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Abstract. Algebras of relations were shown useful in managing ontol-
ogy alignments. They make it possible to aggregate alignments disjunc-
tively or conjunctively and to propagate alignments within a network
of ontologies. The previously considered algebra of relations contains
taxonomical relations between classes. However, compositional inference
using this algebra is sound only if we assume that classes which occur
in alignments have nonempty extensions. Moreover, this algebra covers
relations only between classes. Here we introduce a new algebra of rela-
tions, which, first, solves the limitation of the previous one, and second,
incorporates all qualitative taxonomical relations that occur between in-
dividuals and concepts, including the relations “is a” and “is not”. We
prove that this algebra is coherent with respect to the simple semantics
of alignments.
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1 Introduction

The heterogeneity of ontologies on the semantic web requires finding correspon-
dences between them in order to achieve semantic interoperability. The operation
of finding correspondences is called ontology matching and its result is a set of
correspondences called an alignment [6]. Alignments are used for importing data
from one ontology to another or for translating queries.

In previous work [5], we put forward a framework for manipulating alignments
based on algebras of relations. This allows for merging alignments conjunctively
or disjunctively, amalgamate alignments with relations of different granularity
and compose alignments.

The general approach was illustrated in [5] on a particular algebra A5. It is
generated by 5 atoms: =, >,<, G,⊥, which stand for “equivalent to”, “more/less
general than”, “partially overlaps with” and “disjoint with” respectively. The
composition table of A5 is given in Table 1. It was shown that an algebra of
relations induces composition, union, intersection and conversion operations on
alignments.

This may be particularly useful as a fast way to reason about alignments
without resorting to full reasoning. For instance, this may be used for generat-
ing new alignments from existing ones or for checking the unsatisfiability of a
network of ontologies.
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Example 1. For instance, in Figure 1, there are two correspondences:
“O2:Serial writer is subsumed by O1:Successful creator”and “O2:Serial writer is equiv-
alent to O3:Popular writer”. Subsumption and Equivalence are encoded in A5 as
{=, <} and {=} respectively. By composing these relations we infer a correspon-
dence between O1:Successful creator and O3:Popular writer:(

Successful creator, Serial writer, {=}
)
∗
(

Serial writer, Popular writer, {=, <}
)

=
(

Successful creator, Popular writer, {=} ∗ {=, <}
)

=
(

Successful creator, Popular writer, (= ∗ =) ∪ (= ∗ <)
)

=
(

Successful creator, Popular writer, {=} ∪ {<}
)

=
(

Successful creator, Popular writer, {=, <}
)

However, the algebra of relations A5 suffers from two problems:

1. A5 covers relations only between classes. This leaves out of scope the relations
owl:sameAs (noted =), owl:differentFrom (noted 6=), which are defined between
instances, and the instance-class relation rdf:type (∈). Compositional reasoning
with these relations may be used for debugging link sets as shown by Example 1.

Example 2. In Figure 1, composing {<,=} ∗ {=} ∗ {⊥} is equivalent to {⊥},
i.e., “Mystery novelist” and “Academic” are disjoint classes. This leaves aside
further relation composition. Indeed, one would like that {∈}∗{⊥}∗{3} actually
yields {6=}, i.e., “Amanda Cross” is different from “Carolyn Gold Heilbrun”. This
would be very useful for debugging data sets since the actual relation between
these individuals is {=} so the intersection of these relations is empty revealing
unsatisfiability.

However, this requires to compose class relations (⊥) and individual-class
relations (∈). Moreover, this composition yields an individual relation ( 6=).

To make this work within the considered framework, one needs an algebra
incorporating all these relations. This would allow for encoding such RDF triples
as correspondences and use them for the refinement and evolution of alignments.

2. The algebraic calculus that A5 induces on alignments does not allow for distin-
guishing between unsatisfiability and incoherence of alignments. An alignment

Table 1: Composition table of A5.

* = > < G ⊥

= = > < G ⊥

> > > =><G >G >G⊥

< < =><G⊥ < <G⊥ ⊥

G G >G⊥ <G =><G⊥ >G⊥

⊥ ⊥ ⊥ <G⊥ <G⊥ =><G⊥
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Fig. 1: An example of unsatisfiability in a linked data sets that can be detected through
simple composition of relations across ontologies, data, links and correspondences.

is satisfiable if it has a model, and coherent, if it does not force incoherence on
any of its entities. If, by applying algebraic reasoning on alignments, we deduce a
correspondence

(
C, D, ∅

)
, then it means that the alignments are algebraically

inconsistent. However, algebraic inconsistency does not imply unsatisfiability, as
one would expect. This is illustrated in Example 3.

Example 3. Consider an alignment A with two correspondences between the
same pair of entities: µ =

(
C, D, {⊥}

)
and υ =

(
C, D, {<,=}

)
. Their conjunc-

tion is equal to
(

C, D, ∅
)
:

µ ∧ υ =
(

C, D, {⊥}
)
∧
(

C, D, {<,=}
)

=
(

C, D, {⊥} ∩ {=, <}
)

=
(

C, D, ∅
)
.

This means that A is algebraically inconsistent. But A has models, thus it is
not unsatisfiable. Indeed, if C is interpreted as the empty set, then, whatever the
interpretation of D, both µ and υ are satisfied by this interpretation. However,
A is incoherent, since it does not allow the class C to have instances.

In this paper, we introduce a new algebra of relations A16, which
solves these limitations of A5. A16 incorporates the relations “same as”
(owl:sameAs), “different from” (owl:differentFrom), “is a” (rdf:type), “is not”,
“equivalent to” (owl:equivalentClass), “subsumed by” (rdfs:subClassOf), “disjoint
with” (owl:disjointWith), “partially overlaps with” in compliance with OWL se-
mantics. The calculus that A16 induces on alignments allows to differenciate
between unsatisfiability and incoherence of alignments.

The paper is structured as follows. In Section 2, we discuss the related work.
Section 3 covers some preliminaries, including networks of ontologies and al-
gebras of relations. In Section 4, we build the algebra A16 and establish its
soundness with respect to the direct semantics of alignments. In Section 5, we
discuss some changes that A16 brings to the calculus of alignments.
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2 Related work

This paper is related to formal frameworks for distributed ontologies on the one
hand, and to the theory of qualitative calculi on the other hand.

Languages for distributed ontologies There are several languages that allow for
expressing relations across ontologies. Among them are Distributed Description
Logics (DDL) [3], ε-connections [12], Package-based Description Logics (P-DL)
[2], Integrated Distributed Description Logics (IDDL) [19] and Distributed On-
tology Language (DOL) [14].

Mappings between ontologies in DDL assert relations from the perspective
of the target ontology. Mappings between concepts are expressed as bridge rules,
and those between individuals as individual correspondences. The key feature of
DDL reasoning is subsumption propagation from one ontology to another. Sub-
sumption is not transitive in DDL, thus cannot be propagated by composition.
ε-connections are a framework for modular ontologies. Connection between onto-
logical modules are established with links, which act as inter-ontology properties.
A distinctive feature of ε-connections is that each ontology module is supposed
to model a portion of the domain that is complementary and non-overlapping
with respect to the other ontology modules. As the domains of ontologies in an
ε-connection system must be disjoint, it is not possible to have a concept in some
ontology module that has subconcepts or instances in another ontology. Ontology
importing, which is implemented in P-DL, allows for reusing concepts, relations
and individuals defined in one ontology inside another ontology. Alignments in
IDDL constitute a separate layer and can be regarded independently from on-
tologies. This makes possible to reason about alignments alone, considering them
as first class citizens. Some comparative analysis of DDL, ε-connections, P-DL
and IDDL can be found in [10, 20].

An algebraic calculus of alignments is not intended as a proof theory for a
particular semantics of alignments. It is a framework, which allows to use custom
algebras of relations for inducing operations on alignments. In this paper, we
limit ourselves with taxonomical relations between classes and instances. We
design the algebra of taxonomical relations to be sound with respect to the
OWL semantics of relations [7]. In principle, algebras of ontology alignment
relations can be designed in compliance with other semantics as well, e.g., with
the integrated semantics used in IDDL.

Qualitative calculi Algebras of relations have been used in knowledge repre-
sentation and reasoning, particularly in the spatio-temporal domain, since the
pioneering work of Allen [1]. Allen considered the universe of time intervals, for-
malized as pairs of real-valued endpoints, and defined 13 binary relations on that
universe. Between any two time intervals one and only one out of the 13 base
relations holds. This important property allows to factorize the infinite Boolean
algebra of binary relations over the universe into a finite Boolean algebra of
(qualitative) relations of interest. Moreover, these 13 base relations and their
arbitrary unions are closed under composition and converse. This allowed Allen
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to induce composition and converse on the Boolean algebra of relation symbols,
yielding an algebra called the interval algebra.

Allen put forward an algorithm for reasoning over relations between time
intervals based on constraint propagation. This algorithm decides the satisfia-
bility of a network of temporal constraints, consisting of variables ranging over
the universe of time intervals, and binary constraints on variables expressed by
elements of the interval algebra.

The interval algebra is an instance of Tarski’s relation algebra [18]. [13] de-
fined a class of qualitative binary constraint satisfaction problems (QBCSP),
which is a class of binary constraint satisfaction problems abstracted to relation
algebras. They generalized the constraint propagation algorithm of Allen to an
arbitrary relation algebra. Reasoning with relation algebras is studied in [4, 9].

Meanwhile, calculi similar to Allen’s were developed in both temporal and
spatial domains. Among them are two variants of the Region Connection Cal-
culus: RCC5 and RCC8. In order to study the properties of RCC5, RCC8 and
many other calculi existing by that time within a single framework, Ligozat and
Renz [15] proposed a formal definition of the implicit concept of a qualitative
calculus. In the framework of Ligozat and Renz, a qualitative calculus arises from
a partition scheme over some universe. Such calculi can have a weaker algebraic
structure than relation algebras: they can be non-associative.

The development of this paper was initially based on the framework of
Ligozat and Renz. However, the algebra A16 that we construct does not arise
from a partition scheme, but from a more general construct which we call a
general partition scheme. We extend the result of Ligozat and Renz to general
partition schemes.

3 Preliminaries

3.1 Networks of ontologies

Here we give a logical account of networks of ontologies in the sense of [6].

Definition 1 (Correspondence). Given two ontologies O and O′, with asso-
ciated entity languages Ent(O) and Ent(O′), and a set of alignment relations
R, a correspondence is a triple (e, e′, r), such that e ∈ Ent(O), e′ ∈ Ent(O′)
and r ∈ R.

A correspondence (e, e′, r) is an assertion that a certain pragmatic relation de-
noted by the symbol r holds between the entities e and e′.

The entities can be restricted to a particular kind of terms of the ontology
language based on the ontology vocabulary, e.g., named entities. The entity lan-
guage can also be an extension of the ontology language. For instance, it can
be a query language, such as SPARQL [8], adding operations for manipulat-
ing ontology entities that are not available in the ontology language itself, like
concatenating strings or joining relations. The developments of this paper are
independent of the chosen entity language.
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An important component of a correspondence is the relation that holds be-
tween the entities. We fix a set of relations R that is used for expressing the
relations between the entities. The set R can contain relation symbols like
=, which is used by matching algorithms, or IRIs like http://www.w3.org/

2004/02/skos/extensions#broaderPartitive. Relations from ontology lan-
guages, such as owl:sameAs, owl.differentFrom, owl:equivalentClass, owl:disjointWith,
rdfs:subClassOf or rdf:type, can also be used.

An alignment is defined as a set of correspondences.

Definition 2 (Alignment). Given two ontologies O and O′, an alignment is a
set of correspondences between pairs of entities belonging to Ent(O) and Ent(O′)
respectively.

Definition 3 (Network of ontologies). A network of ontologies (Ω,Λ) is
made up of a set Ω of ontologies and a set Λ of alignments between these on-
tologies. We denote by Λ(O,O′) the set of alignments in Λ between O and O′.

A correspondence is interpreted with respect to three features: a pair of
models from each ontology and a semantic structure, denoted as ∆. The class of
models of an ontology O is denoted as M(O).

Definition 4 (Satisfied correspondence). A correspondence µ = (e, e′, r) is
satisfied by two models m,m′ of O,O′ for some semantic structure ∆ if and only
if (m(e),m′(e′)) ∈ r∆, such that r∆ provides the interpretation of the relation r
in the structure. This is denoted by m,m′ |=∆ µ.

Three different kinds of semantic structures are outlined in [21]: simple, con-
textualized and integrated. Let us fix two ontologies O1 and O2 and their models
m1 and m2 with domains of interpretation D1 and D2 respectively. An integrated
semantic structure consists of functions εi from the local domains Di (i = 1, 2)
to a global domain D. A simple semantic structure is a particular case of inte-
grated structure: when D = ∪iDi and εi are canonical embeddings of Di into D.
Contextualized semantics is given by a family of binary relations rij (i = 1, 2)
between the local domains Di and Dj .

Below is an example of how relation symbols are interpreted with respect to
each semantics. As an example consider the semantics of the relation symbol v
depending on ∆.

vsimple(∆) = {(X,Y ) : X ⊆ D1, Y ⊆ D2 and X ⊆ Y }
vintegrated(∆) = {(X,Y ) : X ⊆ D1, Y ⊆ D2 and ε1(X) ⊆ ε2(Y )}
vcontextual(∆) = {(X,Y ) : X ⊆ D1, Y ⊆ D2 and r12(X) ⊆ Y }

If ∆ is simple, then v∆ depends only on D1 and D2. In this case the se-
mantics of v corresponds to the interpretation of rdfs:subClassOf if we consider
O1 and O2 as one large ontology. Likewise, the simple semantics of relation
symbols ⊥ (disjointness) and = (equivalence) corresponds to owl:disjointWith and
owl:equivalentClass.
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Definition 5 (Models of alignments). Given two ontologies O and O′ and
an alignment A between these ontologies, a model of this alignment is a triple
(m,m′, ∆) with m ∈ M(O), m′ ∈ M(O′), and ∆ a semantic structure, such
that ∀µ ∈ A, m,m′ |=∆ µ (denoted by m,m′ |=∆ A).

An alignment is said to be satisfiable if it has a model. An alignment is said
to be coherent if, for any of its class entities, it has a model that makes this class
non empty.

3.2 Algebraic calculus of ontology alignments

It was shown that algebras of relations are useful for managing ontologies [5].
The adopted algebraic formalism is Tarskian relation algebras.

Definition 6 (Relation algebra). A relation algebra is an algebra

A = (A,+, ·,−, 0, 1, ; , ,̆ 1′), (3.1)

with binary operations + (Boolean sum), · (Boolean product) and ; (composition,
or relative product), unary operations − (complement) and ˘ (converse), and
constants 0, 1, 1′ ∈ A called zero, unit and identity respectively, such that

1) the reduct (A,+, ·,−, 0, 1) is a Boolean algebra,
2) identity: 1′;x = x; 1′ = x, for all x ∈ A,
3) Peircean law: (x; y)·z = 0⇔ (x ;̆ z)·y = 0⇔ x·(z; y )̆ = 0, for all x, y, z ∈ A,
4) associativity: (x; y); z = x; (y; z), for all x, y, z ∈ A.

We will denote by A both the algebra and its carrier set. The class of relation
algebras is denoted as RA. In the sequel, by “algebra of relations” we will imply
an instance of RA, if not stated otherwise.

Consider an algebra of relations A. The approach put forward in [5] is that we
allow any element of A to be used in a correspondence. In other words, referring
to the previous subsection, we take R = A.

Each alignment may be normalized through norm to contain exactly one
correspondence between any two entities. A induces the following operations on
alignments:

A ∧A′ = norm(A ∪A′) (3.2)

A ∨A′ = {(e, e′, r + r′) : (e, e′, r) ∈ norm(A) ∧ (e, e′, r′) ∈ norm(A′)} (3.3)

A˘ = {(e′, e, r )̆ : (e, e′, r) ∈ A} (3.4)

If there exists an alignment between ontologyO and ontologyO′, and another
alignment between O′ and a third ontology O′′, we would like to find which
correspondences hold between O and O′′. The operation that returns this set of
correspondences is called composition.

A ◦ A′ = norm({(e, e′′, r; s) : ∃ (e, e′, r) ∈ A and ∃ (e′, e′′, s) ∈ A′}) (3.5)
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We can regard a network of ontologies as a directed graph, with ontologies
being vertices and alignments being edges. Moreover, one can assume that there
is at most one alignment between any pair of ontologies in the network. A closure
of a network of ontologies can be computed by applying a path-consistency
algorithm, e.g., PC2 [16], which in essence is an iterative application of

AOi,Oj
← AOi,Oj

∧ (AOi,Ok
◦ AOk,Oj

), (3.6)

for every triple (Oi,Oj ,Ok) of ontologies in Λ, until a fixed point is reached.

3.3 Algebras of JEPD binary relations

In general terms, a connection between an algebra of relations and some domain
of knowledge is given by specifying a universe of objects and a set of base re-
lations. For example, the universe of Allen’s interval algebra is the set of time
intervals encoded as pairs of real numbers (x, y), where x > y, whereas base re-
lations are defined by certain conditions on the endpoints of two intervals. Here
we give an account of algebras that arise from a set of jointly exhaustive and
pairwise disjoint (JEPD) binary relations.

A binary relation over a nonempty set U is a subset of the Cartesian prod-
uct U × U . The converse (also called inverse) of a binary relation R is a re-
lation symmetric to R, defined as R−1 = {(x, y) : (y, x) ∈ R}. The relation
IdU = {(x, y) ∈ U × U : x = y} is called the identity over U . Composition
of binary relations R and S is defined as R ◦ S = {(x, y) ∈ U × U : ∃z ∈
U such that (x, z) ∈ R and (z, y) ∈ S}. The field of a binary relation R is de-
fined as Fd(R) = {x ∈ U : ∃y, (x, y) ∈ R or (y, x) ∈ R}.

A set P of binary relations over U is called jointly exhaustive and pairwise
disjoint, if ∪R∈PR = U × U and R ∩ R′ = ∅ for each R 6= R′ ∈ P. Such P is
called a partition of U × U . We will assume P to be finite. Relations in P are
called base relations. We call an arbitrary union of base relations a P-relation.
P-relations form a subalgebra of the Boolean algebra U × U , in which the base
relations are atoms. If a P-relation is a union of two or more base relations,
it is called a disjunctive relation. Each P-relation is identified by the set of
constituting base relations, thus there is a one-to-one correspondence between
the set of P-relations and the powerset 2P . In the sequel a set of base relations
{R1, . . . , Rn} ⊆ P will denote their union.

Generally speaking, composition of P-relations may not be a P-relation. In
other words, ◦ may not be closed on the set of P-relations. One can approximate
the composition by a so-called weak composition �, defined as the least P-relation
which contains the composition. Weak composition is a binary operation on P-
relations (� : 2P × 2P → 2P).

A partition scheme is a pair (U ,P), where U is a nonempty set and P =
(Ri)i∈I is a partition of U × U , which is closed under converse and contains the
identity over U . Given a partition scheme, both weak composition and converse
become operations on the Boolean algebra 2P . The algebra

AP = (2P ,∪,∩,−U×U ,∅,P, �,−1 , IdU ) (3.7)
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is said to be generated by P.

Proposition 1 (Ligozat and Renz [15]). If (U ,P) is a partition scheme,
then AP satisfies all axioms of RA, except, possibly, the associativity axiom.

An algebra of relations which satisfies all axioms of RA except possibly the
associativity axiom is called a non-associative algebra [17]. The class of non-
associative algebras NA is broader than RA. Assume A = (A,+, ·,−, 0, 1, ; , ,̆ 1′) ∈
NA, x ≤ y is used as a shortcut for x + y = y. By At(A) we denote the set of
atoms of the Boolean reduct of A.

Any finite non-associative algebra A is fully specified by its atom structure.
The atom structure of an algebra A consists of the set of atoms At(A), the set
of identity atoms At(1′) ⊆ At(A), the converse restricted to atoms ˘ : At(A) →
At(A) and the composition restricted to atoms, which is a function CT : At(A)×
At(A) → 2At(A) defined by z ∈ CT (x, y) iff x; y ≤ z. CT is usually specified by
a composition table. The triples (x, y, z), where x, y and z are atoms and which
satisfy x; y ≤ z are called consistent scenarios. In order to find the consistent
scenarios of AP , one has to find all triples (Ri, Rj , Rk) of base relations, for which
∃x, y, z, such that (x, y) ∈ Ri, (y, z) ∈ Rj and (x, z) ∈ Rk.

A non-associative algebra is said to be integral if the composition of any
non-zero elements, i.e., those different from 0, is non-zero. A finite AP is integral
iff the composition of any two base relations is not equal to the empty set.

4 An algebra of qualitative taxonomical relations

In this section, we define an algebra, which contains the relations “equivalent to”,
“subsumed by”, “disjoint with”, “same as”, “different from”, “is a” and “is not”.
We call an ontology alignment relation taxonomical, if it is associated with some
set-theoretic relation (predicate) R. For instance, subsumption v is associated
with the set-theoretic inclusion ⊆. A taxonomical relation holds between two
ontological entities iff the relation R holds between the interpretations of these
entities. A set-theoretic relation R is said to be qualitative, if, for any pair of
sets (x, y), xRy is characterized by 3 parameters: whether each of the sets x∩ y,
x\y, y\x is empty or not.

All relations listed above are taxonomical and qualitative (if interpreted with
the simple semantics of alignments). The simple semantics of alignments assumes
a common domain of interpretation for all ontologies in a network. Given an arbi-
trary infinite domain D, the relations “same as” and “different from” correspond
to binary relations = and 6= on D, “equivalent to”, “subsumed by” and “disjoint
with” correspond to binary relations ≡, ⊆ and ⊥ on 2D, and finally “is a” and
“is not” correspond to ∈ and 6∈ on D× 2D. Thus, the binary relations =, 6=, ≡,
⊆, ⊥, ∈ and 6∈ are defined on the set D ∪ 2D, which we will call a universe and
denote as U (D). We will refer to the elements of D as individuals, and to the
elements of 2D as sets.

The relations
G = {=, 6=,≡,⊆,⊇,⊥,∈, 6∈,3, 63}, (4.1)
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where ⊇=⊆−1, 3=∈−1 and 63= 6∈−1, are not JEPD. What is the minimal parti-
tion P of U (D)×U (D) that has relations in G as P-relations? Since U (D)×U (D)

is a Boolean algebra, the question is to find its subalgebra generated by G.
Atoms of the sought-after subalgebra are nonempty intersections of generators
(the elements of G in our case) and their complements. This yields a partition
P14 with 14 base relations, which are defined below:

=n (α, β) iff α, β are nonempty sets and α = β

< (α, β) iff α, β are nonempty sets and α ⊂ β
> (α, β) iff α, β are nonempty sets and α ⊃ β
G (α, β) iff α, β are sets and α\β, α ∩ β, β\α 6= ∅
‖ (α, β) iff α, β are nonempty sets and α ∩ β = ∅

EN(α, β) iff α = ∅, β is a nonempty set

NE(α, β) iff α is a nonempty set and β = ∅
=e (α, β) iff α = β = ∅
∈ (α, β) iff α is an individual, β is a set and α ∈ β
3 (α, β) iff α is a set, β is an individual and α 3 β
6∈ (α, β) iff α is an individual, β is a set and α 6∈ β
63 (α, β) iff α is a set, β is an individual and α 63 β

=i (α, β) iff α, β are individuals and α = β

6=i (α, β) iff α, β are individuals and α 6= β

The relation ⊥, for instance, is equal to the P14-relation {‖, EN,NE,=e}. P14

is closed under converse, but the identity relation IdU(D) does not belong to
P14. It is a disjunctive P14-relation with three identity atoms: =n, =e and =i.
Therefore, (U (D),P14) is not a partition scheme. Below we define a broader class
of partitions that includes P14.

Definition 7 (General partition scheme). Let P = (Ri)i∈I be a partition of
U ×U . (U ,P) is called a general partition scheme if P is closed under converse
−1 and the identity IdU is a P-relation (possibly disjunctive).

The following proposition ensures that the algebra AP14 (or simply A14) gener-
ated by P14 is a non-associative algebra.

Proposition 2. Let P = (Ri)i∈I be a partition of U × U , such that it is closed
under converse and the identity IdU is a P-relation (possibly disjunctive). Then
the algebra AP generated by P is a non-associative algebra.

Proof. IdU �Ri = IdU ◦Ri = Ri = Ri ◦IdU = Ri �IdU . The Peircean law follows
from the fact that Ri �Rj ∩Rk = ∅ iff Ri ◦Rj ∩Rk = ∅ [see 15, Lemma 2].

The composition table of AP14 (or simply A14) is given in Table 2. The
presence of empty cells in the composition table means that the algebra A14 is
nonintegral.
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3
63

N
E

=
n
>
<
G‖

N
E

3
63

E
N

E
N

E
N

E
N

E
N

E
N

=
e

63
63

=
e

E
N

=
e

63

∈
∈

∈
6∈

∈
∈
6∈

6∈
6∈

=
i
6=

i
6=

i

6∈
6∈

6∈
∈
6∈

∈
6∈

∈
6∈

∈
6∈

6∈
6∈

6=
i

=
i
6=

i

3
=

n
>
<
G

>
G‖

N
E

3
3
63

63
<
G‖

E
N

=
n
>
<
G‖

E
N

N
E

=
e
63
3
63

=
i

∈
6∈

=
i
6=

i

6=
i

∈
6∈

∈
6∈

6=
i

=
i
6=

i
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Table 3: Composition tables of A16.

� =n > < G ‖ 3 63ni NE

=n =n > < G ‖ 3 63ni NE

< < =n><G‖ < <G‖ ‖ 363ni 63ni NE

> > > =n><G >G >G‖ 3 363ni NE

G G >G‖ <G =n><G‖ >G‖ 363ni 363ni NE

‖ ‖ ‖ <G‖ <G‖ =n><G‖ 63ni 363ni NE

∈ ∈ ∈6∈in ∈ ∈6∈in 6∈in =i 6=i 6=i IE

6∈in 6∈in 6∈in ∈6∈in ∈6∈in ∈6∈in 6=i =i 6=i IE

EN EN EN EN EN EN EI EI =e

� =i 6=i ∈ 6∈in IE

=i =i 6=i ∈ 6∈in IE

6=i 6=i =i 6=i ∈6∈in ∈6∈in IE

3 3 363ni =n><G >G‖ NE

63ni 63ni 363ni <G‖ =n><G‖ NE

EI EI EI EN EN =e

� =e EN EI

=e =e EN EI

NE NE =n><G‖ 363ni

IE IE ∈6∈in =i 6=i

A14 is not associative. For instance,

=e �(1 � 1) = (=e �1) = {EN,=e, 63},

whereas

(=e �1) � 1 = {EN,=e, 63} � 1 = {=n, >,<, G, ‖,=e EN,NE,3, 63}.

How to refine the partition P14 so that it generates an associative algebra, i.e., a
relation algebra? The following proposition defines a condition, which a sought-
for refined partition scheme must satisfy.

Proposition 3. Let (U ,P) be a general partition scheme. If the algebra AP is
associative, then for any base relation R ∈ P there exist identity atoms Idi, Idj ∈
P such that R ⊆ Fd(Idi)× Fd(Idj).

Proof. From Theorem 3.5 [17] it follows that if A ∈ RA, then x;x˘·1′, x ;̆x ·1′ ∈
At(A) for all x ∈ At(A). Applied to AP we obtain that (∀R ∈ P) (∃Idi, Idj ∈ P)
(R�R−1)∩IdU = Idi and (R−1�R)∩IdU = Idj. (∀(x, y) ∈ R) (x, x) ∈ (R�R−1)∩
IdU and (y, y) ∈ (R−1�R)∩IdU , hence x ∈ Fd(Idi) and y ∈ Fd(Idj). Therefore,
(x, y) ∈ Fd(Idi)× Fd(Idj), from which follows that R ⊆ Fd(Idi)× Fd(Idj).
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The fields of the identity atoms =n, =e and =i are:

Fd(=n) = 2D\{∅}, Fd(=e) = {∅}, Fd(=i) = D.

Proposition 3 contains a necessary condition for a general partition scheme
to generate a relation algebra. The fact that the algebra generated by P14 is
not associative implies that P14 violates this condition. More concretely, this
condition fails on the base relations 6∈ and 63. Indeed, 6∈ is contained inD×2D, but
it is contained in neither D× (2D\{∅}) nor D×{∅}. The necessary refinement
of P14 is the following: 6∈ splits into 6∈in and IE, likewise 63 splits into 63ni and
EI. We denote the refined partition as P16. The refined base relations are:

6∈in (α, β) iff α is an individual, β is a nonempty set and α 6∈ β
IE(α, β) iff α is an individual, β = ∅
63ni (α, β) iff α is a nonempty set, β is an individual and α 63 β
EI(α, β) iff β is an individual, α = ∅

Weak composition of the algebra A16, which is generated by P16, is specified
in Table 3. It is given by three composition tables. If the composition of two
relations is not given by either table, then it is equal to zero.

Proposition 4. A16 is a relation algebra.

Proof. Associativity can be checked manually, whereas satisfiability of the re-
maining axioms of RA follows from Proposition 2.

5 The calculus of alignments revisited

The calculus of alignments defined in [5] assumes that all ontology alignment
relations are elements of an algebra of relations, and vice versa. However, this
scheme does not work with A16. In A16, not all relations are meaningful enough
to be used in alignments. Here we consider the set of base relations independently
from the algebra A16.

Let R be the set of base ontology alignment relations (relation symbols):

R = {≡,@,A, G,⊥,∈, 6∈,3, 63,=, 6=}. (5.1)

R is so to speak an interface for the algebra A16. Ontology alignment relations
are then refined as disjunctions of symbols in R, denoted as R∨. The relations
≡ ∨ @ and ≡ ∨ A are abbreviated as v and w respectively.

We distinguish between two kinds of atoms in A16: coherent and incoherent.

Atcoh(A16) = {=n, <,>, G, ‖,∈, 6∈in,3, 63ni,=i, 6=i} (5.2)

Atincoh(A16) = {=e, EN,NE,EI, IE} (5.3)

Coherent atoms correspond to base ontology alignment relations. A relation
r ∈ A16 is said coherent if all its atoms are coherent. Coherent(r) denotes the
set of coherent atoms in r, and Coherent(A), the set of coherent relations in A.
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Table 4: The function φ from ontology alignment relations R∨ to the algebra A16.

Base OA relation r Synonyms φ(r)

≡ owl:equivalentClass =n,=e

@ less general than <,EN
A more general than >,NE
G partially overlaps with G
⊥ owl:disjointWith ‖,=e, EN,NE
∈ is a, rdf:type ∈
6∈ is not 6∈in, IE
3 3
63 63ni, EI
= owl:sameAs =i

6= owl:differentFrom 6=i

We further define a function φ from R to A16 (given in Table 4). This function
is naturally extended on R∨, so that φ(r∨s) = φ(r)∪φ(s). Coherent relations of
A16 are in a one-to-one correspondence with ontology alignment relations. This
is given by a function η:

η : Coherent(A16)→ R∨. (5.4)

The operations on alignments with relations from A16 are defined in the
same way as in Section 3.2. The difference is that we add a correspondence
interpretation level. Let µ =

(
e, e′, r

)
be a correspondence, in which r ∈ A16.

– If r = ∅, then µ is inconsistent.
– If r contains only incoherent atoms (Coherent(r) = ∅), then µ is incoherent.
– In all other cases r is interpreted as η(Coherent(r)) ∈ R∨.

For instance, assume that we want to compose the correspondences µ =(
e, e′, ⊥

)
and υ =

(
e′, e′′, v

)
. In A5 the relations ⊥ and v are considered as

shortcuts for the elements {⊥} and {<,=} respectively. Thus,

µ ◦ υ =
(
e, e′, {⊥}

)
◦
(
e′, e′′, {<,=}

)
=

(
e, e′′, {⊥} ◦ {<,=}

)
=

(
e, e′′, {<, G,⊥}

)
.

To compose the correspondences with A16, we first get the elements which cor-
respond to ⊥ and v (using the function φ) and then compose them:(

e, e′, {‖,=e, EN,NE}
)
◦
(
e′, e′′, {=n, <,=e, EN}

)
=
(
e, e′, {‖,=e, EN,NE} ◦ {=n, <,=e, EN}

)
=
(
e, e′′, {=, >,<, G, ‖,=e, EN,NE}

)
.

Finally, µ ◦ υ =
(
e, e′′, η(Coherent({=n, >,<, G, ‖,=e, EN,NE}))

)
=

(
e, e′′, ≡ ∨ @ ∨ A ∨ G ∨ ⊥

)
.
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This means that we have not deduced anything useful between e and e′′. Indeed,
if e′ is interpreted as an empty set, then for any interpretation of e and e′′ the
correspondences µ and υ will hold. But if we add one more correspondence,
which guarantees that e′ is not empty, e.g.,

(
e′′′, e′, ∈

)
or

(
e′′′, e′, @

)
, then,

by computing the algebraic closure of these three correspondences, we would
deduce

(
e, e′′, @ ∨ G ∨ ⊥

)
.

6 Discussion and future work

The algebra that we introduced in this paper, A16, covers all qualitative relations
between ontology entities from the taxonomy perspective. It is better than A5,
which we considered in previous work, in two ways:

– A16 combines class-level and instance-level relations within a single algebra,
– the calculus that it induces on alignments allows to tell between unsatisfia-

bility and incoherence of alignments.

Here are some issues that should be worth of consideration.

Non-taxonomical relations Algebras of relations for ontology alignment are not
limited to taxonomical relations. For example, one may build an algebra of rela-
tions from biomedical ontologies like SNOMED CT or NDF-RT, using relations
like snomed:hasActiveIngredient or ndfrt:mayTreat. Such an algebra can have, for
example, a composition rule hasActiveIngredient ◦ mayTreat = mayTreat.

Algebraic formalism The algebra considered is this paper satisfies the axioms
of RA. But weaker structures can be used as algebras of ontology alignment
relations, e.g., non-associative algebras [17], or Boolean algebras with operators
[11].

Non-simple semantics of alignments Here we adopted the simple semantics of
alignments. However, algebraic calculi can potentially be adopted to other se-
mantics as well, like the integrated semantics, which is more tolerant to hetero-
geneity.
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