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Abstract. Instance matching concerns identifying pairs of instances
that refer to the same underlying entity. Current state-of-the-art instance
matchers use machine learning methods. Supervised learning systems
achieve good performance by training on significant amounts of manu-
ally labeled samples. To alleviate the labeling effort, this paper presents a
minimally supervised instance matching approach that is able to deliver
competitive performance using only 2% training data and little parame-
ter tuning. As a first step, the classifier is trained in an ensemble setting
using boosting. Iterative semi-supervised learning is used to improve the
performance of the boosted classifier even further, by re-training it on
the most confident samples labeled in the current iteration. Empirical
evaluations on a suite of six publicly available benchmarks show that the
proposed system outcompetes optimization-based minimally supervised
approaches in 1-7 iterations. The system’s average F-Measure is shown
to be within 2.5% of that of recent supervised systems that require more
training samples for effective performance.
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1 Introduction

Instance matching is the problem of matching pairs of instances that refer to the
same underlying entity [24]. It is an important preprocessing step in knowledge
discovery and data mining algorithms [6], and is documented to have numerous
applications in the Semantic Web community [24].

Current state-of-the-art instance matchers use a variety of machine learning
techniques to achieve effective performance [5], [1], [27]. Many of these systems
are supervised, and require sets of manually annotated samples to train their
classifiers. This manual effort can be expensive, especially in open communities.

In recent years, minimally supervised approaches have been devised to allevi-
ate extensive labeling effort [16],[15]. While such approaches perform reasonably
in many cases, a comparative analysis shows that there is still a considerable
gap between their performance and that of supervised systems [17]. An addi-
tional problem is that such systems require extensive parameter tuning, and the
specification of a function called the pseudo F-Measure (PFM). Intuitively, the
PFM serves as a proxy for the true F-Measure, with minimally supervised in-
stance matchers heuristically attempting to optimize the PFM over unlabeled
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(or sparsely labeled) data instead of the true (unknown) F-Measure [18]. A re-
cent study found the PFM to be uncorrelated (and even negatively correlated)
with the true F-Measure in several cases [17], raising concerns about whether
currently defined PFMs are appropriate proxies.

This paper presents a minimally supervised instance matching system that
offers a practical compromise between the two paradigms above. The proposed
system expects a few input seed training samples to bootstrap itself. To maxi-
mize its performance on unseen data, the system employs a meta-classification
strategy called boosting [7]. Boosting is a machine learning method that relies on
weighting several base machine learning classifiers to build an ensemble classi-
fier. Ensemble classifiers use weighted majority voting to classify samples, which
is shown to improve performance on many challenging tasks [7].

The ensemble classifier in this paper is used for probabilistic instance match-
ing, where the classifier scores each instance pair according to its likelihood of
being a matching pair. Given the low degree of supervision, the overall output
is not expected to have high quality. Instead, the system uses a small percent-
age of the most confidently labeled instance pairs to iteratively self-train itself
in a semi-supervised fashion. The intent is to improve performance with each
iteration, with large gains anticipated in the initial iterations.

To the best of our knowledge, this is the first minimally supervised instance
matching system that combines boosting methods with iterative semi-supervised
learning to achieve effective performance. The ensemble classifier is trained using
the AdaBoost algorithm [21], and with a choice of two base classifiers, random
forests and multilayer perceptrons [12], [23], both of which have been individually
validated for instance matching [22], [27].

Evaluations on six benchmark datasets show that, using just 2% of the
ground-truth (or 50 samples, whichever is less) for training, the proposed sys-
tem with the multilayer perceptron as a base classifier outperforms, on average,
state-of-the-art minimally supervised approaches, and performs competitively
compared to fully supervised systems that use more training samples. Addition-
ally, the best performance is consistently achieved within 1-7 semi-supervised
iterations. The system is also shown not to require extensive parameter-tuning
in order to achieve these benefits. Lastly, we show, through implementation, that
the proposed system can be integrated seamlessly with state-of-the-art orthogo-
nal components (e.g. blocking) that are required in a complete workflow.

2 Related Work

Instance matching is an extensively researched subject, and goes by many differ-
ent names, including record linkage, entity resolution, the merge-purge problem
and data matching, to name just a few [24], [3], [6]. A näıve instance matcher
pairs every instance in the dataset with every other, and then scores the pair (as
matching or non-matching) in an expensive classification phase [6]. The unten-
able quadratic complexity of this approach indicates a two-step workflow, with
the first step designated as blocking [4]. Blocking places instances into (possibly
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overlapping) clusters, either by partitioning the instance space in some manner
[14], or by using an inexpensive clustering function called a blocking key [4], [8].
Instances sharing a cluster are paired and classified, leading to savings.

State-of-the-art systems that focus on the blocking aspect of instance match-
ing include Limes and MultiBlock [14], [8], the latter being implemented in the
Silk toolkit. Both these approaches depend on the link specification classifier
being known. Section 3.1 describes why this supervised blocking approach is un-
suitable for the present work. To the best of our knowledge, only two classifier-
agnostic approaches have been proposed for schema-free RDF data. The first
of these is the unsupervised Attribute Clustering (AC) algorithm, recently pro-
posed by Papadakis et al. [20], and is used as the blocking module in this paper.
Recently, a DNF (Disjunctive Normal Form) blocking scheme learner for RDF
data was also proposed but is relatively more complex to implement [9], [10].

The classification step has also been extensively researched, with a survey of
existing systems provided by Scharffe et al. [24]. Popular examples of supervised
systems include FEBRL [5] and Marlin [1]; for a comparative evaluation, we refer
the reader to the work by Köpcke et al. [11]. To the best of our knowledge, the
only work that has considered a multilayer perceptron is a supervised evaluation
effort by Soru and Ngomo [27]. Also, we are only aware of one (supervised)
work that has implemented boosting in an instance matching architecture [22].
In contrast to either effort, this paper proposes a minimally supervised instance
matcher that simultaneously incorporates boosting and iterative semi-supervised
learning to improve performance. For a full treatment on boosting, the reader is
referred to the seminal work by Freund and Schapire [7]. The book by Chapelle
et al. comprehensively covers semi-supervised learning [2].

As earlier mentioned, current minimally supervised approaches optimize a
pseudo F-Measure (PFM) function [18], or perform active learning [15], [16].
The proposed system is compared against these approaches in Section 4; they
were also compared under different configuration settings in a recent evaluation
effort [17]. Finally, two influential examples of fully implemented RDF-based
instance matchers are RDF-AI and KnoFuss [25], [19].

3 Approach

The schematic of the full instance matching system is illustrated in Figure 1.
Note that, while the dotted component (the classification step) in the figure
constitutes the key innovation, it cannot be implemented in isolation. In addition
to blocking, generating restriction sets (matching classes and properties between
two files) is an important task in the schema-free RDF setting [15]. To maximize
performance, we re-implement state-of-the-art pre-classification modules, with a
preference for unsupervised, but empirically high-performing, approaches. Note
that, in principle, a practitioner can always replace a module with their own.
Experimentally, the modules below delivered good performance (Section 4).
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Fig. 1. The proposed instance matching system. The dotted component (the classifi-
cation step of instance matching) is iteratively executed for a pre-defined number of
self-training rounds, and constitutes the key innovation of the paper

3.1 Pre-Classification Steps

Blocking approach. Recall, from Section 2, that blocking is the first step
of typical two-step instance matchers and can be thought of as a pre-processing
clustering step that selects only a subset (of the Cartesian product of the full sets
of instances) for further processing [4]. The goal is to avoid exhaustive pairwise
comparisons of instances in the classification step. Let the set of instance pairs
generated by the blocking step be denoted as the candidate set.

Blocking may generate the candidate set with or without the knowledge of
the classifier (see Section 2). In a semi-supervised setting, the latter approach
is advantageous. The main reason is that, since candidate set generation is in-
dependent of classification, it only needs to be executed once. Thus, only the
classification step is subject to semi-supervised learning (the boundary of the
dotted component in Figure 1), leading to computational savings.

Given this rationale, this paper uses the recently proposed trigrams-based
Attribute Clustering (AC) algorithm for the blocking approach [20]. The ap-
proach is unsupervised and performs well empirically. The AC algorithm works
by grouping properties (or attributes) after computing the overlap between the
properties’ value-sets using a trigram-based similarity score. Two instances share
a cluster if they share tokens in any two properties that were grouped together.
The candidate set is generated from the clusters using a suitable blocking algo-
rithm, several of which were evaluated in the original paper [20]. Experimentally,
the block purging algorithm1 was found to work well for the proposed system.

Generating restriction sets. Restriction sets in the instance matching liter-
ature are typically defined as sets of class and property alignments between the
input RDF files [15].

1 Block purging eliminates clusters larger than a threshold value, with the premise
that such clusters are the result of (non-discriminative) stop-word tokens [20].
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Example 1: Suppose both input RDF files contain interlinked instances from
two classes, Addresses and People. A restriction set would determine that these
classes do not match, and would ensure that their instances are not paired with
each other for further evaluations.

In practice, restriction sets tend to improve both quality and run-time, since
they ensure that only compatible instance pairs are evaluated. Similarly, when
extracting features from a given instance pair (described subsequently), the sys-
tem is more effective if it has access to a set of matching property pairs. The
Raven system was one of the first instance matchers to automatically deduce re-
striction sets from the data [15]. Experimentally, the solution was effective when
there was considerable extensional overlap between two properties (for property
alignment) or instance sets (for class alignment), assumptions that were found
to hold for the benchmarks in this paper. For more heterogeneous datasets, a
sophisticated type-inference algorithm (e.g. Typifier [13]) may be a safer option.

Extracting features. An instance matching classifier does not directly take
an instance pair as input. Instead, the pair is first converted into a real-valued
feature vector. Let a feature extraction function be defined as a function that
accepts a pair of strings as input and outputs a real-valued number. Given a set
G of such functions and a set Q of property alignments output by the restriction
set generator, |Q||G| features can be extracted for each compatible instance
pair, by applying each function in G to the property values corresponding to an
alignment in Q.

Example 2: Consider two independent datasets describing people and an
alignment (Home-Address, Residence) between two of their respective properties.
Given an instance pair (e1, e2) from the datasets, the simple feature extraction
function CommonToken would compare their addresses and return 1 if they
share a common token, and 0 otherwise.

The choice of G is an important determinant of overall instance matching
performance [3]. Existing instance matchers typically include token-based and
string-based functions as features [5], [1]. Numeric features have also been found
to improve performance, especially if dates and other numeric data regularly
occur in the files [22]. A comprehensive text by Christen evaluated phonetic
features, and found them to be quite effective [3]. Drawing on these efforts, we
implement 28 feature extractors for the proposed system, including 2 numeric
features, 8 string and token-based features, and 18 phonetic features. Many of
these features are efficiently implemented in the FEBRL package [5]; more details
and examples are provided on our project website 2.

3.2 Classification Step

Algorithm 1 contains the pseudocode for the classification step. In addition
to the base classifier M , the algorithm takes as arguments seed training sets

2 https://sites.google.com/a/utexas.edu/mayank-kejriwal/projects/

semi-supervised-im-using-boosting
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Algorithm 1 Classification step

Input: Seed training sets (comprising feature vectors) of positive and negative samples
D and N resp., Candidate Set Γ , Base Classifier M , Iteration rounds num, Positive
factors for positive and negative samples factorD and factorN resp.

Output: Ranked list L of pairs in Γ

1. Initialize list L of size |Γ |
2. Initialize numD := |D|
3. Initialize numN := |N |
4. Train classifier M with the AdaBoost ensemble method using D and N as train-

ing sets; let the trained classifier model be denoted as M ′

5. Initialize count := 0
6. while count < num do

Score each pair in Γ using M ′ and place pair in L
Sort L in ascending order using the scores as sorting keys
numD := numD × factorD
numN := numN × factorN
Repeat step 4 by using the first numD elements in L as positive training
examples, and last numN elements in L as negative training examples
count := count+ 1

7. end while
8. return L

of matching and non-matching instance pairs and the candidate set Γ , with
each instance pair in these sets converted to a feature vector. Finally, three
parameters (num, factorD and factorN ) are used to control semi-supervision
and are subsequently described.

Freund and Schapire first described boosting as ‘the general problem of pro-
ducing a very accurate prediction rule by combining rough and moderately in-
accurate rules-of-thumb’ [7]. Thus, boosting is an ensemble-based method that
seeks to train and combine several instances of a base classifier to obtain a final
strong ensemble classifier. A popular implementation of a boosting algorithm,
and the one used in this paper, is AdaBoost [21]. AdaBoost works by dynamically
placing higher weights on training samples that are misclassified by the current
classifier in each boosting round. The committee of classifiers thus trained are in
turn weighted according to their overall performance on the training set, with
the weighted committee constituting the ensemble classifier. During testing, the
ensemble classifier scores a feature vector from the candidate set by computing
an appropriately normalized weighted sum of scores.

To illustrate this process, suppose that a trained instance M ′ of the base
classifier M is configured to output a confidence score score(M ′) for a particular
classification. Assuming that the ensemble classifier is a weighted committee of
m trained models, w1M

′
1 + . . . + wmM

′
m, the confidence score of the ensemble

classifier on a feature vector is w1score(M
′
1) + . . .+ wmscore(M

′
m).

Once the ensemble classifier is trained, every feature vector in Γ is scored
in this manner and the sorted list L is compiled. Note that, if the training sets
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are large enough, the parameters of the base classifier and also AdaBoost can
be determined through grid-search and cross-validation. In the present task,
the training sets are assumed to be small, typically of the order of 2% of the
ground-truth or 50 samples, whichever is less. In many benchmarks, 2% of the
ground-truth constituted fewer than even 10 training samples. In such situations,
parameter tuning is viable. Instead, the goal is to achieve good generalization
for reasonable default values of the parameters.

To accomplish this and avoid overfitting, Algorithm 1 employs semi-supervised
learning to iteratively self-train the classifier on (previously) unlabeled samples
for num iterations. It is also possible to devise alternate convergence choices, but
this issue is left for future work. Concerning how many more samples the sys-
tem should self-train on in each new iteration, Algorithm 1 uses the parameters
factorD and factorN for this purpose. It is typical to set factorD = factorN (=
factor). In this paper, we adopt an aggressive strategy and set factor = 2.
Intuitively, such a strategy leads to stable performance in only a few iterations,
but risks introducing more noise into the system. factor can also be used to
set num, assuming that x% of the ground-truth was used for bootstrapping the
system. Consider that, in the first self-training round, factor ∗x% (positive and
negative) samples are used, followed by factor2x% in the next round (and so
on). It is reasonable to assume that factornum−1x should not be allowed to
exceed 100%. Setting x = factor = 2 indicates3 that num ≤ 7.

In early experiments, we found factor = 2 (but with the caveat in the foot-
note) and num = 7 to yield a good compromise between noise and convergence,
and assume these values in the rest of this work. A detailed analysis of alternate
parameter settings is a topic for future work.

In summary, while boosting starts from a weak classifier and attempts to
strengthen it by dynamically re-weighting the training set, semi-supervised learn-
ing starts from a small training set and attempts to grow it iteratively by ex-
ploiting confidence scores.

Note that the performance of boosting depends on the base classifier M . In
this paper, we consider both random forests and multilayer perceptrons as base
classifiers. A random forest is a committee of bootstrap-aggregated (or ‘bagged’)
decision trees, and is known to make decision tree performance more robust
on noisy data [12]. A multilayer perceptron (MLP) is a feedforward artificial
neural network that can distinguish data that is not linearly separable, unlike
the original perceptron model [23]. As Section 4 will illustrate, the two classifiers
offer different tradeoffs. MLPs tend to perform better empirically on challenging
tests, but take more time to train, even on small training sets. In contrast,
random forests have fast training times, but may suffer from low performance
on difficult test cases [27].

The performance of semi-supervised learning depends both on the perfor-
mance of the boosted classifiers and the number of incorrectly labeled samples

3 Note that 27 = 128%. To prevent this extra source (28%) of noise, the seventh
iteration of Algorithm 1 sets factor to 100/64=1.5625. More generally, Algorithm 1
can be implemented to take x as a parameter, and to enforce factornum−1x ≤ 100%.
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in each of the self-training sets. If the system does not perform well initially,
semi-supervision is likely to degrade performance further. The next section will
show that, in many cases, semi-supervised learning and boosting can be used to
offset each other’s disadvantages. Semi-supervised learning helps to compensate
for the overfitting problems often caused by boosting on small training sets [12],
while boosting helps to compensate for the incorrect labels (‘noise’) introduced
by semi-supervised learning.

4 Experiments

4.1 Data

Six benchmarks are used to evaluate the system. The first three, Persons 1,
Persons 2 and Restaurants were publicly released by the 2010 Instance Match-
ing Evaluation Initiative (or IAEI), conducted as part of the annual Ontology
Alignment Evaluation Initiative4 (OAEI). These cases are ‘easy’ in that super-
vised systems have been shown to achieve over 95% F-Measures on all of them
[11]. This is not true of minimally supervised approaches, as Section 4.5 will
demonstrate. For this reason, the three benchmarks provide an interesting test
for the proposed (minimally supervised) system.

The other three real-world benchmarks are designated as ACM-DBLP, Amazon-
GoogleProducts and Abt-Buy5. ACM-DBLP covers the bibliographic domain and
is relatively clean, with 2617 and 2295 instances in the source and target respec-
tively, and a ground-truth set of 2224 matching pairs. The other two datasets
cover e-commerce instances and are known to be difficult even in supervised
settings [11], [27]. Amazon-GoogleProducts links 1363 source instances to 3226
target instances via 1300 matches, while Abt-Buy links 1081 source instances to
1092 target instances via 1097 matches.

The six described benchmarks were specifically chosen because, along with
covering several domains, they enable comparing the proposed system to the
best reported results of at least four other state-of-the-art approaches that were
recently evaluated on them [27], [11], [17].

4.2 Implementation

Random forests, multilayer perceptrons and the AdaBoost algorithm are already
implemented in the Java Weka API6, which were used for these experiments.
Given the small size of the seed training set, Weka’s default parameter values are
used without any special tuning. Section 4.6 discusses this issue further. Finally,
all programs were implemented serially in Java on a 32-bit Ubuntu machine with
3385 MB of RAM and a 2.40 GHz Intel 4700MQ i7 processor.

4 http://oaei.ontologymatching.org/2010/im/index.html. We did not use the
2014 IAEI benchmarks because, at the time of writing, their ground-truths were
unavailable, and they were not evaluated by competing instance matching baselines.

5 Available at http://dbs.uni-leipzig.de/en/research/projects/object_

matching/fever/benchmark_datasets_for_entity_resolution
6 http://www.cs.waikato.ac.nz/ml/weka/
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4.3 Pre-classification results

The re-implemented Raven restriction set generator was found to yield perfect
class and property alignments for all the benchmarks. Similarly, the trigram-
based Attribute Clustering blocking approach yielded perfect candidate set recall
for the three IAEI benchmarks. On the real-world datasets, the approach was not
able to achieve perfect recall, but still performed reasonably. Specifically, the Abt-
Buy and ACM-DBLP candidate sets covered 95.44% and 97.43% of the ground-
truth respectively. Recall on Amazon-GoogleProducts was the lowest (83.54%)
owing to the difficulty of the dataset. Note that this bounds the maximum recall
that can be achieved by the classification step, which penalizes its maximum
possible F-Measure. The next section discusses this issue further.

In terms of run-time, all pre-classification steps were found to execute in a
total of less than 3.5 seconds for all the benchmarks. Similar to existing instance
matchers, this time was negligible compared to classification time (Section 4.6).

4.4 Classification metrics

The metrics, precision, recall and their F1−Measure, were used for evaluating
performance. Denoting the set of returned results as R and the ground-truth
as G, the precision is defined by the formula |R ∩ G|/|R|, while the recall is
defined by the formula |R ∩ G|/|G|. The F1 − Measure (henceforth denoted
simply as the F-Measure7) is given by 2*Precision*Recall/(Precision+Recall)
and quantifies precision-recall tradeoff.

The previous section noted that, on Amazon-GoogleProducts (and to a lesser
extent, Abt-Buy and ACM-DBLP), candidate set recall was imperfect, which
implies that the maximum achievable classification F-Measure is strictly below
100%8. For these systems, the reported F-Measures are only pessimistic esti-
mates, since it is improbable that the classifier would have labeled all of the miss-
ing (matching) pairs incorrectly. To realistically estimate the true F-Measure, we
re-weight the pessimistic F-Measure Fp using the formula 100 ∗ FMp/FMmax,
where FMmax is the maximum possible F-Measure achievable under the current
candidate set (e.g. 91.03% on Amazon-GoogleProducts). Where applicable, both
F-Measures (pessimistic and re-weighted) are reported.

4.5 Classification Results

For both base classifiers (random forests and multilayer perceptrons), the precision-
recall tradeoff offered by the proposed system is evaluated against two baselines.
The first baseline is the base classifier itself, trained on the same samples as the
proposed system, but without boosting or semi-supervised learning. The second

7 The general F-Measure formula is parametrized by a quantity, β. In the case of the
F1 −Measure, β = 1.

8 For example, the maximum achievable classification F-Measure on Amazon-
GoogleProducts is 2∗83.54∗100/(83.54 + 100) = 91.03%, since maximum achievable
recall is the candidate set recall, 83.54%.
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Fig. 2. The best precision-recall results of the proposed system (over seven iterations)
against the two baselines, when using a random forest as the base classifier. On Persons
1, the three curves are near -coincidental, while in the case of ACM-DBLP, the best
performance of the proposed system was achieved in the first iteration itself (hence, two
curves are coincidental). Note the change in Y-axis scale for Persons 1 and Restaurants

baseline is similar to the first, except that boosting (but not semi-supervised
learning) is used. For each benchmark, the precision of both baselines is plotted
against the recall. Given that the proposed system is evaluated over seven iter-
ations, we plot (for each benchmark) the precision-recall curve for the iteration
in which the proposed system achieved the highest F-Measure.

Figure 2 shows the results for the random forest base classifier. On Per-
sons 1, all three systems performed equally well, achieving nearly 100% F-
Measure. On both Persons 2 and Restaurant, the proposed system either equals
or outperforms the other two systems for all recall values. Interestingly, in the
case of Restaurants, we note that although the second baseline (using just the
boosted classifier) outperforms the first baseline in terms of the highest F-
Measure achieved, the latter offers better tradeoff at lower recall values.

On the other three benchmarks, the differences between the systems are
not as apparent. On ACM-DBLP, boosting affected performance positively, but
semi-supervised learning did not, since the best (proposed) system performance
was achieved in the first iteration itself. On Amazon-GoogleProducts, boosting
clearly degrades performance, but the semi-supervised learning is able to par-
tially compensate for it. On Abt-Buy, the three systems are again nearly identical,
but unlike on Persons 1, none of the systems perform well. As earlier noted in
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Fig. 3. The best precision-recall results of the proposed system (over seven iterations)
against the two baselines, when using a multilayer perceptron as the base classifier. On
Persons 1, the three curves are near-identical. Similar to Figure 2, the best result of
the proposed system, in the case of ACM-DBLP, was achieved in the first iteration

Section 4.1, both Abt-Buy and Amazon-GoogleProducts are challenging cases,
since even supervised systems performed relatively poorly on them [11], [27].

Figure 3 shows the results for the case where the base classifier is a multilayer
perceptron (MLP). For the first four benchmarks, the findings are similar to those
in Figure 2, with an exception in the case of Restaurants, where the proposed
system shows a slight dip at the end and the base classifier ends up with the best
F-Measure (100%). Otherwise, the highest F-measure is always achieved by the
proposed system, an observation that is most apparent in the case of Abt-Buy.
Another interesting finding is that the non semi-supervised boosted classifier
consistently performs worse than the base classifier. We believe that this attests
to the expressive strength of MLPs over random forests. Boosting the MLP
makes it more prone to overfitting, but the semi-supervised learning compensates
for it. As in the case of Amazon-GoogleProducts in Figure 2, this illustrates the
utility of combining both techniques with an expressive base classifier.

Comparison to minimally supervised approaches Table 1 lists the highest
F-Measure scores achieved by the proposed system over the seven iterations that
were conducted and compares it to three state-of-the-art minimally supervised
approaches that were also evaluated on the six benchmarks. As noted earlier
in Section 2, these approaches also seek to minimize supervision by optimizing



12 Mayank Kejriwal and Daniel P. Miranker

Table 1. A comparison of the highest F-Measures achieved by the proposed system
(multilayer perceptron-based) to those of other minimally supervised approaches

Test Case Linear Boolean Genetic Proposed
(pessimistic)

Proposed (re-
weighted)

Persons1 100.00% 99.50% 100.00%100.00% 100.00%

Persons2 41.45% 59.12% 37.04% 97.19% 97.19%

Restaurants 88.56% 88.56% 88.56% 94.68% 94.68%

ACM-DBLP 97.96% 97.46% 97.71% 93.42% 94.65%

Amazon-GP 49.08% 39.97% 43.11% 39.13% 42.98%

Abt-Buy 48.60% 37.66% 45.08% 36.27% 37.14%

Average 70.94% 72.18% 68.58% 76.78% 77.77%

a function called a pseudo F-Measure (PFM) in a variety of hypothesis spaces
including linear, boolean and genetic (Table 1). The Raven system attempts to
optimize a user-provided PFM using linear and boolean classifiers and tuned
parameter values [15], while Eagle exploits genetic algorithms [16]. For fairness,
only the best results achieved by these systems are listed in Table 1. For the
proposed system, the best results achieved with the multilayer perceptron as
base classifier are shown, owing to its relatively superior performance9. The
table show that, on average, even the pessimistic estimate exceeds the next best
(the Raven boolean classifier) system performance by over 4.5%. If the random
forest-based classifier is used on Restaurants, the difference widens by about 1%
(see previous footnote).

Comparison to supervised approaches Soru and Ngomo recently evaluated
several base classifiers in a supervised setting using 10-fold cross validation [27].
We mentioned in Section 2 that that was the only work, to the best of our
knowledge, that attempts using multilayer perceptrons for the instance matching
task. Without ensemble methods or semi-supervised learning, the average highest
F-Measure that was achieved on the six benchmark test cases was 79.25%. If the
re-weighted approach is assumed, the proposed system (multilayer perceptron-
based) is within 1.5% of this average, from the data in Table 1, and even the
pessimistic approach is within 2.5%. A similar finding applies when analyzing10

the evaluations conducted by Köpcke et al. [11] on two other supervised SVM-
based instance matching systems, FEBRL and Marlin [5], [1].

FEBRL and Marlin were not tested on the IAEI benchmarks since they were
originally designed to solve the record linkage problem for Relational Databases
(RDBs) [5], [1]. On the ACM-DBLP benchmark, the best configurations of both
systems performed well, achieving near-perfect F-Measure scores. On Amazon-
GoogleProducts, FEBRL achieved between 30-40% F-Measure even when trained
on 100 training samples, while the F-Measure achieved by the best configuration
of Marlin (when trained on 100 samples) approached 50%. On Abt-Buy, FEBRL

9 The exception was Restaurants where the random forest achieved 100% best FM.
10 The reference for this claim is Figure 3 (on page 6) of the original paper [11].
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achieved about 20% F-Measure after being trained on 100 samples, while Marlin
achieved above 60% F-Measure on its best configurations.

To conclude, the proposed system slightly outperforms FEBRL on the real-
world benchmarks (despite being trained on only half the training set), but is
outperformed by Marlin. The literature also indicates that these systems required
careful selection of parameters and models, and do not include components for
restriction set generation and unsupervised blocking. It is unclear if these systems
can be adapted as instance matchers for schema-free RDF data.

4.6 Discussion

We conclude this section with a discussion of the run-times, as well as the de-
pendence of the system on the parameter num (the number of iterations) in
Algorithm 1. Although the multilayer perceptron (MLP) outperformed (by a
large margin) the random forest base classifier for the more challenging test
cases (Amazon-GoogleProducts and Abt-Buy), the difference was less severe on
the other test cases. In the case of Persons 2 and Restaurants, both methods
performed equally well. The reason why this observation is important is because
the MLP had much higher run-times than the random forest. On Restaurants,
for example, the random forest-based system had run-times ranging from 2-5
seconds (for the entire classification step) depending on the iteration. The MLP-
based system achieved run-times ranging from 17 seconds (for the first iteration)
to almost 20 minutes (for the final iteration). Similar observations were noted for
the other datasets11. This confirms earlier findings that the MLP can be slower
by 1-2 orders of magnitude, and has a direct dependence on the size of the train-
ing set [27]. Given this disparity in run-times between the two classifiers, the
random forest is clearly a better base classifier choice for the IAEI benchmarks,
and considering only the slight performance penalty, ACM-DBLP as well.

Note that it was not always the case that the best performance was achieved
in the last iteration. For ACM-DBLP in particular, Figures 2 and 3 show that the
best performance was achieved in the first iteration. On average, we found that
the performance tended to peak on or before the fifth iteration12, after which it
slowly started declining. We hypothesize that this is due to the boosted classifier
getting overfitted on the training data after a certain number of iterations. Future
work will test this hypothesis through more evaluations.

Finally, note that the proposed classifier was only tested with default param-
eter settings, because the seed training sets were too small to perform grid-search
or cross validation. Thus, it is reasonable to assume that the performance of the
system can be improved even further if a good parameter-tuning methodology
can be devised, without using an extensive validation set. We believe that this
is an important issue for future work.

11 Supplemental experimental results are noted on the project website (footnote 2).
12 This corresponds to 25 = 32% of the ground-truth (assuming no re-training noise).
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5 Conclusion and Future Work

This paper presented a minimally supervised instance matching system that
combines semi-supervised learning with the AdaBoost algorithm to achieve ef-
fective performance. Using a multilayer perceptron as the base classifier with
default parameter configurations, the system outperformed, on average, com-
peting minimally supervised approaches by over 4.5%. It also came within 2.5%
F-Measure (using a pessimistic estimate) of the performance of fully supervised
approaches that use larger training sets and 10-fold cross-validation to achieve
the same level of performance. Drawing on prior evaluations from the literature,
the system was also found to be competitive with the state-of-the-art FEBRL
instance matcher. Along with these results, the low run-times make the system
a promising candidate for off-the-shelf schema-free RDF instance matching.

Future work will seek to efficiently apply the findings to large-scale datasets,
which raises some new challenges, including the efficiency of semi-supervised
methods and the large training times of multilayer perceptrons. Addressing these
challenges is clearly important, especially for large-scale efforts such as Linked
Open Data13 [26].
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