:
N

,N
:M

1:
1,

N
:1

,

1:
N

,N
:M

1:
1,

N
:1

,

1:
N

,N
:M

1:
1,

N
:1

,

1:
N

,N
:M

N
es

te
d

fu
nc

tio
ns

fa
ls

e
tr

ue
tr

ue
fa

ls
e

fa
ls

e
tr

ue
*a

fa
ls

e
fa

ls
e

tr
ue

tr
ue

tr
ue

tr
ue

fa
ls

e
tr

ue
tr

ue
tr

ue
tr

ue
tr

ue

Fu
nc

tio
ns

be
lo

ng

to
a

sp
ec

ifi
ca

tio
n

tr
ue

fa
ls

e
tr

ue
fa

ls
e

fa
ls

e
tr

ue
*a

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e
fa

ls
e

tr
ue

fa
ls

e
tr

ue
tr

ue

D
ec

la
re

ow
n

fu
nc

tio
ns

tr
ue

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
*a

fa
ls

e
fa

ls
e

tr
ue

tr
ue

tr
ue

fa
ls

e
fa

ls
e

fa
ls

e
tr

ue
tr

ue
tr

ue
fa

ls
e

a W
ith

th
e

Fu
nc

tio
n

O
nt

ol
og

y
(F

nO
)[

17
]

	Introduction
	Related Work
	Mapping languages
	Language comparison

	Methodology
	Requirements specification
	Implementation
	Publication
	Maintenance

	Conceptual Mapping Requirements Specification
	Purpose and scope
	Comparison Framework
	Data Sources Description
	Triples Generation
	General Features for Graph Construction

	Mapping Challenges
	Conceptual Mapping Requirements

	Conceptual Mapping Implementation
	Ontology Conceptualization
	Ontology Design Patterns
	Ontology evaluation
	Extensibility
	Ontology usage example

	Conceptual Mapping Publication and Maintenance
	Conclusion and Future Work
	Acknowledgements
	References
	Appendix A. Example - Routes
	Appendix B. Framework Comparison of Existing Mapping Languages

