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Abstract—Data-intensive Web applications usually require
integrating data from Web sources at query time. The sources
may refer to the same real-world entity in different ways and
some may even provide outdated or erroneous data. An important
task is to recognize and merge the records that refer to the same
real world entity at query time. Most existing duplicate detection
and fusion techniques work in the off-line setting and do not
meet the online constraint. There are at least two aspects that
differentiate online duplicate detection and fusion from its off-
line counterpart. (i) The latter assumes that the entire data is
available, while the former cannot make such an assumption.
(ii) Several query submissions may be required to compute the
“ideal” representation of an entity in the online setting. This paper
presents a general framework for the online setting based on
an iterative record-based caching technique. A set of frequently
requested records is deduplicated off-line and cached for future
reference. Newly arriving records in response to a query are
deduplicated jointly with the records in the cache, presented to
the user and appended to the cache. Experiments with real and
synthetic data show the benefit of our solution over traditional
record linkage techniques applied to an online setting.

I. INTRODUCTION

A key task in integrating data from multiple Web sources is
to recognize records referring to the same real world entity—
the record linkage problem [1]. This task is known to be diffi-
cult since the attribute values of an entity may be represented in
different ways or even conflict with each other, e.g., different
addresses for the same business. Conflicting data may also
occur because of multiple correct values for the same real
world entity, incomplete data, out-of-date data or erroneous
data. Thus, another important task is to identify the correct
attribute values of an entity—the data fusion problem [2].

In a virtual integration system (VIS), such as a vertical
search engine, all of the above tasks must be performed at
query time. Given that the data integration step is just one part
of the process of getting data to users (which includes network
communication, ranking, etc.), it needs to be performed very
fast. Fusing all data upfront is obviously not an option in a
VIS. The goal of this work is to provide efficient solutions to
the record linkage and fusion (RL&F) problems at query-time.

An example will help illustrate the challenges tackled in
this paper. Consider a VIS that integrates data from the follow-
ing Web databases: Metromix.com, DexKnows.com, Yelp.com
and Menuism.com. The following query is submitted to the
VIS: Q1 = (Name = “Pizz%”; Cuisine = “Pizza”; Price

TABLE I: An example of inconsistent data on the Web.

Engine Name Address Phone
Query Q1

Metromix
Menuism Pizzeria Uno 49 E. Ontario St. 312-280-5115

DexKnows Pizza Uno 312-280-5111
Yelp Pizzeria Uno 29 E. Ohio St.

Query Q2
Metromix Pizzeria Uno 49 E. Ontario St. 312-280-5115
Menuism Pizzaria Uno 49 E. Ontario St. 312-280-5115

DexKnows Pizza Uno 49 E. Ontario Street312-280-5115
Yelp

= “Affordable”; Neighborhood = “Downtown, Chicago”).
(% is used as a wildcard character). Among all the returned
records, we look at those associated with the restaurant “Pizze-
ria Uno” (Table I). Metromix does not return any record, while
the records returned by the other Web databases do not agree
on the address and phone number. At this time, the best we can
do is to flip a coin to decide on the address of the restaurant
and to take a majority voting to decide on the correct phone
number. Suppose now that at a later time a new query is posted:
Q2 = (Name = “Pizz%”; Cuisine = “Pizza”; Price = “%”;
Neighborhood = “%”). Table I shows the set of records
for Q2. The list of results of the two queries gives us the
opportunity to see, although at different time intervals, multiple
records about the entity “Pizzeria Uno”. Thus, if we stored the
answer to query Q1, then, using the answer to Q2 together with
that to Q1, we could make a more informed decision about the
correct address and phone number of “Pizzeria Uno” (“49 E.
Ontario St.” and “312-280-5115”, respectively) for any ulterior
queries where “Pizzeria Uno” is a relevant answer.

The example shows that regardless of the effectiveness of
the RL&F algorithms, a qualitative answer to a query Q cannot
be given considering the records in response to Q alone.

To support the above claim we conducted an empirical
study where we constructed a toy VIS that connects 10 Web
databases of local business listings. For efficiency purposes, the
VIS collects the top-k (k = 10, 20 are commonly used) results
from each Web database [3]. We submitted 1,000 randomly
generated queries to each of these databases and then analyzed
the overlap between the returned result lists (k = 10 was used).
For example, the lists of results of Zagat and DexKnows did
not share any record for 721 queries. As shown in Table II,



TABLE II: Number of queries for which the overlap w/ Zagat is empty.

Web Database ChicagoReader YellowPages Metromix MenuPages Yelp Yahoo CitySearch Menuism DexKnows
# occurrences 511 587 649 667 673 676 702 714 721

this was not a rare occurrence. The table shows the number of
queries for which Zagat and each of the Web databases have
zero records in common. We observe that, on average, in the
merged list of results of a query, about 70% of the records
appear in one or two sources (out of 10) and only about 15%
of them appear in more than 5 sources. These observations
clearly suggest that effective record linkage cannot in general
be undertaken query by query in isolation, because there is not
sufficient “cleaning evidence” from the records returned by a
single query.

We can alleviate the lack of “cleaning evidence” by collect-
ing “evidence” from queries as we process them. We approach
the online RL&F problems from an iterative caching perspec-
tive (see Fig. 1). Specifically, the set of records corresponding
to frequently posted queries is deduplicated off-line and cached
for future references. Newly arriving records in response to a
user query are deduplicated jointly with the records in the
cache, presented to users and appended to the cache. The
framework of the problem addressed in this paper is as follows:

The Setting: Let D be a set of Web databases. Let E be a
set of real-world entities in the same application domain (e.g.,
real estate, book). Each entity has a set of attributes (e.g.,
name, address, phone for a business entity) and an attribute
may have zero or several values. Different sources may supply
different values for an attribute of an entity and the same
value may be represented differently. A subset of the entities
in E are frequently requested and a fraction of the volume
of queries occurs frequently. Thus, RL&F in this environment
faces unique challenges (e.g., time) and opportunities (e.g.,
temporal locality in queries) compared to a traditional setting.

The Problem: Let Q be a query. From the lists of records
returned by the D Web databases in response to Q, we need to
identify the set of records R referring to the same real-world
entity in E and fuse the records in R into a single and “clean”
representation. That is, solve the RL&F problems for Q.

The Proposed Solution: A solution for the above problem
must achieve a trade-off between efficiency and effective-
ness. Nevertheless, it needs to do so without significantly
deteriorating effectiveness. We seek to improve efficiency
by (1) avoiding repetitions of data cleaning steps such as
unnecessary fusion, and (2) identifying the duplicates of a
record in a constant time that is independent of the number of
database records by using an index. Concretely, we propose an
online record linkage and fusion framework (ORLF, for short)
based on iterative caching. ORLF stores fused records as plain
records together with information about how they were created,
i.e., provenance. A non-trivial problem in the proposed RL&F
framework is that of quickly finding the candidate matching
records in the cache of a record in the query answer. We cannot
afford to go through all the records in the cache to match them
against the query records. In Section IV-A, we give a novel
indexing data structure for fast similarity record lookup based
on the Bed-tree data structure [4].

Fig. 1: ORLF versus typical RL algorithms.

Fig. 1 is a simple sketch to illustrate our goal in ORLF. The
Y-axis is the RL accuracy, usually reported with the classical
F1-measure. The X-axis is the number of queries whose
answer sets were processed. With a typical RL algorithm (aka
off-line in this paper) [5], [6], [7], [8], the accuracy is about
the same (linear) across processed queries, oscillating about
their average accuracies (the dotted line). The solid line is the
behavior of RL in the proposed ORLF framework. There is an
initial warmup phase, where the accuracy is about the same
as that of a typical RL algorithm. As the system processes
more queries, the accuracy steadily improves. The key benefit
of ORLF however is that the RL&F steps take milliseconds
rather than seconds as with a typical RL&F algorithms.
Completely building ORLF requires the implementation of the
following components: (1) cache attribute selection, (2) cache
data structures, (3) efficient data lookup, (4) online RL&F
algorithms, (5) caching policies, (6) cache warm up and (7)
cache refreshing.

The contributions of this paper are:

• We propose, ORLF, an end-to-end framework to sup-
port efficient RL&F at query-time.

• We present an indexing scheme for records based on
the Bed-tree index [4]. Bed-tree supports relatively
fast record linkage and dynamic updates (for dynamic
caching). To our knowledge, no other record linkage
indexing technique satisfies both properties.

• We leverage query locality to perform query-time
RL&F efficiently and show that smart caching avoids
unnecessary fusion operations.

• We conduct extensive experiments on real and syn-
thetic data showing the accuracy and scalability of
ORLF.



Fig. 2: Query answering using RL&F with iterative caching.

The paper is organized as follows. Section II describes
ORLF. Section III discusses caching. Section IV describes the
query-time answering. Section V describes ORLF in action
with a comprehensive example. Section VI describes the
experiments. Related word is in Section VII. Section VIII
concludes the paper.

II. THE ORLF SYSTEM

We describe in this section the workflow of the proposed
iterative caching approach for online RL&F. In a nutshell,
newly arriving records in response to a user query are cleaned
jointly with the records in the cache, presented to users and
appended to the cache. The workflow is drawn in Fig. 2.

There are two processing paths: the hit and the miss paths.
Both start by looking up the records returned by each source
in response to a query in the cache. The lookup process is a
two-step process. First, for each incoming record r we use an
indexing data structure to retrieve the matching record of r
in the cache. We employ a string-based similarity search (see
Section IV. We collect the top-k most similar records to r in
the cache. A custom record matching function is then used to
find the matching record r in the top-k records. If a matching
record, denoted rc, exists, called a hit, then we take the hit
path. If r has no match in the cache, called a miss, we take
the miss path. In the former, we append rc and r to a temporary
indexing data structure IMI (inverted match index). Each index
entry in IMI is of the form 〈rc, LM〉, where rc is a cache
record and LM is the list of incoming records matching rc.
At the end of the lookup step, IMI will contain all the record
matches between the cache records and the incoming records.

Note that we do not move to the next processing block
on the hit path, i.e., Fusion of Records in Cache, until we
process all incoming records in response to the user query.
In the Fusion of Records in Cache processing step, IMI is
traversed and each rc is fused with the incoming records in its
corresponding list of matches. On the miss path, we collect all
incoming records without a match in the cache and perform
record matching and then fusion among them. Finally, we
union the lists of records of the two paths and pass the result to
the user. In practice, the union is input to a ranking algorithm
(not treated in this paper), which orders the records according
to some user criteria (e.g., price or user rating).

The cache content is updated based on the adopted cache
policy (Section III). We will show that there are substantial
differences between traditional caching and caching for online
RL&F. Iterative caching allows a “fast” response to the current
query and an “improved” data quality for subsequent queries.

III. CACHING MECHANISMS

The decision of what to cache can be taken either off-
line (static) or online (dynamic) in general. A static cache is
based on historical information. A dynamic cache has a limited
number of entries and stores items according to the sequence
of requests. Upon a new request, the cache system decides
whether to evict some entries in the case of a cache miss.
Online decisions are based on the cache policy. Two common
policies are: evicting the least recently used (LRU) or the least
frequently used (LFU) items from the cache [9]. We analyze
the suitability of these strategies to online RL&F. We also
introduce locking of cached items and record provenance to
improve efficiency when interacting with the cache.

A. Static Cache

With a static cache we need to identify the most fre-
quently accessed entities and load their corresponding records
in the cache. These entities are derived from the records
corresponding to the most frequent queries gathered from the
Web databases. Results of the frequent queries are processed
off-line using off-line RL&F algorithms. We used FRIL [5]
for RL and majority voting for fusion in our prototype. More
sophisticated fusion techniques can be used [10].

We introduce a variation of static caching where records
in the cache are allowed to be updated, called static cache
with in-place updates (SCU). The reason is that even though
the cache content is determined off-line, there can be cached
records for which the number of pieces of evidence is not
enough to decide whether they are correct (see example in
Section I). Hence, it is of practical importance to allow online
updates on these records. A cache record is updated by fusing
it with incoming matching records from sources which have
not yet contributed to the cache record. We keep track of the
provenance of each cache record for that purpose.

B. Dynamic Cache

The semantics of a miss is different in our caching from
the traditional one. In the latter, upon receiving a request for
an item v, the cache is probed for v. If v is not found, v is
brought into the cache from the disk. If the cache is full, then
a cached item is evicted to make space for v. In our caching



setting there is no disk: all the known records are those in the
cache and the ones in response to a query. Thus, on a miss, i.e.,
the match of an incoming record r is not in the cache, r itself
is brought into the cache after RL&F. Each cache record has a
cache tag that stores the information needed for accomplishing
dynamic caching, e.g., the number of times (or the last time)
the fused record was output to users.

C. Locking

Avoiding unnecessary cleaning operations is key to im-
proving online efficiency. We use a locking mechanism to
avoid unnecessary invocations of the fusion step. Specifically,
a cache record is locked if our confidence in its quality is
“high”. Determining when “high” is reached for a unlocked
record is orthogonal to our system. It can, for example, be
probabilistic [10]. In our prototype, we implemented a voting
strategy for this purpose: a record is locked if the value of
each of its attributes is obtained by fusing the records from
p of the sources. We empirically set p = |D|

2 − 1. Note also
that locking provides a means for implementing online cache
refreshing: certain locked records are unlocked at certain time
intervals and are refreshed via fusion. A thorough treatment of
refreshing is left for future work.

D. Record Provenance

If a cached record was previously constructed using a
record from a source S and, for a new query, S returns a
record r that matches the fused record, then we may decide
to discard r as it is very likely that r has been previously
seen from source S or is a duplicate record. If the record was
updated in the source, then the next refresh of the cache will
reflect this change. We encode provenance using a bit string of
length |D|, such that the ith bit is turned on if a record from
the ith source was involved in the construction of the fused
record.

IV. QUERY-TIME ANSWERING

In ORLF, the cache contains fused records. Specifically, if
fri is a record in the cache at time ti then at time ti+1 the
new version of fri is either fri itself or a new record fri+1

that is constructed out of fri and a set of incoming records
not in the cache, which were linked to fri.

Algorithm 1 describes the query answering algorithm. A
key novelty in our approach is that the merging is not only
performed between the incoming lists of records, but the
relevant records in the cache are also involved. As explained
earlier, there are two processing paths: the hit and the miss
paths. Each list of responses is processed by Procedure
RecordLookupBySource (Algorithm 2) which updates the IMI
(inverted match index) data structure, which will contain the set
of cache records matching records in Ri and outputs Y , the set
of records in Ri without a match in the cache. Y is appended
to the set of unmatched records MR (Line 7, Algorithm 1).
The matching records from all the incoming lists Ri and cache
are fused (Line 9). The unmatched records are linked among
themselves and then fused (procedure HierarchicalRLF, Line
10). The resulting fused records that do not already exist in
the cache are appended to the cache (Line 11). This step is
only executed for dynamic caching. Those that already exist

Algorithm 1: QueryProcessing in the ORLF system
Input : Query Q and Cache
Output: The set of fused records FR in response to Q and

an updated cache.
1 Let {R1, ..., Rm} be the lists of records from m Web

databases in response to Q;
2 Initialize IMI ; // the inverted match index
3 MR← ∅ ; // matched records in the cache
4 MR← ∅ ; // unmatched incoming records
5 for i = 1 to m do
6 Y ←RecordLookupBySource(Ri, Si, IMI);
7 MR←MR ∪ Y ;

8 MR ← Transitive closure of IMI;
9 FR1 ←fuse(IMI);

10 FR2 ←HierarchicalRLF(MR);
11 addToCache(FR2) ; // only in dynamic caching
12 updateCache(FR1) ; // in dynamic caching and

SCU
13 return FR1 ∪ FR2;

in the cache are updated (Line 10). This step is executed when
either SCU or dynamic cache are used. The union of the fused
records, from both the matched and unmatched records, are
then returned to the user (Line 13).

HierarchicalRLF performs pairwise RL. For example, if
R1, R2, R3 and R4 are the four lists of records, then it
performs RL on R1 and R2, and on R3 and R4. RL is
performed again on their outputs to obtain the final list of
linked records. This scheme is captured as a full binary tree,
where a leaf node is the list of unmatched records from a
source and an internal node represents the RL outcome on its
children. While HierarchicalRLF is not as effective as a RL
procedure that exhaustively compares the records of the m
sources across each other, it is more amenable to a parallel
implementation. Nevertheless, it is significantly more efficient
and very effective within our overall framework (Section VI).

A. Record Look Up and Record Linkage

Let r be an incoming record and fr the record in the
cache most similar to r. The problem is how to find fr
in an online caching setting — fr may be substantially
different from r, because fr has been subject to several fusion
iterations. Hence, fr can only be found using similarity search.
And operationally, how to check if fr indeed exists in the
cache? An exhaustive search of the cache to look for fr is
clearly prohibitive. We propose a two-step process: (1) fast
approximate nearest-neighbor search and (2) exhaustive record
matching, where we compare r with the (smaller) set of nearest
neighbors (records). In the light of (1), our proposed cache is
an instance of similarity caching [11].

1) Nearest Neighbor Search: Given an incoming record r,
we need to obtain the cached record fr such that sim(r, fr)
is maximized, where the similarity function is defined on
the space of the “keys” of the records. A subset of the
attributes of entities in E is a “key” if it can serve as entity
identifier, i.e., the attributes uniquely identify an entity. For
example, when matching business listings the subsets {Name,
Address} and {Name, Phone} are such attributes. That is,
if two business records have very similar names and addresses



or very similar names and the same phone number, then the
records are very likely to refer to the same business entity.
Many indexing strategies can be used with static caching: e.g.,
locality sensitive hashing (LSH) [12]. For dynamic caching
however, we need an indexing structure that supports efficient
live updates. Since in many practical cases the entity identifier
attributes are strings, we choose the Bed-tree index [4], a string
similarity indexing. Bed-tree is a B+-tree based index structure,
which has a number of properties that suit our environment
very well. Bed-tree: (i) efficiently answers selection queries,
(ii) can handle arbitrary edit distance thresholds, (iii) supports
normalized edit distance for all query types, in particular, top-
k queries, (iv) has good performance for long strings and large
datasets, and (v) supports incremental updates efficiently.

2) Modifying the Bed-tree index for use in similarity record
search: Bed-tree index was developed for string similarity
search and hence cannot directly be used in our setting. For
us, it all boils down to finding a suitable record representation
such that records can be indexed with this data structure and
carrying the good performance of the index on strings to
records. We index a set of records using their “key” (matching)
attributes Keyr = {A1, A2, ..., An}.

Bed-tree index overview. Bed-tree [4] is an index for
string similarity search based on (normalized) edit distance
built on top of a B+-tree. To index the strings with a B+-tree
index, it is necessary to construct a mapping from the string
domain to an ordered domain (e.g., the integer space). Since
we are interested in top-k searches, the mapping must give
an ordering that satisfies two properties when used with the
edit distance: comparability and lower bounding. The former
property requires linear time to verify if a string is ahead of
another in the given string order, whereas the latter requires
that it is efficient to find the minimal edit distance between
a string q and any string in an interval [s, s‘]. The latter
property is needed to efficiently prune out the intervals with
no strings within the given edit distance from the query string
during search. Three orderings are given in [4]: (1) dictionary,
(2) gram counting, and (3) gram location. Gram counting is
superior to the other two for top-k queries for relatively large
strings [4]. We use it in our implementation. It is defined as
follows: A string s is decomposed into a set of q-grams. A
q-gram is a contiguous sequence of q characters from s. A
hash function maps each q-gram to a set of L buckets. We
count the number of q-grams in each bucket. At this point,
s is mapped into an L-dimensional vector v of non-negative
integers. The final representation of s is obtained by applying
a z-order on the bit representation of the components of v. z-
order interleaves the bits from all vector components in a round
robin fashion. Consider the string s = “Red Lion”, n = 2 and
L = 4; Assuming v = 〈3, 2, 1, 3〉, the corresponding z-order
is 11011011.

Adapting Bed-tree to Record Linkage. We now describe
our solution using Bed-tree with the gram counting order for
top-k record similarity search. A naive approach to represent
Keyr is to simply concatenate the key attribute values of a
record to form a string. The index key is then generated by
taking the z-order representation for the obtained string. One
issue with this scheme is that we may end up comparing q-
grams of different attributes; e.g., if we compare two business
records whose names are not of the same length, then, we will

compare the q-grams of the longer name to the q-grams of the
address attribute of the other record.

To avoid this problem we need to treat the attribute values
as first-class citizens. We analyzed two z-order representations
of record keys: z-order concatenation and z-order interleaving.
In both representation schemes, we first obtain the z-order
representation of each attribute. Then, in the z-order concate-
nation scheme the index key is obtained by concatenating the
resulting bit-strings of each attribute, whereas in the latter
z-order interleaving scheme, we interleave the bits from all
attributes in a round robin fashion.

These representation schemes are bounded by the size of
L. First, L cannot be arbitrarily large. For example, efficiency-
wise L = 4 gives the best results in [4]. This is too small to
adequately represent an index key with multiple attributes. As
shown in Fig. 3c (Section VI), increasing L increases the time
it takes to retrieve top-k. Second, for each of the n attributes
we need to allocate a contiguous number of buckets. However,
each attribute may require a different number of buckets. For
instance, the attribute name may require more buckets than
the attribute phone. Third, we experimentally noticed that the
z-order concatenation scheme is influenced by the order of the
attributes, while the z-order interleaving scheme is not. So,
in general we need to find a solution to the following linear
equation. If we denote by Li the number of buckets required
by attribute Ai, then we have

L1 + · · ·+ Ln = L, where Li ∈ [bi, Bi], bi, Bi ∈ N∗. (1)

bi and Bi denote the minimum and respectively maximum
(ideal) number of buckets required by the ith attribute. This
equation may not have solutions, i.e., b1+ · · ·+bn > L. Thus,
there may be application domains where Bed-tree index is not
suitable. Alternatively, it may have multiple solutions (this is
a linear Diophantine equation). Ideally, all solutions need to
be tested out and one that fits the best the application at hand
is chosen. Enumerating all possible solutions in search for the
ideal one is an overkill for some application domains because
for each solution to Equation 1 we need to construct the
corresponding Bed-tree and carry out the empirical evaluation.
We give here a heuristic procedure to locate a suitable solution.

We first order in descending order the attributes based on
their selectivity property (selectivity of an attribute A is the
ratio between the number of distinct values in A and the total
number of records). This can be given by a domain expert
or estimated by sampling. Intuitively, the more selective an
attribute is the more useful is to distinguish between records
about different entities and thus more buckets should be
allocated to it. Let Ai1 , . . . Ain be the desired ordering. We
make Lij = bij , 1 ≤ j ≤ n. Then we apply a greedy strategy

as follows. Let L′ = L −
n∑
j=1

bj . As long as L′ > 0 we

proceed as follows. For each 1 ≤ j ≤ n, if Bij − bij ≤ L′

then Lij = Bij , else Lij = bij + L′ and stop. For instance,
suppose the attributes are name, address and phone. Suppose
that this is the desired ordering and that for each of them
b = 4 and B = 6. Let L = 15. Applying the greedy strategy,
we allocate 6 buckets to name, 5 to address, and 4 to phone.



Algorithm 2: RecordLookupBySource
Input : (R, S, IMI): the list of incoming records R from a

source S and IMI - the inverted match index
Output: M - the records in R without a match in the cache.

updated IMI.
1 foreach r ∈ R do
2 hasMatch ← false;
3 TK ←getTopK(r);
4 foreach fr ∈ TK do
5 if RecordMatch(r, fr) then
6 if S 6∈ fr.Provenance then
7 update(IMI, fr, r);

8 hasMatch ← true;
9 break;

10 if hasMatch = false then
11 add(r, M );

Bed-tree Setup. Due to space constraints, we cannot give
the entire set of experiments for setting up the index. We
summarize the key points here. We empirically determine
that beyond L = 12 the performance of Bed-tree deteriorates
considerably. We set bi = 4 and Bi = 6. For the matching
of business listings with the attributes name, address and
phone, the best configuration is to allocate each attribute 4
buckets. Also, z-order concatenation gives better retrieval times
on average than z-order interleaving scheme. The order of
the attributes in the z-order concatenation is name, address,
phone. We further evaluate the z-order concatenation scheme
in Section VI-A under different parameters of the Bed-tree.

3) Record Matching: The custom record matching function
must predict with high confidence if the records r and fr
refer to the same entity. Otherwise, duplicates may be inserted
in both the cache and query answer. The actual function
is application-dependent and, thus, orthogonal to the current
work. For our proof of concept, we developed such a function
as follows. We obtained a training sample by posting a number
of random queries to the component search engines, then we
manually labeled the pairs of matching records and learnt
a binary classifier: match or not match. We constructed a
decision tree from the labeled data. Once we had the decision
tree we transformed it into a procedure with IF-THEN rules
[13] that was plugged into our system.

4) Look up Algorithm: Algorithm 2 describes the proce-
dure to look up an incoming record in the cache. We first post a
top-k query to the Bed-tree to get the k most similar records to
r in the cache. We then perform pairwise comparisons between
r and the top-k records to determine fr. In our implementation,
we empirically set k = 5 (Section VI). Each new record is
compared against its top-k matches from the index (Lines 4-
10). Our reasoning assume: (1) cache records are distinct and
(2) a cache record can match at most one record in a given
source. (1) can be seen as a cache invariant and its consequence
is that a new record can match at most one record in the cache.
(2) may seem restrictive, but note that our goal is not to clean
the individual sources, but rather to return relevant and clean
records. Thus, if r matches a cache record fr, then r is retained
to be later fused with fr only if a record from S has not
previously contributed to the construction of fr (Lines 6-7).

TABLE III: An example cache.

ID Provenance Name Address Phone
cr1 (1, 2, 3, 5) Pizzeria Uno 49 E. Ontario St. 312-280-5115
cr2 (1, 3) Pizzeria 40 E. Ontario St. 312-280-3344
cr3 (1, 3) Pizza Uno 39 N. Ontario St. 312-280-2355
cr4 (7) Pizzeria Uno E. Ontario St. 312-280-5115

TABLE IV: Q1’s answer set

Ri ID Name Address Phone
R1 r1 Pizzeria Uno 49 E. Ontario St. 312-280-5115
R2 r2 Pizza Uno E. Ontario St. 312-280-5115
R3 r3 Pizza King 11 W. Ontario St. 312-443-7844
R4 r4 Giordano’s pizza 33 N. Ontario St. 312-544-9033

If r has no match in the cache, it is appended to the list of
unmatched records (Lines 10-11).

B. Fusion Procedure

For each set of records representing the same entity, we
need to compute the fusion. For each cache attribute, the
value representations that have a similarity of at least some
threshold (current implementation 0.9) are considered to be
“identical”. Among a set of representations for a value, we
choose the one provided by the largest number of sources.
When a cache record fr is fused with a list of new records,
the value representation of an attribute from fr receives dm2 e
votes, where m is the number of sources from which fr was
previously derived. Other fusion schemes (e.g., [14], [10]) can
easily be plugged into our framework.

C. Algorithm Complexity

The non-parallel worst-case time complexity of Algo-
rithm 1 is O( (m−2)(m−1)2 δ(cR)2), where m is the number of
databases, each returning R records; c is the cache miss rate;
δ ' 1−or, where or is the overlap rate of the m sources. This
occurs when most of the records have no match in the cache,
i.e., c is close to 1. In this case ORLF is simply as good as
traditional RL. The best case occurs when c is close to 0. On
average however, the algorithm is near linear in mR.

V. A WALKTHROUGH EXAMPLE

We give a step-by-step illustration of Algorithms 1 and
2 through an example in this section. Consider the follow-
ing query: Q1 = {Address = “%Ontario%”, Cuisine =
“Pizza”}. Table III shows the cache content. We assume four
sources. Q1 is posted to all the sources. The list of records
returned from a source i is stored in a list Ri. The lists are
shown in Table IV. For the sake of simplicity, we assume
that each source returns one record in response to Q1. For
each record r in list Ri, the system finds its top-k similar
records according to the string edit distance in the cache. We
assume k = 2 in this example. Note that there is no guarantee
that the returned records are indeed real matches. Hence, we
next find which ones among the k records are valid matches
of r. Table V shows the incoming records after the “filtering”
process is applied to the top-k set. The “edit” column in the
table shows the sum of the string edit distance between ri and
cri on attributes {name, address, phone}.



TABLE V: Q1’s’ Top-2 records and their matching status

ri cri Match? edit(ri, cri)

MR

r1 cr1 Yes 0
r1 cr2 No 5
r2 cr4 Yes 0
r2 cr1 Yes 3

MR

r3 cr3 No 13
r3 cr2 No 13
r4 cr3 No 20
r4 cr2 No 20

TABLE VI: Q1’s’ Inverted Index (IMI)

cri Matching incoming records Matching incoming records
(after transitive closure)

cr1 {r1, r2} {r1, r2}
cr4 {r2} {r1, r2}

TABLE VII: Updated cache after processing Q1

ID Provenance Name Address Phone
cr1 (1, 2, 3, 5, 7) Pizzeria Uno 49 E. Ontario St. 312-280-5115
cr2 (1, 3) Pizzeria 40 E. Ontario St. 312-280-3344
cr3 (1, 3) Pizza Uno 39 N. Ontario St. 312-280-2355
cr4 (3) Pizza King 11 W. Ontario St. 312-443-7844
cr5 (4) Giordano’s pizza 33 N. Ontario St. 312-544-9033

r1 and r2 match cr1 and cr4, respectively, in the cache.
r3 and r4 have no match in the cache. The records r1 and r2
along with their matches cr1 and cr2 are processed in the “Hit
path” (as shown in Fig. 2), whereas r3 and cr3 are processed
in the “Miss path”.

Table VI illustrates the usage of IMI: cr1 matches {r1,
r2} and cr4 matches {r2}. We are assuming that the matching
relation is transitive, so, by transitivity, cr4 also matches {r1,
r2} after computing the transitive closure on IMI . Then, the
system fuses the records cr1, cr4, r1 and r2 into cr1. The
records r3 and r4 do not have matches in the cache and are
appended to the cache. Table VII shows the new version of
the cache after Q1 is processed. The records that were either
added or updated are highlighted. Finally, the system returns
to the user the records: cr1, cr4 and cr5.

The example shows that cache records may also be fused,
such as cr1 and cr4. The iterative (and incremental) process
gives us the opportunity to clean the cache itself of duplicates,
should there be any, as more and more new queries are seen.
Duplicates may sneak into the cache because there is no perfect
record linkage procedure and true positives may be missed in
early iterations, but discovered in later iterations.

VI. EXPERIMENTS

The goal of our experiments is to show that ORLF is
feasible in practice; its effectiveness and efficiency signifi-
cantly exceeds those of off-line solutions, such as Febrl [6],
when applied to the online setting. We also evaluate the main
components of ORLF to demonstrate its robustness. All of the
experiments are conducted on a machine that runs Linux, has
eight Intel Xeon E5450 3.0 GHz cores and 32 GB of physical
memory. We implemented the framework in C++ and used
MySQL to manage the data in the sources and the cache.

A. Bed-tree Index Experiments

We assess the effectiveness of the modified Bed-tree index
in the record linkage task. The effectiveness of Bed-tree is not
analyzed in [4].

We define the sensitivity of the modified Bed-tree index as
its ability to return a record r in response to the top-k query
r given that r is present in the index. If the index has a low
sensitivity, then ORLF does not benefit from caching because
it cannot locate the matching records of the incoming records
even when they are in the cache. We assess the sensitivity of
the Bed-tree index with the two strategies of representing the
matching key, naive and z-order concatenation.

The sensitivity experiment requires a set T of N distinct
records w.r.t the record matching function discussed in Sec-
tion IV. We randomly generated over 1M records for the
attributes (name, address, phone) with an approximate error
rate of 20%, i.e., around 20% of the records have duplicates in
the set. This does not bias the experiments as we are interested
in measuring the sensitivity of the Bed-tree when most of
the records are distinct– Recall that the cache is assumed
to be duplicate-free in general. We have also conducted an
experiment where we indexed a set TD of 1K records that are
guaranteed to be 100% distinct from each other.

The experiment runs as follows: (1) records in the set T
are indexed using the modified Bed-tree index ; (2) a sample
set of records, ST , of size 100 is taken from T ; (3) a top-k
query to the Bed-tree with every record r in ST is posted; and
(4) if r ∈ Tr, where Tr is the set of returned records for r,
then it is a match; otherwise, it is a miss.

When the indexing key of a record is obtained by mere
concatenation of its attribute values, Bed-tree exhibits a poor
quality as illustrated in Fig. 3b. The main reason is that
attribute values have different lengths, thus different parts of
these attribute values are compared when computing the lower-
bound of the edit distance.

Fig. 3a shows the matching ratios when the indexing key
is the z-order concatenation of the attribute values of a record.
The matching ratios are reported for different values of k and
L (the bucket size). The matching ratios are reasonable and
comparable to those for the original Bed-tree index. This z-
order concatenation strategy is used in our implementation and
all the subsequent experiments. In another set of experiments,
we indexed TD and then queried the index with all of the
records in TD. We obtained the average matching ratios 0.97,
0.98, 0.99, 0.99 for k = 5, 10, 15 and 20, respectively. This
shows that the z-order concatenation scheme is very effective
and suitable for indexing records with the Bed-tree index.

While increasing L and k has a clear positive impact on
the match ratio as shown in Fig. 3a, Fig. 3c shows a negative
impact on efficiency. As a reasonable trade-off between quality
and performance, we set the overall bucket size L = 12 with
4 buckets per attribute, and k = 5.

1) Bed-tree Effectiveness for Plain Strings: We also need
to have a sense of the effectiveness of the Bed-tree index
in general. We use the original implementation of the Bed-
tree1. We employ a set of 12K distinct strings corresponding

1We thank the authors of [4] for sharing their source code.
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Fig. 3: Bed-tree Sensitivity Experiments

to business names and post top-k queries. On average, we
obtained a 0.99 matching ratio for k = 5, 10, 15 and 20.
Larger k values are not used in practical systems in the online
setting. The Bed-tree index is indeed effective when applied to
plain strings. This will serve as the baseline behavior for the
modified version of Bed-tree.

B. ORLF Experiments

We implemented an in-house metasearch engine to create
a controlled experimental environment, we used two datasets:
(1) Real Web data, to show how the system behaves in the wild;
(2) Synthetic data, to show that the system is not sensitive to
the data domain being used, and to better evaluate the RL
quality since we know the set of duplicates for all the records.
To obtain the Web dataset, we crawled the data of 9 Web
databases that provide information about restaurant listings
in the metropolitan Chicago, US. We also compared ORLF’s
fusion with Solaris [14] on a book dataset.

Table VIII gives a general picture of the “dirtiness” of
the data crawled from the 9 Web databases. The part titled
“Number of records with distinct” includes four of the cache
attributes. “City” and “State” are omitted as most records are
from Chicago, IL. We show the number of distinct values in
each of the cache attributes, e.g., there are 8,200 distinct names
in Yelp. A “0” in the column of an attribute means that there
are no values for the attribute in the corresponding crawled
data, e.g., no record has a zip code in the crawled data from
MenuPages. The part of the table titled “Number of records
without” looks at the missing values in all the attributes. If
we analyze the two tables jointly, we note that all the records
have a name value, but not all of them have a phone number,
e.g., in Yelp there are 8,744 distinct phone numbers and 367
records have no phone number.

A key question is whether the content of real Web
databases overlaps significantly. We use overlap rate to mea-
sure the degree of overlap among a group of databases [15]:∑m

i=1 |Di| − |Du|
(n− 1)|Du|

, where m is the number of databases, |Di|
is the number of records in database Di and |Du| is the total
number of distinct records in the union of the n databases. The
overlap rate for our metasearch engine is 0.38. This is a global
score; pairwise, the databases have higher rates. Consequently,
the likelihood of at least two records referring to the same

entity to occur in a query is very high. This emphasizes
the practical importance of addressing the problem of online
RL&F.

Matching Function Thresholds: We use the dataset 12Q2

for learning and the Restaurant dataset from the RIDDLE3

repository for testing. We obtain 12Q by posting queries to
the 9 component search engines. The thresholds to match
restaurant entities have been learned and applied by the ORLF
system custom function to match restaurant pairs from the real-
world data crawled from the Web.

Cache Warmup: A well-known result from information re-
trieval is that query frequencies follow a power-law distribution
for text search engines [16], [17]. Thus, a few queries have very
high frequencies and the rest appears very infrequently. To our
knowledge, there is no similar study for the queries posted over
search engines for (semi)structured data. It is however known
that the sales of books, music recordings and almost every
other branded commodity follow a power law distribution [18],
[19]. Hence, we can “deduce” that the queries used to find
them also follow a power law distribution. To warm up the
cache, we generate a stream of structured queries following a
power law distribution. We select the top 20% most frequent
queries, post them, and download their results. We then apply
an off-line RL&F algorithm, namely FRIL [5], on their results.

Generating Simulated Queries: To empirically analyze the
behavior of ORLF we need to generate queries that simulate
the influx of queries faced by a search engine. To our knowl-
edge, there is no published method for simulating a stream
of structured queries to a search engine. We give a method
here. First, suppose that we know the set of query fields, say
F . For example, F = {Cuisine, Price, Location} are common
fields in restaurant search engines. We assume that each field
f has a predefined list of values Df . This is quite common on
the Web. Otherwise, we can draw values from some sample
datasets. We then generate the entire query space by taking
the cross-product of the domains of the fields,

∏
f∈F

Df . We

also insert a null value in the domain of f in order to account
for the queries when f is not mentioned. For instance, the
query (Cuisine = “Mexican”; Neighborhood = “Loop,

2www.cis.temple.edu/∼edragut/research.htm
3www.cs.utexas.edu/users/ml/riddle/data.html



TABLE VIII: Dirtiness Statistics about Crawled Data

Number of records with distinct Number of records without
Source # Recs. Name Address Zip Phone Name Address City State Zip Phone Rating Reviews Price

ChicagoReader 3,096 2,759 2,877 0 2,930 0 0 0 0 3,096 35 1,436 1,436 209
CitySearch 12,695 9,162 9,867 124 0 0 0 0 0 3,035 12,695 8,883 6,866 12,695
DexKnows 5,843 4,577 5,509 61 5,706 0 0 0 0 3 3 5,636 5,636 5,843
MenuIsm 8,508 6,492 7,022 0 0 0 0 0 0 8,508 8,508 6,795 6,795 889

MenuPages 3,629 3,032 3,382 0 0 0 0 0 0 3,629 3,629 1,465 1,464 3,629
Metromix 5,044 4,599 4,719 0 0 0 7 7 0 5,044 5,044 1,627 1,627 5,044

Yahoo 10,820 8,049 9,724 0 10,490 0 47 0 0 10,820 0 5,854 5,854 10,820
YellowPages 7,798 6,547 7,159 101 7,485 0 21 1295 0 17 0 4,741 4,741 7,798

Yelp 10,115 8,200 8,914 107 8,744 0 0 87 0 37 367 2,080 2080 255

Chicago”) does not mention the price. We draw a stream of
queries from the set of all queries according to a power law
distribution, i.e., p(x) = C xβ . C = β+1

Qβ
, Q is the total number

of distinct queries. We set β to values observed in literature
(e.g., [17]) for keyword queries, e.g., β ∈ {0.83, 1.06}. We
denote the generated stream of queries by Q.

Obtaining the Gold Standard: Since no automatic RL tool
can guarantee perfect results, we manually construct a subset
of matching records. We randomly select a subset RM of 100
records from the crawled data. Then, we apply the record
linkage tool Febrl to RM and the entire crawled data and
obtain a set of candidate matches for the records in RM .
We manually investigate the generated pairs to keep only the
correct matching pairs PGS . PGS contains 420 pairs. We use
PGS to measure the effectiveness of ORLF.

Dynamic Cache with Infinite Size: In these experiments,
ORLF is set up with a dynamic cache of infinite size, and k=5,
L=12 for the Bed-tree index. In the first part, we evaluate the
quality of ORLF in the task of RL against PGS . We simply
count correct matching pairs that ORLF returns as it goes
through the stream of queries. The experiment is conducted
in the following manner:

1) Let Q be a stream of queries and QM ⊂ Q a sub-
stream of queries with the property that the list of
results of each query contains exactly one record in
RM and each record in RM appears in the list of
results of some query.

2) We execute 1,000 queries from Q − QM . Then, we
execute all queries in QM randomly.

3) For each query q ∈ QM , ORLF yields a set of
duplicate record pairs Pq corresponding to q.

4) We collect all matching pairs PORLF generated by
ORLF (Eq. 2) over the entire stream QM . Then, we
extract the set of correct matching pairs from PORLF
(Eq. 3) .

PORLF = ∪q∈QMPq (2)

CorrectnessORLF = |PORLF ∩ PGS | (3)

5) We repeat 2-4 until ORLF processes 100,000 queries.
The goal is to show that ORLF incrementally benefits
from past queries and yields significantly improved
RL results.

In general, both Pq and PORLF are different at subsequent
iterations because more and more records are appended to
the cache. CorrectnessORLF is independent of the number of
processed records when performing RL. Hence, it is a good
indicator of ORLF effectiveness since it provides a uniform
way to measure effectiveness across iterations. The goal is
to show that ORLF converges to PGS as the system processes
more queries. Note that in this and in the following experiment,
to increase the randomness of the testing, we tested ORLF
with three different query streams, corresponding to different
values for the parameter β ∈ {0.64, 0.7, 1.3} of the power law
distribution, and reported the average number of correct pairs
across the three runs.

Fig. 4a shows that the overall quality of ORLF improves
sharply as the system sees more queries, then it remains rela-
tively stable. More importantly, it does not deteriorate; ORLF
benefits from previously processed queries and improves the
quality of the current and future queries.

The second part of the experiment compares our system to
simply applying an off-the-shelf off-line RL tool. We choose
Febrl [6] because its source code is readily available online.
Febrl takes two sets of records S1 and S2 as input and outputs
the set PFebrl of duplicate pairs from these two sets. We employ
the same setting described above. Febrl is used as follows. For
each query q ∈ QM let Di(q), 1 ≤ i ≤ 9 be the set of results
returned by the ith Web database in response to q. Febrl is then
applied to every pair Di(q) and Dj(q) of result sets, 1 ≤ i <
j ≤ 9. Febrl is applied to 36 pairs of result sets per query. (This
experiment is the most time consuming and it took several days
to complete). We then union the pairs of matching records
obtained from the 36 runs of Febrl, we call this set PFebrl(q).
The set of pairs of record matchings produced by Febrl for
all the queries in QM is given by PFebrl =

⋃
q∈QM PFebrl(q).

PFebrl is computed every 1,000 queries as is PORLF. The set
of correct pairs of matching records for Febrl is given by
CorrectnessFebrl = |PFebrl ∩ PGS |.

Fig. 4b plots CorrectnessFebrl and CorrectnessORLF
side by side. The graph clearly shows that for the initial
set of queries, Febrl outperforms ORLF. However, as more
queries are processed, ORLF starts to gradually catch up with
Febrl and eventually outperforms it. Fig. 4b approximately
mirrors the trend presented in Fig. 1. Observe that Febrl’s
effectiveness remains about the same across the query stream.



 90

 95

 100

 105

 110

 115

 120

4000
10000

16000
22000

28000
34000

40000
46000

52000
58000

64000
70000

76000
82000

88000
94000

100000

N
u
m

b
e
r 

o
f 
c
o
rr

e
c
t 
p
a

ir
s

Number of processed queries

(a) ORLF vs. Gold Standard

 180

 190

 200

 210

 220

 230

 240

 250

 260

4000
10000

16000

22000

28000

34000

40000

46000

52000

58000

64000

70000

76000

82000

88000

94000

100000

N
u
m

b
e
r 

o
f 
c
o
rr

e
c
t 
p
a

ir
s

Number of processed queries

ORLF

FEBRL

(b) ORLF vs. Febrl

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900 1000

R
a
ti
o
 o

f 
c
o
rr

e
c
t 
p
a
ir
s

Number of processed queries

ORLF

OFFLINE

(c) ORLF vs. offline

 40

 60

 80

 100

200 600 1000 1400 1800 2200 2600 3000

#
 (

C
o

rr
e

c
t 

fu
s
e

d
 v

a
lu

e
s
)

Number of processed queries

ORLF
Solaris

(d) ORLF vs. Solaris (effectiveness)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

20 40 60 80 100

T
im

e
(s

e
c
)

Number of sources

(e) Scalability w.r.t. to the number
of sources

 0

 50

 100

 150

 200

 250

 300

 350

 400

20 40 60 80 100

N
u

m
b

e
r 

o
f 

c
o

rr
e

c
t 

p
a

ir
s

Percentage of entites in the cache

LRU
MRU
LFU
Static

(f) Different cache
configuration policies

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

40 80 120 160 200

T
im

e
 (

m
s
e

c
)

Number of sources

Solaris
ORLF

(g) ORLF vs. Solaris (average response
time)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

5 10 15 20

T
im

e
 (

s
e

c
)

Max returned records per source

(h) Average response time

Fig. 4: ORLF Experiments

Dynamic Cache with Eviction and Static Cache: We
evaluated two caching strategies: dynamic caching with three
eviction policies (LRU, MRU and LFU) and static caching. We
use Febrl to clean all the crawled data from the 9 databases off-
line; the resulting clusters (or entities) are loaded increasingly
by fraction into the cache. We report the number of returned
correct pairs (Eq. 3) computed from randomly selected queries
from Q. We report the numbers for each of the considered
cache sizes.

Overall, LRU has the best results and MRU has the poorest
as shown in Fig. 4f– MRU evicts the most recently used entity
from the cache, which is likely to be needed for future queries.
The static cache performs worse than the dynamic cache, but it
becomes almost as good as the dynamic cache as the cache size
approaches 100% of the total entities. LRU and LFU dynamic
caches show better peformance than the static cache since a
dynamic cache continues to update the content of the cache
over time, while a static cache does not. Increasing the cache
capacity allows ORLF to evict less records (and thus, to keep
more “useful data”); this decreases the likelihood to miss an
incoming record.

We report experiments that assess ORLF’s performance.
First, we evaluate the average query response time by varying
the number of returned records per source, we used a total of
10 sources in this experiment. Fig. 4h shows the average query
response time when using different values for the maximum
number of returned records per source, we can see that ORLF
is very efficient, even when processing 20 records from each
source, the average query response time does not exceed 0.4
second. We also evaluate the scalability of ORLF by computing
the average query response time for a set of 200 randomly
selected queries, while increasing the number of sources to
which we submit the queries. The response time is the time
between querying the cache for top-k matches and producing
the query’s output. We do not take the database querying time
into account as it depends on factors (e.g., access method,

internet bandwidth) that are outside the scope of this work.
We start with 9 distinct sources. We gradually increase the
number of sources up to 100 by duplicating the original
sources. Fig. 4e shows the scalability results. We observe
that the increase in the query response time is linear in the
number of sources. We have observed that the query response
time is primarily dominated by the top-k query time, this
is expected because the top-k queries in the Bed-tree index
require computing edit distance for each string in the tree
leaves to find the possible matches to the querying record.
In addition, the similarity search algorithms based on B-tree
indices explore many branches (in the worst case all of them)
in the tree that may contain candidate matches [20].

C. Synthetic Dataset

In this experimental study, we compare ORLF against an
ideal system that has a perfect RL algorithm. That is, the ideal
system does not miss a pair of matches in the list of returned
records of a query. We want to showcase that because the
system is stateless (does not keep information from previous
queries), it cannot deliver a “clean” representation of an entity
in most cases, while ORLF does. The experiment is set up
as follows. For an entity e, let Le be the set of records from
all sources that need to be known for a fusion algorithm to
compute the correct representation of e. Le is computed by
RL (over time). Missing any portion of Le would render an
imperfect version of e regardless of the fusion algorithm being
used. The “cleanliness” of e is measured as the ratio |L|/|Le|,
where L is the set of records discovered by one of the two
systems. For ORLF, L is the union of the pairs discovered
across processed queries, while for the perfect off-line RL
system, it is the set of matching record pairs for a given query.

We use synthetically generated data to track the duplicates
of all the records in the dataset, and hence, to accurately
measure the effectiveness of the two systems. We generated a



synthetic dataset of 1M records that contains made-up personal
information such as first name, last name, and social security
number. We used the tool dsgen which is part of Febrl to
generate this dataset. We generated 200K records along with
800K duplicates. The maximum number of duplicates per
record was set to 10. The tool introduces different types of
noise to the original records to generate duplicates. In order
to simulate the setup of a VIS, we randomly split the set of
synthetic data into 10 sources, each containing 100K records.

The matching function checks if two records have a similar
SSN, surname and phone. The string edit distance threshold
for the three attributes is empirically set to 0.8.

Fig. 4c shows the results obtained for a query stream of 1K
queries posted to 10 sources; we can see that ORLF greatly
improves the quality of the returned results to the posted
queries over the ideal tool. Such improvement comes from
the proposed caching system which makes ORLF benefit from
previously processed queries.

D. Comparison with Solaris

We compare ORLF to Solaris [14], which performs online
fusion of records returned by a query with copying and
accuracy constraints on the sources. Solaris has two methods:
ACCU and PRAGMATIC. As reported in [14], PRAGMATIC
has a slightly better precision than ACCU, but it is slower. We
only implemented ACCU for the comparison.

Dataset: We use the dataset Books [14]4 since Solaris requires
the accuracy information of the Web sources. Books has book
records (ISBN, title and authors) from 894 sources. It comes
with a gold standard set of 100 books for which we know the
correct authors.

Query stream: We generate a set Qbooks of 3000 queries that
ask for the books in the gold data. For a book entity Bi that
has a set of records Ri = {ri1, ri2, ..., rin} across the sources,
there exists a set of queries that have different coverage ratios
on Ri. ORLF is expected to do well even when the query
coverage ratio is low (thanks to the cache), whereas Solaris,
due to its stateless nature, performs well when the query has a
high coverage ratio. We consider queries of different coverage
ratios to be fair to both systems.

We post the queries in Qbooks to ORLF and Solaris to
assess the accuracy of their fusion results. We measure this
accuracy by assessing their ability to return the correct value
for the authors of the books in the gold data. We consider only
the sources that contain books in the gold data. There are 238
such sources. As we see in Fig. 4d, the two systems perform
quite similarly. However, unlike Solaris, ORLF performs RL
(besides data fusion). ORLF is thus exposed to RL mistakes
(which may lead to low-quality fusion). Data fusion in the
current implementation of ORLF is naive and only considers
majority voting among conflicting values. We observe that in
the beginning, Solaris slightly outperforms ORLF . As ORLF
processes more queries, it starts outperforming Solaris as it
benefits from the cached fused results.

Using the same dataset, we compare the average response
time for both systems, excluding the data sources querying

4We thank the authors for sharing with us the dataset, the accuracy of the
sources, and the gold standard.

time. We use a query stream of 100 randomly chosen queries
from Qbooks. Fig. 4g shows that ORLF slightly outperforms
Solaris since it does not perform any preprocessing for the
conflicting values to be fused, it just takes the majority value.
As the number of data sources increases, Solaris’s average
time becomes closer to ORLF’s; this is because Solaris does
not necessarily query all the data sources, and hence it is not
as sensitive to the number of sources as ORLF.

VII. RELATED WORK

Our work is related to four areas: metasearch engines for
structured data, data fusion, record linkage and caching. It
also builds upon existing off-line RL&F techniques, most of
them comprehensively summarized in [1] and [21]. We are
not aware of any caching method for metasearch engines over
structured data. Caching nonetheless has received substantial
consideration in text Web search engines [22].

To our knowledge, an RL&F system for online settings as
presented in this paper, i.e., for metasearching, has not been
proposed before. We are aware of three other recent works
that propose online solutions [23], [14], [10]. In [23], the term
“online” denotes an entirely different setting than ours, namely,
a set of distributed databases whose records need to be matched
over a network. The goal is to minimize the communication
overhead, i.e., to minimize the number of records transferred
over the network.

The approach proposed in [14] (referred to as Solaris)
performs online fusion with copying and accuracy constraints
on the data sources. The key idea is to stop probing additional
sources, in response to a query, once the system is confident
enough that data from the remaining sources are unlikely
to change the answer computed from the probed sources.
The main differences between Solaris and our system are:
(1) Solaris does not perform RL (in the reported experiments,
ISBN is assumed clean and used as key for RL purposes) and
(2) Solaris is stateless, thus its fusion accuracy for an attribute
value is as good as the number of records having that value
or related values in the query result set. Our experiments on
the same dataset show similar accuracy for both systems.

A Bayesian approach for fusing records is also described in
[10]. It infers the quality of a data source for different attribute
types without any supervision and incorporates this quality
in the fusion process. While both works present interesting
frameworks for online fusion, there are at least two issues
with these solutions. First, as illustrated in Section I, the lists
of returned records for a query do not a have high degree of
overlap. Second, as shown in these works, a large number of
sources may need to be probed to reach the desired quality
level at query-time. For example, in [14] the authors show
experimentally that 73 out of 100 (book) records reach a stable
version after 14 sources are probed and all 100 are stable after
over 90 sources are probed. Although a metasearch engine may
connect to hundreds of component search engines, in practice
and for efficiency reasons, it submits a query to a very small
number of them: a few tens of them [24]. The databases are
selected based on the query at hand and the profile of each
database [25], [3]. The above two observations suggest that the
proposed fusion approach may not be suitable for metasearch
engines. Data from past queries, i.e., caching, is needed for
accurate online data cleaning.



While iterative caching was not used to efficiently perform
data quality, efficient (off-line) RL nonetheless is a major topic.
Methods to speed up the performance of RL include iterative
blocking [7], size filtering [26], order filtering [27], suffix
filtering [28], iterative hashing [8] or “hints” as in the pay-
as-you-go technique proposed in [29]. Three type of hints are
proposed: sorted lists of record pairs, partition hierarchy, and
sorted list of records.

Incremental record linkage is also a related topic [30],
[31], [32]. An incremental clustering technique is proposed
in [30]. For a new record, it estimates its likely cluster through
a voting scheme and then it recursively updates the clusters.
The algorithm is not suitable for online settings because the
recursion may pass through the entire database. The solution
in [31] is a heuristic incremental clustering algorithm that
ignores the propagation step. The neighboring objects are never
analyzed, the clusters never merge or split: a new record
is either added to a cluster or forms a new cluster. [32]
proposes two graph incremental clustering algorithms for RL.
The proposed algorithms are intractable in general and the
proposed solutions are not suitable for the online setting.

[33] reports a probabilistic approach to online RL. The
aim is to return alternative linkage assignments with assigned
probabilities in a response to a query, whereas we return
duplicate-free query results along with fused attribute values.

VIII. CONCLUSIONS

We proposed a novel approach for record linkage and
fusion in an online setting. Our approach is based on iterative
caching: a set of frequently requested records (obtained from
the different Web databases through sampling) is cleaned off-
line and cached for future references. Newly arriving records
in response to a query are cleaned jointly with the records in
the cache, presented to users and appropriately appended to
the cache. Our solution allows a “fast” response to the current
query and an “improved” data quality for subsequent queries.

There are at least two items for future work: (1) Devise
a measure of degradation of the cache, which would trigger
a cache refresh. (2) Incorporate better fusion algorithms in
ORLF. The solution presented in [10] seems to be better
amenable to our framework due to its incremental nature.
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