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Abstract—We propose a probabilistic approach to the problem
of schema mapping. Our approach is declarative, scalable, and
extensible. It builds upon recent results in both schema mapping
and probabilistic reasoning and contributes novel techniques in
both fields. We introduce the problem of mapping selection,
that is, choosing the best mapping from a space of potential
mappings, given both metadata constraints and a data example.
As selection has to reason holistically about the inputs and the
dependencies between the chosen mappings, we define a new
schema mapping optimization problem which captures interac-
tions between mappings. We then introduce Collective Mapping
Discovery (CMD), our solution to this problem using state-
of-the-art probabilistic reasoning techniques, which allows for
inconsistencies and incompleteness. Using hundreds of realistic
integration scenarios, we demonstrate that the accuracy of CMD
is more than 33% above that of metadata-only approaches already
for small data examples, and that CMD routinely finds perfect
mappings even if a quarter of the data is inconsistent.

I. INTRODUCTION

Schema mappings are collections of complex logical state-
ments which relate multiple relations across data sources with
different schemas, and thus can be used to exchange data
between these sources. Efficient techniques for reasoning about
the suitability of different schema mappings are crucial to
manage the massive number, complexity, and size of data
sources. While the metadata and data of the sources often
provide evidence for how to best map them, this evidence is
rarely complete or unambiguous. To reason effectively about
mappings, we thus need techniques grounded in mapping
understanding that can reason about open-world scenarios
using uncertain, imperfect evidence.

We study the problem of mapping selection, that is, of
selecting from a large set of possible mappings, a mapping
that best relates a source and a target schema. We define the
mapping selection problem for the entire language of st tgds
(source-to-target tuple-generating-dependencies; also known as
GLAV mappings) which is arguably the most commonly used
mapping language [1]. We then provide an efficient solution to
this problem based on state-of-the-art probabilistic reasoning.

Historically, approaches to schema mapping discovery and
selection have considered a wide variety of inputs. Early
approaches use metadata (schema constraints) and attribute
correspondences (aka schema matchings) to create mappings
that are consistent with the metadata [2], [3]. Metadata in the
form of query logs has been used to select mappings that
are most consistent with frequently asked queries [4]. Many
different approaches use data to refine a mapping or to select a

mapping from among a set of schema mappings [5], [6], [7],
[8], [9], [10], [11], [12]. Other approaches solicit user feedback
to define scores for each view in a set of candidate views and
then select an optimal set of views based on these scores [13].
All of these approaches have merit, but are tailored to a specific
form of input evidence, and either work for limited mapping
languages, like views, or assume consistent or complete input,
which is difficult to prepare or find. An exception to this is the
approach by Alexe et al. [12] that considers bad data examples
that are consistent with several (candidate) mappings or none.
They consider how such bad examples can be turned into good
examples that are consistent with a single, desired mapping.

We define a new mapping selection problem that uses both
data and metadata collectively as input. None of the evidence
is required to be consistent or complete, rather we find the
subset of st tgds that are best supported by the given evidence
as a whole. Metadata can serve as a guide through a potentially
massive set of possible mappings, suggesting mappings that are
consistent with schema semantics (e.g., joining relations on a
foreign key). Data can reinforce metadata evidence. Data can
also rule out a mapping that is consistent with the metadata,
but inconsistent with large parts of the data. Metadata can
obviate the need to have two pristine data instances as input
that precisely define a single best mapping. Furthermore, our
framework is declarative and extensible to new forms of
evidence including scores (such as user-feedback annotations)
on the metadata and data evidence.

Our solution adopts and extends some of the latest tech-
niques from the probabilistic reasoning community. These
techniques are routinely used to combine logical constraints in
relational domains with the ability to handle uncertainty and
conflicting information. Building upon work of Gottlob and
Senellart [18], we refine their concepts of validity and fully
explaining to define what it means for a single tuple to be either
an (incomplete) error for a mapping or (partially) explained by
a mapping. Using these notions, we define our probabilistic
optimization problem using probabilistic soft logic (PSL)
[14], a scalable probabilistic programming language based
on weighted logical rules. PSL has been used successfully
for a variety of data and knowledge integration problems,
including knowledge graph identification [15] and data fusion
[16], [17], but did not support the kind of open world reasoning
required for mapping selection. We therefore extend PSL with
prioritized disjunctions, which provide a tractable framework
for handling reasoning over tuples that may be explained by
a mapping and thereby allow us to define key features of the
mapping selection problem.



We refer to our solution as Collective Mapping Discovery
(CMD), because it reasons collectively both about multiple
forms of evidence and over the interactions between different
st tgds. CMD advances the state-of-the-art in schema mapping
in several important ways including integrating evidence at a
much finer-grained level of detail than attempted in the past.
In addition, the declarative nature of CMD makes it easy to
extend in a variety of ways.

We perform an extensive empirical validation of our ap-
proach. We use the integration benchmark iBench [18] to
test CMD on a wide variety and large number of mapping
scenarios. We use IQ-METER [19], a multi-criterion evaluation
measure, to confirm the quality of CMD’s output. We compare
CMD with a baseline approach which uses only metadata. We
show that the accuracy of CMD is more than 33% above that
of a metadata-only approach already for small data examples.
In addition, we illustrate the robustness of our approach by
demonstrating that we are able to find accurate mappings even
if a quarter of the data is dirty.

Section II illustrates the key challenges with an example.
Section III introduces the selection problem for st tgds without
existentially quantified variables, and Section IV extends this
to st tgds. Section V introduces our solution using PSL and
our extension of PSL with prioritized disjunctions. We discuss
experiments in Section VI and related work in Section VII.

II. MOTIVATING EXAMPLE

Figure 1(a) shows a pair of source and target schemas,
foreign keys (solid lines) and attribute correspondences (or
matches, dotted lines), which we will use as a running ex-
ample. The metadata is ambiguous, as it is not clear from
the schemas whether task.supervisor in the target schema is
associated with proj.mgr or proj.lead in the source schema. A
data example in the form of an instance of the source schema
(I) and an instance of the target schema (J) can help resolve
such ambiguity. The data example in Figure 1(b), where org
and leader are empty, suggests that supervisors in task tuples
correspond to mgr in the source, not lead. Interactive schema
mapping refinement techniques use data to select among a set
of mappings. They take as input a set of candidate mappings
and use data to interactively guide a user in selecting a subset
that is correct [20], [5], or in correcting a set of data examples
so that a “best fitting” mapping exists [21]. The interactive
nature of these solutions permits a user to decide what mapping
is best given metadata and data evidence. In contrast, we do
this reasoning automatically to find the best fitting mapping.

We consider the problem of combining metadata evidence
(in the form of a set of candidate mappings) and potentially
imperfect data evidence (in the form of a data example) to
select an optimal mapping. More specifically, our candidate
mappings are source-to-target tuple-generating-dependencies
(st tgds).1 These are simple first-order logic statements relating
a source query and a target query. The candidates may come
from a mapping design tool like Clio [22] or ++Spicy [23], or
may have been mined from a query log [4].

1 The term mapping is often used both for a single st tgd and for a set
of st tgds. Here, we use candidate mapping or candidate to refer to a single
st tgd; while mapping generally refers to a set of st tgds.
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(a) Source (left) and target schema (right) with corresponding attributes
(dotted lines), a spurious correspondence (dashed), and foreign key
constraints (solid lines).

proj
topic mgr lead

BigData 1 2
ML 1 1

emp

id name company

1 Alice SAP
2 Bob IBM
3 Pat MS

task
title supervisor oid

BigData Alice 111
ML Alice 111

(b) Initial data example.
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name

Alice
Bob

org

oid name

111 SAP
222 MS

(c) Additional data.

θ0 : proj(t,m, l)∧emp(m,n, c) → ∃ o. task(t,n, o)

θ1 : proj(t,m, l)∧emp(l,n, c) → ∃ o. task(t,n, o)

θ2 : proj(t,m, l)∧emp(m,n, c)→ ∃ o. task(t,n, o) ∧ org(o, c)

θ3 : proj(t,m, l)∧emp(l,n, c) → ∃ o. task(t,n, o) ∧ org(o, c)

θ4 : emp(i,n, c) → ∃ o. org(o, c)

θ5 : emp(i,n, c) → leader(n)

θ6 : proj(t,m, l)∧emp(l,n, c) → leader(n)

θ7 : proj(t,m, l)∧emp(m,n, c) → ∃ o. task(t,n, o) ∧ org(o,n)

θ8 : proj(t,m, l)∧emp(l,n, c) → ∃ o. task(t,n, o) ∧ org(o,n)

(d) Candidate st tgds. Variables in bold denote exchanged attributes.

Fig. 1: Motivating example; see Section II for details.

A key challenge in mapping selection is that the number of
possible selections is exponential in the number of candidate
st tgds. Consider the candidates in Figure 1(d), focusing first
on our earlier data example (Figure 1(b)) and candidates θ0
and θ1. Notice that the data example is valid for θ0 (meaning
(I,J) satisfy the mapping θ0) but is not valid with respect to
θ1, as there is no tuple (BigData, Bob, -) (with some oid). We



call such a missing tuple an error. Errors might be caused by
dirty data. The data example contains a tuple (BigData, Alice,
111) and this tuple may be dirty (the value of Alice is wrong
should be Bob) causing this error. If the data is clean, this
error tuple would suggest that we should prefer θ0 over θ1.

Note that θ0 and θ1 both ignore the correspondence be-
tween emp.company and org.name. Mapping θ2 also explains
the data (intuitively), but it explains more, as it creates org
tuples for which we have no data evidence. If we change our
data example to include the org tuples in Figure 1(c), the data
suggests that we should select both θ2 and θ4. The mapping
θ2 alone maps the inner join of the source data to the target.
Mappings θ2 and θ4 together map the right outer-join.

If we also add the leader tuples in Figure 1(c) to our data
example, θ5 explains all leader tuples. However, θ5 is not valid
with respect to the data, as it also suggests that tuple (Pat)
should appear in leader, but it does not and thus is an error
for θ5. The mapping θ6 addresses this by joining emp with
proj via proj.lead; it both explains and is valid with respect to
the leader example data. Generally, we seek sets of st tgds that
collectively explain the data and are valid with respect to the
data. On that basis, the set {θ2, θ4, θ6} is a good choice.

Note that our candidates θ0 - θ6 use only correspondences
c1-c4 in Figure 1(a). If a matcher has incorrectly suggested
the correspondence c5 : emp.name → org.name, then we may
get additional candidate mappings like θ7 or θ8 that use this
correspondence. However, in this example (and in many real
examples) a small data example can eliminate such candidates,
as they are likely not to explain the data or be valid.

This example illustrates many challenges in schema map-
ping discovery from metadata and data.

Dirty or Ambiguous Metadata. Our goal is to find a mapping
that fits the metadata. In practice, the number of such mappings
can be huge, due to metadata ambiguities such as 1) multiple
foreign key paths between relations; 2) the choice between
inner and outer joins; 3) the presence of bad correspon-
dences. Dirty metadata (for example, incorrect foreign keys)
exacerbates this problem. Data can help in selecting correct
mappings. We tackle the problem of combining metadata and
data evidence to effectively and efficiently select a mapping,
even if the data does not fully disambiguate all metadata. In our
example, we may have some target tuples that are consistent
with a join on mgr (θ0) and some that are consistent with a join
on lead (θ1); e.g., (ML, Alice, 111) is consistent with both θ0
and θ1. Our solution will weigh the evidence to find a mapping
that is most consistent with the evidence as a whole.

Unexplained Data. We are given example source (I) and tar-
get (J) data and our goal is to find a mapping that explains the
target data. In practice, we rarely have perfect data examples
that only contain target data explained by I . Indeed, the open
nature of st tgds permits the target to have independent data
that was not derived from the source. For example, suppose
there is a target org (333, BM), and the value BM does not
appear in the source. This data may be correct data (the target
has data about the Bank of Montreal and the source does not) or
it may be dirty data (perhaps the value BM was mistyped and
should be IBM). Even if no candidate explains these tuples, we
still want to find the best mapping. So our optimization should
not break (or fail) in the presence of some unexplained data.

Furthermore, if there is a mapping that explains all data, we
may not choose it if it is not valid with respect to the data
example, or if it is considerably more complex (larger) than
one that fails to explain a few tuples in J .

Data Errors. Our goal is to find a mapping that is valid for the
given data example (I, J). Again, in practice, it is unrealistic
to assume a data example that is perfect in this way. Hence, we
provide a solution that is tolerant of some errors (for example,
some dirty source data or some missing target data), but seeks
to find a set of st tgds for which the errors are minimized (so
it is as valid as possible with respect to the data).

Unknown Values. Our goal is to find a mapping that may
use existential quantification where appropriate. This is chal-
lenging, as such mappings introduce unknown or null values
in the target. For instance, st tgds θ0 and θ1 both only cover
part of target tuple (ML, Alice, 111), as they cannot “guess” the
value of the oid. Still, we need to compare them to st tgds
that may have no existentials and therefore cover entire target
tuples. This problem is made more challenging as existentials
play a critical role in identifier (or value) invention where the
same existential value is used in multiple tuples to connect data
together. It is important that mappings that correctly connect
the data be considered better than mappings that use different
existentials. For example, we prefer θ2 over the combination
of θ0 and θ4, since the data supports the connection θ2 makes
between task and org in the target. This is an important aspect
of the problem that has not been considered by earlier work
on view (also known as full st tgd) selection [13].

To address these challenges, we present a fine-grained,
scalable solution that gives an st tgd credit for each tuple it can
explain or partially explain (in the case of existential mappings)
and aggregates this information to find a set of st tgds that best
explain the data. A set of st tgds is penalized for each error
tuple (the more errors the less valid the mapping). Hence, we
find the set of candidate st tgds that collectively minimize the
number of errors and number of unexplained tuples, even under
contradictory or incomplete evidence.

III. SELECTION OVER FULL MAPPINGS

We first define mapping selection for full st tgds [1], that
is, st tgds without existentially quantified variables, and extend
our definitions to arbitrary st tgds in Section IV.

A. Mapping Selection Inputs

We define our mapping selection problem with respect to a
source schema S and a target schema T, where a schema is a
set of relations. The data evidence consists of a data example,
that is, a pair of instances I of S and J of T. The metadata
evidence consists of a (finite) set C of candidate st tgds. An
st tgd is a logical formula ∀x φ(x) → ∃y ψ(x,y), where φ
is a conjunction of atoms over the relations of S and ψ over
those of T [1]. Here, x and y are sets of logical variables. If y
is empty (no existentials) then the st tgd is a full st tgd [24].

Candidate st tgds can be generated using existing schema
mapping systems. Such systems, both industrial systems (like
Altova Mapforce or Stylus Studio) and research systems,
generate sets of candidate mappings and generally let users
select or refine these mappings using a variety of visual



interfaces. To generate candidate mappings, research systems
like Clio [22], HepTox [25], and ++Spicy [23] use schema con-
straints, while U-Map [4] uses query logs. By building on these
existing approaches, we focus on candidate mappings that are
plausible according to the metadata and the methodology used
in candidate generation rather than all possible mappings.

B. Characterizing the Input Quality

Given metadata evidence (S, T, C), our goal is to find
a subset M ⊆ C that best “fits” the data example (I, J).
Let C be the set of all constants in I ∪ J , and N a set of
labeled nulls (disjoint from C). Following Fagin et al. [24],
a homomorphism between instances h : K1 → K2 is a
mapping from C ∪ N to C ∪ N such that: (1) for every
c ∈ C, h(c) = c, and (2) for every R(t) of K1, R(h(t))
is in K2. A homomorphism h : φ(x)→ K is a mapping from
the variables x to C ∪ N such that for every R(x1, . . . , xn)
in φ(x), R(h(x1), . . . , h(xn)) is in K. Let M be a set of
st tgds, then an instance K of T is called a solution for I ,
if (I,K) |= M. An instance K is a universal solution if it
is a solution and if for every other solution K ′, there is a
homomorphism h : K → K ′. Fagin et al. [24] showed how a
universal solution can be computed efficiently using the chase
over M (and such a universal solution is typically called a
canonical universal solution).

Gottlob and Senellart [7] call a mappingM valid for (I, J)
if J is a solution for I under M. Suppose (I, J) 6|= M.
Intuitively, this means J misses tuples that must be in every
solution for I . We call such tuples errors. A ground tuple t
(that is, a tuple containing only constants) is a full error if it
is not in J but in every J ′ such that (I, J ∪ J ′) |=M. If K
is a universal solution for M and I , then t is a full error iff
t ∈ K and t 6∈ J . If (I, J) is valid with respect to M then
there are no full errors.

Example 1: The candidate θ5 in Figure 1(d) is not valid with
respect to the data example in Figure 1(c). However, if we add
the tuple t′ = leader(Pat)) to J then θ5 is valid for (I, J ∪ t′).
Thus, (Pat) is a full error, and the only full error. 2

Ideally, all tuples in J should be explained, that is, be a
result of the selected candidate mappings applied to I . Again
following Gottlob and Senellart [7], a mapping M ⊆ C and
source instance I explain a ground fact t, if t ∈ K for every K
such that (I,K) |=M. A mapping M and I fully explain J
if they explain every tuple in J . A ground tuple t is explained
by M and I iff t is in a universal solution for M and I . As
with validity, we would like to permit exceptions, that is, a
few tuples in J that unexplained, meaning not fully explained.

Example 2: Consider again θ5 of Figure 1(d). For the in-
stance I of emp shown in (b), θ5 fully explains J (the two
leader tuples) shown in (c). However, if leader also contained
leader(Joe), then θ5 would still be valid, but leader(Joe) is an
unexplained tuple. 2

C. Collective Selection over Full Mappings

We now define an optimization problem for findingM⊆ C
that best fits our possibly imperfect evidence by jointly mini-
mizing: 1) the number of unexplained tuples; 2) the number of

error tuples; and 3) the size ofM. The first two are formalized
through functions that, for a candidate setM, check how many
tuples in the given target instance J (on the right in Figure 2)
are unexplained (collectively) by M, and how many tuples
resulting from data exchange that are not in J (on the left in
Figure 2) are errors for a st tgd in M.

Let KC (respectively, KM and Kθ) be a canonical universal
solution for I and C (respectively,M and θ). We consider full
st tgds here so canonical universal solutions are unique. Let
createsfull(θ, t) be 1 if t ∈ Kθ and 0 otherwise. We then define
errorfull(M, t) for a tuple t ∈ KC − J (Figure 2 left side) to
be the number of st tgds in M for which t is an error.

errorfull(M, t) =
∑
θ∈M

(createsfull(θ, t)) (1)

Correspondingly, for the tuples in J (Figure 2 right side), we
define the function explainsfull(M, t), which checks whether
such a tuple is explained by M.

explainsfull(M, t) = 1 if t ∈ J ∩KM and 0 otherwise (2)

If a tuple is an error for every candidate (meaning
errorfull(C, t) = |C|), then we call the tuple a certain error.
Similarly, tuples in J −KC that cannot be explained by any
st tgd in C are called certain unexplained tuples. Certain
unexplained tuples are depicted in Figure 2(g).

Finally, we define the size function sizem(M) to be the
sum of the number of atoms in each θ ∈M.

sizem(M) =
∑
θ∈M

(number atoms in θ) (3)

Taking these three criteria together, we formally define the
mapping selection problem for full st tgds as follows.

Given schemas S, T, a data example (I, J), and a set C of
candidate full st tgds

Find argmin
M⊆C

(
∑
t∈J

[1− explainsfull(M, t)]

+
∑

t∈KC−J
[errorfull(M, t)]

+ sizem(M)) (4)

The error and size terms of (4) are modular and act as con-
straints on the supermodular explains term. Such minimization
tasks are NP-hard in general, and we have shown that this
is also the case for our selection problem [26]. Notice the
similarity of the mapping selection problem with the formal
framework for schema mapping discovery of Gottlob and
Senellart [7]. They propose a way of repairing a mapping to (1)
explain unexplained tuples and to (2) make the mapping valid
for an invalid data example (in other words, to account for error
tuples). They define an optimal mapping as one that minimizes
a cost function containing three parts: the size of the mapping;
the number of the repairs needed to account for unexplained
tuples; and the number of repairs needed to account for error
tuples. Unlike Gottlob and Senellart, we are counting error
and unexplained tuples rather than using algebraic operators
to repair the mapping. As in Gottlob and Senellart [7], we
weight each of these three components equally in our problem
definition. However, our formalization permits each rule to



KC − J

errorfull(M, t) = 0
(t /∈ KM)

errorfull(M, t) > 0
(KM − J)

(a)

(c)

Eq. (1)

J

explainsfull(M, t) = 1
(KM ∩ J)

explainsfull(M, t) = 0
(KC ∩ J −KM)

explainsfull(M, t) = 0
(certain: J −KC)

(d)

(f)

(g)

Eq. (2)

Fig. 2: Illustration of functions errorfull and explainsfull.

be weighted differently if there is a priori knowledge of the
scenarios. For example, if it is known that the target instance
contains non-source data, then the penalty for unexplained
tuples may be adjusted to be less than for error tuples.

In terms of Figure 2, our goal is to find an M that jointly
minimizes the number of non-certain unexplained tuples (those
in (f)), the number of errors (those in (c)) and the size of M.
Note that everyM⊆ C receives a constant penalty for certain
errors (part of (c)) and certain unexplained tuples (the tuples in
J−KC (g)). These tuples can easily be removed for efficiency
before running the optimization.

Note a subtle but important difference in how we treat
errors and unexplained tuples. The definition of errorfull con-
siders each candidate inM individually, and sums the number
of errors made by each. That is, if θ1 ∈ M and θ2 ∈ M
both make an error on t, that error is counted twice. In other
words, we seek a mapping where as few as possible of the
st tgds in the mapping make an error on t. In contrast, we do
not require each st tgd in the mapping to explain all tuples in
J , but consider it sufficient if at least one θ ∈ M explains a
tuple. Thus, we cannot treat each θ individually, but we must
reason about the set M as a whole.

IV. SELECTION OVER ST TGDS

We now extend our approach to the complete language of
st tgds with existentially quantified variables, showing how we
assign credit for the shared null values such st tgds introduce.
We begin by generalizing our two functions errorfull and
explainsfull to model the partial evidence provided by st tgds
with existentials. We then revisit our optimization problem
using the new, more general error and explains functions.

A. Incomplete Errors

In contrast to errorfull, an error function for arbitrary st tgds
has to take into account incomplete tuples, that is, tuples with
nulls created by a mapping with existentials.

Example 3: The candidate θ1 in Figure 1(d) is not valid with
respect to the data example in Figure 1(b). However, if we add
the tuple t1 =task(BigData, Bob, 123) to J then θ1 is valid for
(I, J ∪ t1). But this specific tuple is not in every J ′ ⊇ J for

which θ1 is valid. Hence, t1 is not a full error. However, a
tuple k1 =task(BigData, Bob, N0) (where N0 is a labeled null
representing any constant) up to the renaming of the null must
be in every such J ′. Furthermore, such a tuple is in Kθ1 , the
canonical universal solution for θ1 over I . 2

Intuitively, for this example, a tuple in KC should be an
error if there is no homomorphism from that tuple to J . This
is sufficient to consider k1 to be an error for the original J of
Figure 1(b), but not an error if we add t1 to J . However, once
an existentially quantified variable is shared between several
atoms, we need a more general definition.

Example 4: The candidate θ3 in Figure 1(d) is not valid
with respect to the extended data example in Figure 1(b)-
(c). For it to be valid, J would have to contain two tuples
k1 =task(BigData, Bob, N0) and k2 =org(N0, IBM) with a
shared labeled null enabling the join on proj.lead. Suppose
we add t1 =task(BigData, Bob, 123) from above to J and
t2 =org(333, IBM) to J . If we just required each tuple in Kθ3 to
have a homomorphism to some tuple in J , then neither would
be considered an error, as there are homomorphisms from k1
to t1 and from k2 to t2. However, the instance J ∪ t1 ∪ t2
does not correctly connect Bob to IBM. Hence, we would like
to consider both tuples to be errors. 2

To address these issues, our error function is based on
homomorphisms from all tuples in KC resulting from a sin-
gle chase step. If t is in the result of a chase step over
θ = ∀xφ(x)→ ∃ y ψ(x, y), we call all (target) tuples resulting
from this chase step (including t) the context of t under θ or
contextθ(t).2 We define the following helper function:

creates(θ, t) =


0 t ∈ KC − J, t 6∈ Kθ

0 t ∈ Kθ − J, ∃h : contextθ(t)→ J

1 t ∈ Kθ − J and no such h exists
(5)

Now for M⊆ C we define the error function as follows.

error(M, t) =
∑
θ∈M

creates(θ, t) (6)

In Figure 3, which extends Figure 2 for selection over st tgds,
error divides KC − J into three parts for given M: the tuples
in (a) are created by no st tgd inM, those in (b) do not count
as errors because they are used to partially explain some tuple
in J , and the remaining st tgds in (c) count as errors.

Recall that in the canonical universal instance KC nulls are
only shared between tuples generated by a single chase step. So
each incomplete tuple t ∈ KC (containing one or more nulls)
is associated with a single chase step and st tgd θ. Hence, for
such a tuple error(t) = 1 if there is no homomorphism from
the contextθ(t) to J , and 0 otherwise. For a ground tuple tg
(with no nulls), if there is no homomorphism to J (meaning
the tuple is not in J), error(tg) is the number of candidate
st tgds that create this tuple.

2For this to be well-defined, we require that each candidate st tgd θ is
normalized into a set of smaller logically equivalent st tgds where only atoms
that share existentials are retained in a single st tgd [1].



KC − J

error(M, t) = 0
(t /∈ KM)

error(M, t) = 0

error(M, t) > 0

(a)

(b)

(c)

KM − J

Eq. (6)

J

explains(M, t) = 1
(KM ∩ J)

explains(M, t)
∈ (0, 1]

explains(M, t) = 0

(d)

(e)

(f)

Eq. (8)

Fig. 3: Illustration of explains and error for selecting st tgds.

B. Partially Explained Tuples

We now extend explaining to the case of arbitrary st tgds.
More precisely, we use tuples with labeled nulls coming from
st tgds with existentially quantified variables to partially ex-
plain tuples in the target instance J through homomorphisms.

Example 5: Consider θ1 in Figure 1(d) and tuple
t =task(BigData, Alice, 111) in Figure 1(b). θ1 partially
explains t via a homomorphism from k = task(BigData, Alice,
N1) to t. In the absence of candidates that fully explain t, we
might include θ1 in our selection. 2

To define partial explanation, we treat nulls that play a
structural role in connecting information like constants. For a
tuple t ∈ J and a candidate θ, we call k ∈ Kθ a possible
explanation for t under θ if there is a homomorphism h :
contextθ(k) → J with h(k) = t. Let E(t, θ) be the set of
all possible explanations for t under θ. We call a labeled null
unique if it appears exactly once in contextθ(k). For k ∈
E(t, θ), we define null(k) to be the number of unique nulls
in k divided by the arity of k. So null(k) = 0 if k contains
only constants or labeled nulls used at least twice. Otherwise,
null(k) > 0. We say that k explains t to degree 1 − null(k),
and define the auxiliary function covers(θ, t) for t ∈ J based
on the maximal degree to which t is explained by any tuple:

covers(θ, t) =

{
maxk∈E(t,θ)(1− null(k)) E(t, θ) 6= ∅
0 E(t, θ) = ∅ (7)

A mappingM⊆ C explains a tuple t as well as the best st tgd
θ ∈M does.

explains(M, t) = max
θ∈M

covers(θ, t) (8)

The function explains can be used to divide J into three
parts (Figure 3) for a given M: those tuples fully (d) or
partially (e) explained through tuples in (b), and those that
cannot be explained by M at all (f).

Using the same size function as for full st tgds, we define
the general mapping selection problem as follows:

Given schemas S, T, a data example (I, J), and a set C of

candidate st tgds

Find argmin
M⊆C

∑
t∈J

[(1− explains(M, t))]

+
∑

t∈KC−J
[error(M, t)]

+ sizem(M) (9)

The only difference with the case of full st tgds is that we now
use notions of error and explaining suitable for st tgds with
existentially quantified variables. In terms of Figure 3, we seek
a small M that minimizes the error in (c) and maximizes the
degree to which tuples in (d) and (e) are explained.

As in the full case, exactly solving this optimization is
NP-hard due to the explains term. In Section V, we provide
an efficient approximation algorithm for finding a high quality
solution M. An illustrative example of selection over st tgds
can be found in the online appendix [26].

V. PROBABILISTIC MAPPING SELECTION

We now introduce Collective Mapping Discovery (CMD),
our efficient solution for schema mapping selection, using
techniques from the field of probabilistic modeling [27] and
statistical relational learning (SRL) [28]. Specifically, CMD
encodes the mapping selection objective (Equation (9)) as a
program in probabilistic soft logic (PSL) [14], and uses off the
shelf PSL inference to instantiate and solve the optimization
problem. Inference in PSL is highly scalable and efficient,
as it avoids the combinatorial explosion inherent to relational
domains (the relations error and explains) by solving a convex
optimization problem, while providing theoretical guarantees
on solution quality with respect to the combinatorial optimum.

However, like the majority of SRL methods, PSL relies on
a closed world assumption to ensure a well-defined probability
distribution. While we will not entirely remove this restriction,
we introduce prioritized disjunctions, a novel extension to PSL
that allows for existentials over closed domains (the existence
of an st tgd θ) while maintaining the convexity of inference,
which makes it possible to encode and efficiently solve model
selection problems such as the mapping selection problem.

A. Probabilistic Soft Logic

PSL [14] is a language for defining collective optimization
problems in relational domains. It comes with an efficient and
scalable solver for these problems. The key underlying idea is
to (1) model desirable properties of the solution as first-order
rules, (2) allow random variables to take on soft values between
0 and 1, rather than Boolean values 0 or 1, and (3) let the
system find a truth value assignment to all ground atoms in the
domain that minimizes the sum of the distance to satisfaction
of all ground instances of the rules.

A PSL program is a set of weighted rules:

w : b1(X) ∧ . . . ∧ bn(X)→ h1(X) ∨ . . . ∨ hm(X) (10)

where X is a set of universally-quantified variables, the bi(X)
and hj(X) are atoms over (subsets of) the variables in X , and
w is a non-negative weight corresponding to the importance
of satisfying the groundings of the rule. In first-order logic, a
grounding of such a rule is satisfied if its body evaluates to



false (0) or its head evaluates to true (1). PSL generalizes this
into a rule’s distance to satisfaction, which is defined as the
difference of the truth values of the body and the head (set to
zero if negative), and uses soft truth values from the interval
[0, 1] instead of Boolean ones. It relaxes the logical connectives
using the Lukasiewicz t-norm and its co-norm, which is exact
at the extremes, provides a consistent mapping for values in-
between, and results in a convex optimization problem. Given
an interpretation I of all ground atoms constructed from the
predicates and constants in the program, the truth values of
formulas are defined as follows.

I(`1 ∧ `2) = max{0, I(`1) + I(`2)− 1}
I(`1 ∨ `2) = min{I(`1) + I(`2), 1}

I(¬l1) = 1− I(`1)

The distance to satisfaction of a ground rule r = body→ head
is defined as follows:

dr(I) = max{0, I(body)− I(head)} (11)

Let R be the set of all ground rules obtained by grounding the
program with respect to the given constants. The probability
density function f over I is:

f(I) =
1

Z
exp[−

∑
r∈R

wr(dr(I))] (12)

where wr is the weight of rule r and Z is a normaliza-
tion constant. PSL inference finds argmaxI f(I), that is,
the interpretation I that minimizes the sum of the distances
to satisfaction of all ground rules, each multiplied by the
corresponding rule weight. Typically, truth values for some
of the ground atoms are provided as evidence, that is, they
have observed fixed truth values, and we only need to infer
the optimal interpretation of the remaining atoms. PSL finds an
exact optimum using soft truth values, which is then converted
to a high quality discrete solution [14].

B. Mapping Selection in PSL

We now encode the mapping selection problem as a PSL
program. We introduce three observed predicates that encode
tuple membership in the target instance J and the covers and
creates functions defined in Section III-C, respectively, and
one predicate in whose truth values denote membership of
candidate st tgds in the selection, and thus need to be inferred
by PSL. A given data example (I, J) and set of candidate
st tgds C will introduce a constant for every tuple in KC ∪ J
and for every candidate in C. We use the logical variable F
for st tgds, and T for tuples. The CMD program consists of
the following rules.

sizem(F ) : in(F )→ ⊥ (13)
1 : J(T )→ ∃F. covers(F, T ) ∧ in(F ) (14)
1 : in(F ) ∧ creates(F, T )→ J(T ) (15)

Rule (13) implements the size penalty by stating that we
prefer not to include an st tgd in the selected set: its weighted
distance to satisfaction is sizem(f) · (I(in(f)) − 0), and thus
minimal if in(f) is false. Rule (14) states that if a tuple is
in J , there should be an st tgd in the set that covers that tuple,
thus implementing the explains term. Note that the existential

quantifier is not supported by PSL; we describe how we extend
PSL and implement this efficiently in the next subsection.
Rule (15) states that if an st tgd creates a tuple, that tuple
should be in J , or conversely, if a tuple is not in J (and thus
in KC − J), no st tgd in the selected set should create it. This
implements the error term of our objective. The advantage of
this approach is that it reasons about the interactions between
tuples and st tgds in a fine-grained manner. Each rule describes
a piece of the mapping selection optimization.

C. Prioritized Disjunction Rules

In first-order logic (with finite domains), formulas with
existential quantifiers, such as Rule (14) above, can be rewrit-
ten by expanding the existential quantifier into a disjunction
over all groundings of its variables; however, in the context of
PSL, the resulting disjunction of conjunctions in the head of
a rule is expensive and non-convex to optimize in general.
We therefore show how to efficiently handle a practically
important subclass of such rules through a novel rewriting
approach to a collection of regular PSL rules. We call these
rules prioritized disjunction rules, as they implement a choice
among groundings of an existentially quantified variable using
observed soft truth values to express preferences or priorities
over the alternatives (in the case of Rule (14), over st tgds to
be selected). A prioritized disjunction rule is a rule:

w : b(X)→ ∃Y. hg(Y,X) ∧ hi(Y ) (16)

where b(X) is a conjunction of atoms, hg(Y,X) is an observed
atom and hi(Y ) is an atom whose value will be inferred.
The observed truth values of the hg(Y,X) atoms reflect how
good a grounding of Y is for a grounding of X , as the truth
value of the head will be higher when assigning high truth
values to hi(Y ) with high hg(Y,X). To efficiently support
this comparison of alternatives, we introduce a k-prioritization
for some natural number k, restricting the truth values of
hg(Y,X) to {0/k, ..., k/k} only. This allows us to rewrite each
prioritized disjunction rule into a collection of rules, where we
first expand the existential quantifier in the usual way, and then
introduce a rule for each priority level.

Consider first the Boolean case, i.e., k = 1. In this case,
every disjunct hg(Y,X) ∧ hi(Y ) is either false or equivalent
to hi(Y ). Since hg(Y,X) is observed, for every grounding y
of Y , we can either 1) drop the entire disjunct if hg(y,X) is
false or 2) drop hg(y,X) if it is true, leaving only hi(y) in
the disjunctive head. This leaves us with a standard PSL rule
with a (possibly empty) disjunction of hi atoms in the head.

For arbitrary k, we generalize this by grouping the head
elements based on the priorities. For each grounding b(x) of
the rule body b(X), we create one ground rule for every j =
1, .., k of the following form:

w/k : b(x)→
∨

hg(x,y)≥j/k

hi(y)

That is, we have a set of rules with identical bodies whose



heads are progressively more general disjunctions of hi atoms.

w/k : b(x)→
∨

hg(x,y)∈{k/k}

hi(y)

w/k : b(x)→
∨

hg(x,y)∈{k/k,(k − 1)/k}

hi(y)

...
w/k : b(x)→

∨
hg(x,y)∈{k/k,(k − 1)/k,...,1/k}

hi(y)

To understand the idea behind this transformation, assume for
the moment that all hi(y) have fixed, Boolean truth values,
and let m/k be the highest value hg(x, y) takes for this x and
any y with hi(y) = 1, i.e.,

m/k = max
{y|hi(y)=1}

hg(x, y)

Then, the rules for j = 1, ..,m are satisfied (because their head
evaluates to 1), and the ones for j = (m + 1), .., k are not
satisfied (because their head evaluates to 0). More precisely,
their distance to satisfaction is the truth value of b(x), and each
of these thus contributes w/k · I(b(x)) to the overall distance
to satisfaction, which for this set of ground rules is

(k−m)·w/k·I(b(x)) = w·
(
1− max

{y|hi(y)=1}
hg(x, y)

)
·I(b(x))

If b is observed, e.g., I(b(x)) = 1 as in the case of (14), this
expression depends purely on the maximum value of hg .

Example 6: Consider a single grounding of Rule (14) for
t =org(111, SAP) in J from Figure 1(c) and the candidates θ3
and θ4 from Figure 1(d). The expanded ground rule is

1 : > → covers(θ3, t) ∧ in(θ3) ∨ covers(θ4, t) ∧ in(θ4)

Predicate org has arity two, so we get a 2-prioritization with
possible values covers(F, t) ∈ {0/2, 1/2, 2/2}. Using values
covers(θ3, t) = 2/2 and covers(θ4, t) = 1/2, we replace the
initial ground rule with

1/2 : > → in(θ3) ∨ in(θ4)
1/2 : > → in(θ3)

which completes the rewriting from a rule with existential
quantification to a set of regular PSL rules. 2

To summarize, we have shown an efficient transformation
of a PSL rule with existentials over disjunctions of conjunc-
tions in the head into a (compact) set of regular PSL rules
using prioritized disjunctions. Furthermore, the soft-truth value
semantics of the disjunction is the maximum over the disjuncts
— which we will show to be a useful choice. While this
extension was motivated by the mapping selection problem,
we expect it to also be useful in other scenarios that involve
choices between variable numbers of alternatives.

D. Objective Equivalence

Recall from Equation (9) that our goal is to minimize∑
t∈J

[1−max
θ∈M

covers(θ, t)] (17)

+
∑

t∈KC−J

∑
θ∈M

creates(θ, t) (18)

+
∑
θ∈M

sizem(θ) (19)

We now demonstrate that, for Boolean values of the in(θ)
atoms, this is exactly the objective used by our PSL program.

We get a grounding of Rule (13) for every st tgd θ ∈ C:

sizem(θ) : in(θ)→ ⊥ (20)

For θ ∈ M, this rule has distance to satisfaction 1, and 0
else. Thus, each θ ∈ M adds sizem(θ) to PSL’s distance to
satisfaction, so those rules together correspond to (19). The
error Rule (15) is trivially satisfied for tuples in J (and any
st tgd). Thus, we only need to consider the groundings for
t ∈ KC − J and θ ∈ C:

1 : in(θ) ∧ creates(θ, t)→ ⊥ (21)

Such a ground rule has distance to satisfaction creates(θ, t)−
0 = creates(θ, t). Recall from Equation (5) that this can
only be non-zero for t ∈ Kθ − J . The PSL sum thus adds
1 · creates(θ, t) for every θ ∈ M and t ∈ Kθ − J , which
equals (18). Rule (14) is trivially satisfied for t 6∈ J , and for
every t ∈ J results in a partially ground rule

1 : > → ∃F. covers(F, t) ∧ in(F ) (22)

To complete the grounding, we apply PSL’s prioritized disjunc-
tion rules. Recall (cf. Section IV-B) that the covers function
takes on values according to the null function, which is the
number of unique nulls divided by the arity of a tuple. There-
fore, we know there are values {0/k, . . . , k/k} for covers(F, t)
where k is the arity of the tuple t. Thus we get for each t ∈ J
a set of k ground rules, the ith of which is

1/k : > →
∨

θ∈C,covers(θ,t)≥i/k

in(θ) (23)

We know that for every t ∈ J , the associated groundings
collectively contribute a distance to satisfaction of

1− 1 ·max
θ∈M

covers(θ, t)

due to prioritized disjunction rules rewriting, which
equals (17). Thus, the CMD program optimizes Equation (9).

E. Collective Mapping Discovery

To summarize, given data example (I, J) and candidates C,
CMD does the following two steps.

1) Compute truth values of evidence from (I, J) and C
2) Perform PSL inference on the CMD program and

evidence and return the corresponding mapping

Step 1 (data preparation) performs data exchange to determine
the tuples in KC , and computes the truth values of the
|C|×|KC−J | many creates atoms (based on Equation (5)) and



of the |C| × |J | many covers atoms (based on Equation (7)).
While finding a discrete solution to the optimization problem
defined by the CMD program and evidence is NP-hard, Step 2
(CMD optimization) provides an extremely scalable approxi-
mate solution with theoretical quality guarantees.

VI. EVALUATION

We experimentally evaluate CMD on a variety of scenarios,
showing that it robustly handles ambiguous and dirty metadata
as well as dirty tuples in the data example, and scales well
with the size of the metadata (i.e., schema sizes and number
of candidate mappings). We also demonstrate that our prior-
itized disjunction rules enable efficient inference for realistic
complex mapping scenarios. We ran our experiments on an
Intel Xeon with 24 x 2.67GHz CPU and 128GB RAM. We
provide further details on scenario generation in the online
appendix [26]; our implementation of CMD and instructions
for reproducing all experiments can be found online.3

A. Scenario Generation

Each of our scenarios consists of a data example (I, J)
for a pair of schemas S and T and a set C of candidate
st tgds, which form the input for CMD, and a gold standard
mapping MG used to assess the quality of the solution.
Scenario generation is controlled by the parameters listed in
Table I and consists of the following five steps.

(1) We generate the initial schemas, correspondences, data
example (I, J) and corresponding gold standard mappingMG

using the metadata generator iBench [18] and data generator
ToxGene [29]. iBench uses transformation primitives to create
realistic complex mapping scenarios. We chose a representative
set of seven primitives (including vertical partitioning, merg-
ing relations, etc. [26]) and invoke each of these primitives
πInvocations times. Three primitives create full mappings, the
other four all create existentials used once or twice and include
existentials that are shared between relations. These mappings
form MG. Each primitive creates between two and four rela-
tions (unless the πRelationShare is non-zero meaning a primitive
may use a relation created by another primitive rather than
creating a new relation). For one invocation, the source schema
has eight relations and the target has ten. For ten invocations,
we create our largest schemas with eighty source relations
and one hundred target relations. The other two parameters
controlling this step are πTuplesPerTable , the number of tuples
in each source relation, and πRelationShare , the percent of
source relations that are shared between mappings.

(2) To create dirty metadata, we use iBench to add randomly
created foreign keys to πFKPerc percent of the target relations.
These foreign keys create erroneous join paths, leading to bad
st tgds in our set of candidate mappings.

(3) We add randomly created correspondences to πCorresp

percent of the target relations [26]. These again add dirty
metadata and thus cause bad candidate mappings.

(4) We use the implementation of the Clio [3] algorithm
provided by ++Spicy [23] to generate the set of candidates C
from the schemas, foreign key constraints and correspondences
generated in previous steps, that is, based on metadata only.

3 http://projects.linqs.org/project/cmd

TABLE I: Overview of main experimental parameters.

Parameter Range Default
πInvocations 1 - 10 2
πTuplesPerTable 10 - 100 50
πRelationShare 0 - 40% 0%
πFKPerc 0 - 10% 0%
πCorresp 0 - 100% 0%
πErrors 0 - 50% 0%
πUnexplained 0 - 100% 0%

(5) As iBench createsMG which is valid and fully explaining
for (I, J), we modify J to introduce errors and unexplained
tuples (with respect toMG), where we control the percentages
πErrors and πUnexplained of non-certain errors and non-certain
unexplained tuples in the data example (with respect to the
possible maximum), respectively [26].

B. Evaluation of Solution Quality

We assess quality by comparing the mapping M ⊆ C
selected by CMD to (1) the correct mapping MG produced
by iBench and (2) the set C of all candidates produced by
Clio, which serves as our metadata-only baseline. Directly
comparing mappings is a hard problem, so we follow the
standard in the literature which is to compare the data exchange
solutions produced by the mappings. We use the core data
exchange algorithm of ++Spicy [23] to obtain KM and KC .
The gold standard instance KG for MG is the original target
instance J obtained from iBench in the first step. We compare
these instances using the IQ-METER [19] quality measure. IQ-
METER measures the ability of a mapping to generate correct
tuples as well as correct relational structures via labeled nulls
or invented values, so it is appropriate as an evaluation measure
for our mappings which contain existentials. It calculates recall
and precision of tuples and recall and precision of joins. It also
combines these four measures into a distance between zero
and one; we use the complement of the distance, which we
call IQ-score(K1,K2) ∈ [0, 1], where higher is better.

C. CMD Accuracy over Ambiguous Metadata

To assess the performance of CMD as the metadata be-
comes more ambiguous or dirty, we increase the number of
candidate st tgds by increasing the πFKPerc parameter from
0 to 10 percent and the πCorresp parameter from 0 to 100
percent. We investigate whether the data example allows CMD
to identify a good mapping from this larger set of candidates.
We use four scenarios per parameter setting, with an average
of 800 source and 1000 target tuples. Figure 4 shows IQ-
scores for Clio (meaning IQ-score(KG, KC)). Our approach
found correct mappings on all problems, while the IQ-score for
the C baseline decreased with more imprecise evidence, thus
showing that CMD effectively handles ambiguous metadata.

D. CMD Accuracy over Dirty Data

Our second experiment investigates the effect of imperfect
data on mapping quality. We set πCorresp = 100 percent
to increase the number of potential non-certain unexplained
tuples, and vary the percentage πErrors of non-certain errors
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from 0 to 30% in steps of five, and the percentage πUnexplained

of non-certain unexplained tuples from 0 to 100% in steps of
25. We consider three scenarios in each case, with 800 source
tuples and 1000 tuples in the initial target instance J . The
numbers of non-certain errors and unexplained tuples obtained
range from zero to 300 and zero to 1800, respectively.

In Figure 5, we group scenarios based on the (exact)
number of errors, and based on similar numbers of unexplained
tuples and plot average IQ Score for each group. Generally,
as the number of errors increases, the quality of the mapping
selected by CMD decreases. Adding non-certain unexplained
tuples also generally decreases the quality of the mapping.
However, in the presence of significant numbers of errors
unexplained tuples increase mapping quality. This happens
whenever unexplained tuples cause CMD to select st tgds
in C−MG that are similar to st tgds in MG, and when
selecting those st tgds is preferred over the empty mapping.
For scenarios with over one quarter unexplained tuples, and
even in the presence of a few (less than 10%) errors, CMD
routinely finds mappings with high IQ scores.

E. Performance of CMD

The next set of experiments evaluates the performance of
our approach along several dimensions. We focus on optimiza-
tion time, i.e., the time to find an optimal mapping after data
preparation is completed. Data preparation (determining which
tuples are errors or unexplained for each st tgd in C) is slow,
taking up to 150 minutes in our largest scenarios, and we
have not studied any optimizations for it. It can be done in
batch overnight. Furthermore, it is modular and thus could be
parallelized, and easily updated for changes to C.

First, we vary πTuplesPerTable from 10 to 100 in steps of
10 tuples to obtain data examples of increasing size for our
default schema size of 36 relations. We generate five scenarios
for each setting. Figure 6(a) plots average optimization time
in CMD and average time to generate C (the Clio baseline).
CMD optimization times are comparable to Clio times (note
this is the ++Spicy implementation of Clio) even though we
optimize over relatively large (3600 tuple) data examples.

Second, we vary πInvocations from 1 to 10 to increase the
sizes of the schemas (and thus the number of candidate st tgds
that are plausible for the schemas), which results in source
and target schemas with 18 to 180 total relations. The largest
scenario involved 70 candidate st tgds, or over 1022 possible
mappings. We set πTuplesPerTable = 50, thus obtaining data
examples with 900 to 9000 tuples. We use five scenarios per
setting and, as before, plot average CMD optimization time and
average time to run Clio in Figure 6(b), where the horizontal
axis shows the total number of relations (split into six bins of
equal size). Again, CMD optimization times are comparable
to those of the Clio implementation for generating C, but for
increasing schema size, the latter increases more quickly.

Third, we consider scenarios with the relation sharing
parameter πRelationShare set to 0, 15, 30, 35 and 40%, which
represents realistic mappings [18]. This increases the number
of relations that are used in more than one candidate st tgd, and
thereby (indirectly) the number of st tgds that may explain each
tuple, and thus the complexity of the expensive explains terms
in our objective. We generate five scenarios per setting, all
with 20 target relations, 8-16 source relations and up to 3600
tuples (100 per relation). The number of st tgds that (partially)
explain a target tuple within each scenario varies from zero to
five. In Figure 6(c), we plot average optimization times of
CMD and the running times of Clio, where the horizontal axis
is the maximum number of candidates that explain each tuple
in each scenario (no scenario had a maximum of four). These
results confirm that at realistic levels of relation sharing, CMD
optimization still selects a mapping quickly.

F. CMD on Real Metadata and Data

Finally, we consider a simple scenario with real schemas
and data from the well-known Amalgam benchmark [30]. We
use a scenario setting Amalgam schema A1 as source and
A3 as target. To construct a data example, we select a small
subset of the data in A1. To test whether CMD handles dirty
metadata, we include random correspondences on one third of
the target relations. The final evaluation contains 18 relations
and 2,502 tuples. For this scenario, CMD achieves a seven
percent improvement in mapping quality (IQ-Score) over the
Clio baseline. While preliminary, these results are promising.

VII. RELATED WORK

Using Metadata. Using metadata information to guide schema
mapping discovery has a long tradition. The names of schema
elements (such as attributes) can be used to suggest attribute
correspondences (the well-known schema matching problem)
and the Clio project showed how the schemas and constraints
can be used to infer mappings [2], [3]. HepTox [25] and
++Spicy [23] have extended this to richer forms of metadata
(including equality-generating-dependencies). In addition, the



(1.5, 2] (2, 2.5] (2.5, 3] (3, 3.5] (3.5, 4]

tuples in (I, J) (in thousands)

0
5

10
15
20
25
30

se
co

nd
s

(a)

(30, 60] (90, 120] (150, 180]

total relations in S and T
0

20

40

60

se
co

nd
s

(b)

2.0 3.0 5.0

max. tgds explaining each tuple in J

0

20

40

60

se
co

nd
s

(c)
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role of data in resolving ambiguity or incompleteness in the
metadata evidence has long been recognized, both in match-
ing [31] and in schema mapping, where the Data Viewer [20]
and Muse [5] systems use source and target data interactively
to help a user understand, refine or correct automatically
generated mappings. Most systems that combine evidence from
metadata and data, do so heuristically and may fail to suggest
a good mapping under inconsistent evidence.

Using Data Examples. A complementary approach that uses
data only is often called example-driven schema-mapping
design [32]. An example that is closest to ours casts schema
mapping discovery from data as a formal (and fully automated)
learning problem [7]. Given a single data example (I, J) find a
mapping M that is valid and fully explaining (and of minimal
size) for (I, J). Even for full st tgds finding optimal mappings
in this framework is DP-hard [7]. Using this framework, ten
Cate et al. [11] consider the restricted class of mappings with
a single atom (relation) in the head and in the body. They
provide a greedy approximation algorithm that is guaranteed
to find near optimal (valid and fully explaining) mappings of
this type, but do not discuss experimental results.

In contrast, we do not require the mapping to be valid
or fully explaining, rather we define an optimization problem
that finds an optimal set of st tgds that minimizes errors (the
invalidity of a mapping) and unexplained tuples. Although the
number of errors can, in theory, be exponential in the size of
the mappings (as pointed out by Gottlob and Senellart [7]),
we manage this complexity by using a set of candidate st tgds
derived from real mapping discovery systems and by using an
efficient approximation framework (PSL) to reason over these
alternative mappings. We also provide a novel principled way
of combining evidence from mappings that contain existentials
(and hence only partially explain tuples).

Multiple Examples. The Eirene system returns the most
general mapping that fits a set of data examples, if one exists,
and otherwise guides a user in refining her data (not the
mapping) to identify tuples that are causing the failure [21].
This is in contrast to Muse and the Data Viewer systems that
interactively pick data to help a user refine a mapping. Alexe
et al. [12] have also studied when a mapping can be uniquely
characterized by a set of data examples. This problem has also
been cast as a learning problem, where a user labels a series of
examples as positive or negative [33]. Finally, Sarma et al. [34]
consider how to learn views (mappings with a single relational

atom and no existentials in the target) from data alone.

Related Selection Problems. Belhajjame et al. [13] use
feedback from users on exchange solutions to estimate the
precision and recall of views (or full GAV mappings). They
present view selection as an optimization problem that maxi-
mizes either precision (which is maximal for valid mappings)
or recall (which is maximal for fully explaining mappings),
without taking mapping size into account. While Belhajjame
et al. [13] do not provide runtimes for their approach, they
use a very powerful, general purpose search algorithm [35]
designed for constrained optimization problems. In contrast,
our mapping selection problem, though NP-hard, is of a form
for which PSL efficiently finds a high quality solution.

While our approach relies on a potentially noisy data
example (I, J) to select among mappings, Belhajjame et
al. [13] rely on potentially noisy feedback from a user, who
annotates target tuples in a query answer as expected (with
respect to an implicit J) or unexpected, or provides additional
expected tuples. User feedback has also been used in active
learning scenarios in the context of data integration, e.g.,
to select consistent sets of attribute-attribute matches among
many datasources [36], or to select join associations in the
context of keyword-search based data integration [37]. While
those settings are quite different from the one we consider here,
extending CMD with active learning to incorporate additional
feedback is an interesting direction for future work.

Similarly, the source selection problem [38] has been
modeled as a problem of finding a set of sources that
minimize the cost of data integration while maximizing the
gain (a score that is similar to recall). Dong et al. [38] use the
greedy randomized adaptive search procedure meta-heuristic
to solve the source selection problem, a heuristic which unlike
PSL does not provide any approximation guarantees on the
solution.

Probabilistic Reasoning. Statistical relational techniques have
been applied to a variety of data and knowledge integration
problems. Perhaps closest to our approach is the use of Markov
Logic [39] for ontology alignment [40] and ontological map-
ping construction [41]. However, we consider more expressive
mappings than either of those approaches. Furthermore, by
using PSL, we can easily integrate partial evidence from st tgds
with existential quantification through soft truth values. More
importantly, in contrast to Markov Logic, PSL avoids the



hard combinatorial optimization problem and instead provides
scalable inference with guarantees on solution quality. This
advantage has proven crucial also for applications of PSL in
knowledge graph identification [15] and data fusion [16], [17].

VIII. CONCLUSION

We introduce Collective Mapping Discovery (CMD), a new
approach to schema mapping selection that finds a set of st tgds
that best explains the data in the sources being integrated.
We use both metadata and data as evidence to resolve am-
biguities and incompleteness in the sources, allowing some
inconsistencies and choosing a small set of mappings that work
collectively to explain the data. To solve this problem, we use
and extend probabilistic soft logic (PSL), casting the problem
as efficient joint probabilistic inference. The declarative nature
of the PSL program makes it easy to extend CMD to include
additional forms of evidence and constraints, coming from the
domain, from user feedback, or other sources. In future work,
we plan to explore weight learning techniques and investigate
their impact in different problem settings.
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