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Abstract

Ontologies compartmentalize types and rela-
tions in a target domain and provide the se-
mantic backbone needed for a plethora of prac-
tical applications. Very often different on-
tologies are developed independently for the
same domain. Such “parallel” ontologies
raise the need for a process that will estab-
lish alignments between their entities in order
to unify and extend the existing knowledge.
In this work, we present a novel entity align-
ment method which we dub DeepAlignment.
DeepAlignment refines pre-trained word vec-
tors aiming at deriving ontological entity de-
scriptions which are tailored to the ontol-
ogy matching task. The absence of explicit
information relevant to the ontology match-
ing task during the refinement process makes
DeepAlignment completely unsupervised. We
empirically evaluate our method using stan-
dard ontology matching benchmarks. We
present significant performance improvements
over the current state-of-the-art, demonstrat-
ing the advantages that representation learning
techniques bring to ontology matching.

1 Introduction

Translation across heterogeneous conceptual sys-
tems is an important challenge for cognitive sci-
ence (Goldstone and Rogosky, 2002; Stolk et al.,
2016). Ontology Matching constitutes the task
of establishing correspondences between seman-
tically related entities (i.e. classes and proper-
ties) from different ontologies, as illustrated in
Figure 1. Similarly, ontology matching is crucial
for accomplishing a mutual understanding across
heterogeneous artificial cognitive agents (Taylor,
2015). However, despite the many proposed solu-
tions, it is widely accepted that there is no solution
robust enough to deal with the high ontological
linguistic variability (Shvaiko and Euzenat, 2008,
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Figure 1: Example of alignments (black lines) and mis-
alignments (red crossed lines) between ontologies.

2013); hampering, thus, the discovery of shared
meanings.

Research in automatic ontology matching has
focused on engineering features from terminolog-
ical, structural, extensional (ontology instances)
and semantic model information extracted from
the ontological model. These features are then
used to compute ontological entity similarities that
will guide the ontology matching. Deriving such
features for a given problem is an extremely time
consuming task. To make matters worse, these
features do not transfer in other domains. As
Cheatham and Hitzler (2013) have recently shown,
the performance of ontology matching based on
different textual features varies greatly with the
type of ontologies under consideration.

At the same time, machine learning research
is characterised by a shift from feature engineer-
ing based approaches to feature and representa-
tion learning as a result of the performance im-
provements brought by deep learning methods.
A by now classical example is the unsupervised
learning of semantic word representations based
on the distributional hypothesis (Harris, 1954),
i.e. the assumption that semantically similar or re-
lated words appear in similar contexts (Deerwester
et al., 1990; Bengio et al., 2003; Mikolov et al.,
2013a,c; Pennington et al., 2014). Word vectors
have the potential to bring significant value to on-
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tology matching given the fact that a great deal of
ontological information comes in textual form.

One drawback of these semantic word embed-
dings is that they tend to coalesce the notions of se-
mantic similarity and conceptual association (Hill
et al., 2016b). For instance, the word “harness” is
highly related to the word “horse”, as they share
strong associations, i.e. a harness is often used on
horses (Lofi, 2016). From an ontological point of
view, however, these types should not be similar.
Moreover, as unsupervised learning requires even
larger text corpora, the learned vectors tend to
bring closer words with similar frequency instead
of similar meaning (Faruqui et al., 2016). Clearly,
word representations that reflect frequency instead
of meaning is an undesired feature if we seek to
exploit word vectors for ontology matching; align-
ment based on such representations will reflect
similar frequency instead of similar meaning.

A number of lightweight vector space repre-
sentation refining techniques were introduced re-
cently in an effort to correct these biases (Faruqui
et al., 2015; Mrkšić et al., 2016). They use syn-
onymy and antonymy constraints extracted from
semantic lexicons to refine the learned word rep-
resentations and make them better suited for se-
mantic similarity tasks. Such methods are a way
to inject domain-specific knowledge to tailor the
learned word representations to a given task. As
a result, we can exploit the synonymy/antonymy
constraints to learn semantic word representations
that are better candidates for ontology matching.

In this paper we learn representations of on-
tological entities instead of feature engineering
them. We use the learned representations to com-
pute the entities’ semantic distances and to subse-
quently perform the ontology matching task. In or-
der to represent the ontological entities, we exploit
the textual information that accompanies them.
We represent words by learning their representa-
tions using synonymy and antonymy constraints
extracted from general lexical resources and infor-
mation captured implicitly in ontologies. We cast
the problem of ontology matching as an instance
of the Stable Marriage problem (Gale and Shap-
ley, 1962) using the entities semantic distances.

Our approach has a number of advantages. The
word embeddings we establish are tailored to the
domains and ontologies we want to match. The
method relies on a generic unsupervised represen-
tation learning solution which is important given

the small size of training sets in ontology matching
problems. We evaluate our approach on the Con-
ference dataset provided by the Ontology Align-
ment Evaluation Initiative (OAEI) campaign and
on a real world alignment scenario between the
Schema.org and the DBpedia Ontologies. We
compare our method to state-of-the-art ontology
matching systems and show significant perfor-
mance gains on both benchmarks. Our approach
demonstrates the advantages that representation
learning can bring to the task of ontology match-
ing and shows a novel way to study the problem in
the setting of recent advances in NLP.

2 Related Work

2.1 Selecting Features for Ontology Matching

The vast majority of ontology matching research
follows the feature engineering approach (Wang
and Xu, 2008; Cruz et al., 2009; Khadir et al.,
2011; Jiménez-Ruiz and Grau, 2011; Fahad et al.,
2012; Ngo and Bellahsene, 2012; Gulić et al.,
2016). Features are generated using a broad range
of techniques (Anam et al., 2015; Harispe et al.,
2015), ranging from the exploitation of termino-
logical information, including structural similari-
ties and logical constraints, such as datatype prop-
erties, cardinality constraints, etc.

Ontology matching is done by acting on the
aforementioned features in different ways. Heuris-
tic methods that rely on aggregation functions,
such as max, min, average, weighted sum, etc.,
to fuse the information found in these features
are quite popular (Anam et al., 2015). Other ap-
proaches use first order logic and cast ontology
matching as a satisfiability problem (Giunchiglia
et al., 2004; Jiménez-Ruiz and Grau, 2011).

Several works exploit supervised machine
learning for Ontology Matching. Mao et al. (2011)
cast ontology mapping as a binary classification
problem. They generate various domain indepen-
dent features to describe the characteristics of the
entities and train an SVM classifier on a set which
provides positive and negative examples of en-
tity alignments. In general, the number of real
alignments is orders of magnitude smaller than the
number of possible alignments which introduces a
serious class imbalance problem (Mao et al., 2008)
hindering learning. Since we only use supervision
to refine the word vector representations we avoid
altogether the class imbalance problem.
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2.2 Deep Learning for Ontology Matching

Deep learning has so far limited impact on on-
tology matching. To the best of our knowledge,
only two approaches, (Zhang et al., 2014; Xi-
ang et al., 2015), have explored the use of unsu-
pervised deep learning techniques. Zhang et al.
(2014) are considered to be the first ones that
use word vectors in ontology matching. They
train word2vec (Mikolov et al., 2013a) vectors on
Wikipedia. They use the semantic transformations
to complement the lexical information, i.e. names,
labels and comments, describing entities. Their
entity matching strategy is based on maximum
similarity; for every entity e in the source ontol-
ogy O, the algorithm finds the most similar entity
e′ in the target ontology O′. Their experiments
on the OAEI benchmarks show that their tech-
niques, even when combined with classical NLP
techniques, could not outperform the state-of-the-
art. In contrast, we refine pre-trained word embed-
dings with the intention of leveraging a new word
vector set that is tailored to the ontology matching
task.

Xiang et al. (2015) propose an entity represen-
tation learning algorithm based on Stacked Auto-
Encoders (Bengio et al., 2007). To describe an
entity they use a combination of its class ID, la-
bels, comments, properties descriptions and its in-
stances’ descriptions. The entities’ similarity is
computed with a fixed point algorithm. They per-
form the entity matching using the Stable Mar-
riage algorithm. Training such powerful models
with so small training sets is problematic. We
overcome this by using a transfer learning ap-
proach, known to reduce learning sample com-
plexity (Pentina and Ben-David, 2015), to adapt
pre-trained word vectors to a given ontological do-
main.

3 DeepAlignment

We present an ontology matching approach
that uses information from ontologies and ad-
ditional knowledge sources to extract syn-
onymy/antonymy relations which we use to refine
pre-trained word vectors so that they are better
suited for the ontology matching task. We repre-
sent each ontological entity as the bag of words of
its textual description, which we complement with
the refined word embeddings. We match the en-
tities of two different ontologies using the Stable
Marriage algorithm over the entities’ pairwise dis-

tances. We compute the aforementioned distances
using a variant of a document similarity metric.

3.1 Preliminaries

Before we proceed with the presentation of the
method, we will provide a formal definition of
what an entity correspondence is. Given two on-
tologies O and O′, we define the correspondence
between two entities e ∈ O and e′ ∈ O′ as the
five-element tuple:

core,e′ =< id, e, e′, r, n > (1)

where r is a matching relation between e and e′

(e.g., equivalence, subsumption) and n ∈ [0, 1] is
the degree of confidence of the matching relation
between e and e′ (Euzenat and Shvaiko, 2013).
The id holds the unique identifier of the mapping.
Unlike the majority of ontology alignment sys-
tems which discover one-to-one equivalence map-
pings (Anam et al., 2015), we focus on discov-
ering many-to-many mappings. We will also in-
troduce some additional notation used in the pa-
per. Let u1, u2 ∈ Rd be two d-dimensional vec-
tors, we compute their cosine distance as follows:
d(u1, u2) = 1 − cos(u1, u2). For x ∈ R, we de-
fine the rectifier activation function as: τ(x) =
max(x, 0).

3.2 Learning Domain Specific Word Vectors

The counter-fitting method (Mrkšić et al., 2016)
uses synonymy and antonymy relations extracted
from semantic lexicons to refine and adapt pre-
trained word embeddings for given semantic simi-
larity tasks. We broaden the concept of antonymy
relations and allow for a larger class of ontology
relations to define antonymies. This allows us to
inject domain knowledge encoded in ontologies
and produce more appropriate word vectors for the
ontology matching task. In the rest of the sec-
tion we revise the main elements of the counter-
fitting method and describe how we can exploit it
for learning domain specific word embeddings.

Let V = {v1, v2, . . . vN} be an indexed set
of word vectors of size N . The counter-fitting
method transforms a pretrained vector set V into a
new one V ′ = {v′1, v′2, . . . v′N}, based on a set of
synonymy and antonymy constraints S and A, re-
spectively. This is done by solving the following
non-convex optimization problem:

min
V ′

κ1AR(V ′) + κ2SA(V ′) + κ3V SP (V, V ′)
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The AR(V ′) function defined as:

AR(V ′) =
∑

(u,w)∈A
τ(1− d(v′u, v

′
w))

is called antonym repel and pushes the refined
word vectors of “antonymous” words to be away
from each other. As we already mentioned, we ex-
tend the notion of antonymy relations with respect
to its more narrow traditional linguistic definition.
We consider that two entities in a given ontology
are “antonymous” if they have not been explicitly
stated as equivalent, in the sense of a logical asser-
tion or a synonymy relation found in a semantic
lexicon.

The SA(V ′) function defined as:

SA(V ′) =
∑

(u,w)∈S
d(v′u, v

′
w)

is called synonym attract and brings closer the
transformed word vectors of synonyms. In or-
der to extract synonymy information we search
for paraphrases in semantic lexicons. Concretely,
let ω1 = {word11, word12, . . . , word1m}, ω2 =
{word21, word22, . . . , word2n} be the textual in-
formation of two entities from different ontolo-
gies. If the combination {word1i , word2j} or
{word2j , word1i } for some i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n} appears as a paraphrase in any
semantic lexicon then we add the synonymy in-
formation (u,w) in the set S of synonymy con-
straints.

The V SP (V, V ′) function defined as:

V SP (V, V ′) =

N∑

i=1

∑

j∈N(i)

τ(d(v′i, v
′
j)− d(vi, vj))

forces the refined vector space to reflect the origi-
nal word-vector distances. N(i) is the set of words
that lie within ρ distance from the i-th word vec-
tor in the original vector-space. The experiments
show that the value of ρ does not affect signifi-
cantly the performance of the whole algorithm, so
for computational efficiency we fix it to ρ = 0.05.
We minimize the objective function with stochas-
tic gradient descent (SGD). We use as a conver-
gence criterion the norm of the gradient. We con-
tinue updating the model until this is smaller than
10−5. In our experiments we typically observe
convergence with less than 25 iterations.

3.3 Semantic Distance Between Entities
As before, let V ′ be the refined word vectors
and ω1 = {word11, word12, . . . , word1m}, ω2 =
{word21, word22, . . . , word2n} be the textual infor-
mation that describes two entities from different
ontologies. The textual information of an entity
can be extracted from different sources, such as
the entity’s name, label, comments, etc. We re-
place the appearance of a word with its refined
word vector. Hence, we end up with two sets of
word vectors Q and S, respectively. In order to
do the matching of the entities of two ontologies
we use a semantic distance over the entities’ repre-
sentations, here the set of word vectors associated
with each entity.

There have been many ways to compute the se-
mantic similarity of two word sets, such as the
Word Moving Distance (Kusner et al., 2015) and
the Dual Embedding Space Model (DESM) (Nal-
isnick et al., 2016). We will base our semantic dis-
tance δ on a slight variation of the DESM similar-
ity metric. Our metric δ computes the distance of
two sets of word vectors Q and S as follows:

δ(Q,S) =
1

|Q|
∑

qi∈Q
d(qi, S̄) (2)

where S̄ = 1
|S|

∑
sj∈S

sj
‖sj‖ is the normalised average

of the word embeddings that constitute the set of
words S.

Hence, one of the word vectors’ sets is repre-
sented by the centroid of its normalized vectors.
The overall set-to-set distance δ is the normalized
average of the cosine distance d between the com-
puted centroid and the other’s set word vectors. A
first observation is that the introduced distance is
not symmetric. Ideally, we would expect the se-
mantic distance of two word sets to be irrelevant
of the order of the inputs. To make it symmetric,
we redefine the distance between two sets of word
vectors as:

dis(ω1, ω2) = max(δ(Q,S), δ(S,Q)) (3)

It is important to note that dis(ω1, ω2) is not a
proper distance metric as it does not satisfy the tri-
angle inequality property. Despite this fact, it has
proved to work extremely well on all the ontology
matching scenarios.

3.4 Ontology Matching
Similar to the work in (Xiang et al., 2015) we use
the extension of the Stable Marriage Assignment
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problem to unequal sets (Gale and Shapley, 1962;
McVitie and Wilson, 1970). The stable marriage
algorithm computes one-to-one mappings based
on a preference m × n matrix, where m and n is
the number of entities in ontologies O and O′, re-
spectively. Note that the violation of the triangle
inequality by our semantic distance (equation 3)
is not an impediment to the Stable Marriage algo-
rithm (Gale and Shapley, 1962).

The majority of the ontology matching sys-
tems produce equivalence mappings with cardinal-
ity one-to-one. Hence, one entity e in ontology O
can be mapped to at most one entity in e′ inO′ and
vice versa. According to a recent review (Anam
et al., 2015) only two out of almost twenty ontol-
ogy matching systems provide solutions to detect
many-to-many mappings. However, ontology de-
signers focus on different degrees of granularity,
so it is expected that one entity from some ontol-
ogy can correspond to more than one entities in
another ontology and vice-verca.

To address this problem, we present an algo-
rithm that extends the one-to-one mappings of the
previous step to many-to-many. The basic idea is
that some alignments that were omitted by the Sta-
ble Marriage solution were very close to the opti-
mal alignment and they should also be included
in the final alignment set. However, despite the
use of refined word vectors, we cannot completely
avoid the problems that come from the semantic
similarity and conceptual association coalescence.
The solution of this problem comes from the ob-
servation that we can add the constraint that the
mapping should be extended only in the case that
the new entity that will be added will share a sub-
sumption relation with the existing one. Below we
give a more formal definition of what we will call
an ε-optimal mapping between two entities e and
e′ that belong to two different ontologiesO andO′

respectively.

Definition 1 Let e → e′ be the optimal mapping
- produced by the Stable Marriage Solution - from
the entity e ∈ O to the entity e′ ∈ O′, where O
and O′ are two different ontologies. Let e → e′′

be another mapping, where e′′ ∈ O′. Given an
ε > 0, we call the mapping e→ e′′ ε-optimal with
respect to the mapping e → e′ if and only if the
following two hold:

• |dis(ω1, ω2) − dis(ω1, ω3)| < ε, where ω1,
ω2, ω3 is the textual information of entities e,
e′ and e′′, respectively.

Algorithm 1 extendMap(e, h, O′, Pe, ie′ , n, ε, r)
Require: source entity: e

hash function from integers to entities: h
subsumption’s transitive closure: O′
sorted (increasingly) preference matrix: Pe

index of optimal solution: ie′
number of target’s ontology entities: n
ε−optimality value: ε
number of relatives: r

Ensure: sequence of the ε−optimal mappings
1: Initialization: list = ∅
2: opt = Pe[ie′ ]
3: e′ = h(ie′)
4: for i = min(ie′ + 1, n) to min(ie′ + r, n) do
5: tmp = Pe[i]
6: if abs(opt− tmp) < ε then
7: ei = h(i)
8: if (ei, e

′) ∈ O′ or (e′, ei) ∈ O′ then
9: list.append(e→ ei)

10: end if
11: end if
12: end for

• e′ and e′′ should be logically related with
a subsumption relation. Equivalently, there
must be either a logical assertion that e′ is
subclass of e′′ or e′′ is subclass of e′.

The subsumption restriction requires that the ex-
tended alignments share a taxonomic relation, in
order to avoid matchings between entities that are
conceptually associated. We iteratively search for
ε-optimal mappings according to the algorithm 1
to extend the established one-to-one mappings to
many-to-many. For efficiency reasons, we do not
check all the entities, but only the r closest entities
according to the dis(ω1, ω2) distance. As a final
step, we iteratively pass through all the produced
alignments and we discard those with dis(ω1, ω2)
greater than a hyperparameter value thres.

4 Experiments

In this section, we present the experiments we
performed on the OAEI conference dataset and
in one real word alignment scenario between the
Schema.org and DBpedia ontologies. One of the
main problems that we have encountered with the
comparative evaluation of our algorithm is that
even though numerous ontology matching algo-
rithms exist, for only a very small portion of them
either the respective software or the system’s out-
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put is publicly available. To the best of our knowl-
edge, among all the systems tested in the confer-
ence dataset only AML (Cruz et al., 2009) and
LogMap (Jiménez-Ruiz and Grau, 2011) are pub-
licly available. As it happens these are two of
the state-of-the-art systems. Moreover, AML of-
fers solutions to detect many-to-many alignments
(Faria et al., 2015) and, thus, constitutes a compet-
itive baseline against which we will compare the
performance of extendMap which also provides
many-to-many alignments.

When training to refine the vector representa-
tions an unbalanced proportion of synonymy and
antonymy constraints sets can cause problems; the
set with the lower cardinality will have limited im-
pact on the final word representations. To over-
come this problem, we run an additional step of
the counter-fitting procedure, using only a small
random subset of the supernumerary constraints
and all constraints of the minority set. We ran-
domly undersample the larger set and reduce its
cardinality to that of the smaller set. We call
this additional step the recounter-fitting process.
To demonstrate the importance of the recounter-
fitting process and test the behavior of the pre-
trained word vectors in the absence of synonymy
and/or antonymy relations, we have conducted ad-
ditional experiments which we also present.

In all of our experiments we have applied the
counter-fitting process upon the Paragram-SL999
word vectors provided by Wieting et al. (2015).
With respect to the textual information extracted
for each entity, we have only used the entity’s ID
(rdf:ID). To estimate the precision, recall and F1
measure of all the systems, that we consider for
testing, and check for the statistical significance
of the results we use an approximate randomiza-
tion test with 1048576 shuffles, as described in
Yeh (2000).

4.1 Semantic Lexicons

Let ω1 = {word11, word12, . . . , word1m}, ω2 =
{word21, word22, . . . , word2n} be the textual infor-
mation that accompanies two entities from differ-
ent ontologies. We extracted the synonymy and
antonymy constraints that we used in the experi-
ments from the following semantic lexicons:

WordNet: a well known lexical database for
the English language (Miller, 1995). In our experi-
ments we did not use WordNet synonyms. Instead,
we have included WordNet antonymy pairs to-

gether with the ”antonymy” relations extracted by
the ontologies. The strategy that we have followed
in order to create the WordNet’s antonymy pairs
is that every two words with antonymous word
senses, we have considered them as antonyms.

PPDB 2.0: the latest release of the Paraphrase
Database (Pavlick et al., 2015). We have used this
database in two different ways. We have used
the largest available single-token terms (XXXL
version) in the database and we have extracted
the Equivalence relations as synonyms, and the
Exclusion relations as antonyms. Additionally,
we have searched the whole XXXL version of
PPDB for paraphrases based on the words ap-
peared in two entities from different ontologies.
Namely, our strategy was the following: If the
pair (word1i , word

2
j ) or the pair (word2j , word

1
i )

appeared on the PPDB and their type of relation
was not Exclusion, we considered it as synonym.

WikiSynonyms: a semantic lexicon which is
built by exploiting the Wikipedia redirects to dis-
cover terms that are mostly synonymous (Dakka
and Ipeirotis, 2008). In our experiments we have
used it only on the Schema.org1 - DBpedia2 sce-
nario. Our strategy was the following: we search
if there exist synonyms in the WikiSynonyms for
the ω1 and ω2. If this is the case, we extract them
and we stop there. In the opposite case we extract
the synonyms for each word1i and word2j .

4.2 Hyperparameter Tuning

We tuned the hyperparameters on a set of 100
alignments which we generated by randomly sam-
pling the synonyms and antonyms extracted from
WordNet and PPDB. We chose the vocabulary of
the 100 alignments so that it is disjoint to the vo-
cabulary that we used in the alignment experi-
ments, described in the evaluation benchmarks, in
order to avoid any information leakage from train-
ing to testing. We tuned to maximize the F1 mea-
sure. In particular, we did a coarse grid search
over a parameter space for κ1, κ2, κ3, r, ε and
thres. We considered κ1, κ2 ∈ [0.35, 0.45] and
κ3 ∈ [0.1, 0.2] with common step 0.01, r ∈ [1, 10]
with step 1, ε ∈ [0.01, 0.1] with step 0.01 and
thres ∈ [0.3, 0.7] with step 0.05. We trained for
25 epochs for each hyperparameter using SGD.

1https://github.com/schemaorg/
schemaorg/blob/sdo-callisto/data/
releases/3.2/schema.ttl

2http://downloads.dbpedia.org/2014/
dbpedia_2014.owl.bz2

792



The best values were the following: κ1 = 0.4,
κ2 = 0.4, κ3 = 0.1, r = 8, ε = 0.07 and
thres = 0.5. We used the selected configuration
on all the alignment scenarios described below.

4.3 Evaluation Benchmarks
One of our evaluation benchmarks comes from the
Ontology Alignment Evaluation Initiative (OAEI),
which organizes annual campaigns for evaluating
ontology matching systems. The external to OAEI
evaluation benchmark comes from the provided
alignments between the Schema.org and the DB-
pedia ontologies. We provide some further details
for each dataset below:

OAEI Conference Dataset: It contains 7 on-
tologies addressing the same domain, namely the
conference organization. These ontologies are
suitable for ontology matching task because of
their heterogeneous character of origin. The over-
all performance (micro-precision, micro-recall,
micro-F1) of the systems is tested upon 21 dif-
ferent test cases. Specifically, we summed up
the individual true positives, false positives and
false negatives based on the system results for
the different ontology matching tasks and, in the
next step, we computed the performance metrics.
The original reference alignment is not closed un-
der the alignment relation, so the transitive clo-
sure should be computed before proceeding on the
evaluation of the systems.

Schema.org - DBpedia Alignment: It cor-
responds to the incomplete mapping of the
Schema.org and DBpedia ontologies. Schema.org
is a collaborative, community activity with a mis-
sion to create, maintain, and promote schemas for
structured data on the Internet, on web pages, in
email messages, and beyond. On the other hand,
DBpedia is a crowd-sourced community effort to
extract structured information from Wikipedia and
make this information available on the Web. This
alignment corresponds to a real case scenario be-
tween two of the most widely used ontologies in
the web today.

4.4 Experimental Results
All the systems presented in the Conference
dataset experiments (Table 1) fall into the category
of feature engineering. CroMatch (Gulić et al.,
2016), AML (Cruz et al., 2009), XMap (Djeddi
and Khadir, 2010) perform ontology matching
based on heuristic methods that rely on ag-
gregation functions. LogMap and LogMapBio

(Jiménez-Ruiz and Grau, 2011) use logic-based
reasoning over the extracted features and cast the
ontology matching to a satisfiability problem.

4.4.1 OAEI Conference Dataset
Table 1 shows the performance of our algorithm
compared to the five top performing systems on
the Conference 2016 benchmark, according to
the results published in OAEI3. DeepAligment
achieves the highest micro-F1 measure and the
highest recall. We were able to perform statisti-
cal significance test only for the two systems that
were publicly available. DeepAlignment is signif-
icantly better than both of them with a p-value ≤
0.05. In order to explore the performance effect of
the many-to-many mappings that DeepAlignment
produces we also did experiments where our ex-
tendMap algorithm was not used, thus generating
only one-to-one alignments. We give these results
under the DeepAlignment∗ listing. It can be seen
that DeepAlignment∗ achieves the same level of
recall as the state-of-the-art systems and this with
no feature engineering. When we compare the
performance of DeepAlignment∗ and DeepAlign-
ment we see that the use of extendMap generates
correct many-to-many alignments and thus it does
not produce large numbers of false positives. In
any case, however, we retain a small precision
which indicates a semantic similarity and concep-
tual association coalescence.

System Precision Recall Micro-F1
DeepAlignment 0.71 0.80 0.75

CroMatch 0.76 0.69 0.72
AML 0.79 0.65 0.71

DeepAlignment∗ 0.68 0.68 0.68
XMap 0.81 0.58 0.67

LogMap 0.79 0.58 0.66
LogMapBio 0.75 0.58 0.65
StringEquiv 0.83 0.50 0.62

Table 1: Results on Conference OAEI dataset. StringE-
quiv corresponds to ontology matching by simple
string equivalence check.

We perform additional experiments to inves-
tigate the importance of the counter-fitting step,
which are summarized in Table 2. In all of these
experiments, we have applied the extendMap al-
gorithm. The last row of Table 2, corresponds to
the best result reported in Table 1. The first row

3http://oaei.ontologymatching.org/
2016/
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gives the results of executing the algorithm with-
out the counter-fitting process, just by providing
the Paragram-SL999 word vectors.

Parameters Precision Recall Micro-F1Synonyms Antonyms
No No 0.63 0.55 0.59
No Yes 0.67 0.51 0.58
Yes No 0.69 0.72 0.71
Yes Restricted 0.65 0.78 0.71
Yes Yes 0.71 0.80 0.75

Table 2: Experiments on Conference OAEI dataset.

The results support the importance of the
counter-fitting process, which succeeds in tailor-
ing the word embeddings to the ontology match-
ing task. By injecting only antonymy information
(second row), we observe an increase in precision,
but a decrease in recall. This behavior is due to the
fact that the antonym repel factor imposes an or-
thogonality constraint to the word vectors, leading
to higher values of the dis distance. In absence of
synonymy information, the majority of words tend
to become “antonymous”. The third row of Table
2 gives the performance when we also include syn-
onyms extracted from PPDB but no antonymy in-
formation. We can see that this leads to a large in-
crease of all the recorded performance metrics. Fi-
nally, we also include antonymy information only
from the Cmt and the Conference ontologies found
in the Conference dataset. This has two effects:
an increase in recall, but a decrease in precision.
This can be explained by the fact that even though
all ontologies describe the same domain the de-
scription granularity provided by each of them is
not capable of giving all the antonymy relations
needed to provide more refined alignments.

4.4.2 Schema.org - DBpedia Alignment
Table 3 summarizes the obtained results from the
matching of the Schema.org and DBpedia ontolo-
gies. The fact that the alignment is incomplete
restricts us on testing the performance only on
the recall. To make the comparison as fair as
possible, we did not apply the extendMap algo-
rithm. We should highlight that we have ap-
plied the recounter-fitting process because the syn-
onyms that we have extracted from the PPDB
and WikiSynonyms were very few compared to
the constructed “antonyms”. The results of the
LogMap system show a quite similar behavior
with the experiments conducted in the conference
dataset. However the recall of AML is zero. It

System Recall
DeepAlignment∗ 0.82

LogMap 0.5
AML 0

Table 3: Results on aligning Schema.org and DBpedia
ontologies.

discovers none of the available alignments even
though it manages to recall other quite reasonable
matchings, which, however, are not included in the
ground truth. According to our understanding, this
might be an indication of the absence of domain
transferability of the extracted features as well as
of the implemented metrics. We summarize in Ta-

Parameters RecallRecounter-fitting Synonyms Antonyms
No No No 0.71
No No Yes 0.76
No Yes No 0.84
No Yes Yes 0.76
Yes Yes Restricted 0.82

Table 4: Experiments on aligning Schema.org and DB-
pedia ontologies. Restricted indicates that we choose
only a small random subset of the antonymy con-
straints.

ble 4 the results of the experiments we did on the
two domains to study the effect of counter-fitting
and recounter-fitting. As we can see, even without
the counter-fitting, the semantic embeddings show
quite good results. This provides evidence on the
importance of using representation learning tech-
niques instead of the classical feature engineering
choice. By injecting only antonymy information
(second row), we observe a different behavior in
the recall metric compared to the one presented in
Table 2. This can be explained by the fact that
while the antonym repel factor imposes an orthog-
onality constraint, its effect is by no means univer-
sal to the whole word vector space. Therefore, a
misalignment can be pushed far away leaving the
space open for a true alignment to be detected.
With the addition of the extracted synonyms, we
observe an increase of 0.13 in the recall. However,
the insertion of the extracted “antonyms” leads to
lower performance. This shows practically the
importance of applying the recounter-fitting pro-
cess that allows both the synonym attract and the
antonym repel factors to affect the word vectors.
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4.5 Further Analysis
DeepAlignment vs. initial word vectors. To in-
vestigate the impact of the initial pre-trained word
vectors on DeepAlignment’s performance, we car-
ried out two additional experiments, this time us-
ing a set of word2vec vectors (Mikolov et al.,
2013b), trained on the Google news dataset4. We
report and compare the obtained results to the
ones produced by the use of Paragram-SL999 vec-
tors in Table 5. In the absence of counter-fitting,

Counter
fitting

Word
Vectors

Conference Schema.org
DBpedia

P R Micro-F1 R
No word2vec 0.64 0.52 0.58 0.74
No Paragram 0.63 0.55 0.59 0.71
Yes word2vec 0.67 0.75 0.71 0.75
Yes Paragram 0.71 0.80 0.75 0.76

Table 5: Dependency of DeepAlignment’s perfor-
mance on the choice of the initial word vectors6.

the word2vec vectors achieve better results on the
Schema.org - DBpedia scenario, however, they ex-
hibit lower performance on the conference dataset.
This observation is in accordance with recent stud-
ies (Hill et al., 2016a) which show that different
word vectors optimization objectives yield repre-
sentations tailored to different applications and do-
mains. After the application of the counter-fitting
process, the use of Paragram-SL999 vectors leads
to a better performance. This fact provides addi-
tional evidence that word vectors which reflect se-
mantic similarity are better candidates for being
further tailored to the ontology matching task.

DeepAlignment vs. resources’ coverage. The
choice and coverage of the different lexical re-
sources may have a determining factor on the per-
formance of DeepAlignment. For that reason, we
present in Table 6 a set of experiments where we
exclude a part of the synonymy/antonymy rela-
tions from the various semantic lexicons. For both
the matching scenarios, we experimented with ex-
cluding all the antonyms from PPDB and Wik-
iSynonyms. For the conference dataset, we addi-
tionaly experimented with including only a sub-
set of PPDB synonyms (50% coverage). Finally,
we carried out one experiment where we excluded
all the synonymy information extracted from Wik-
iSynonyms for the Schema.org - DBpedia sce-
nario. The resulted performance is presented in

4https://code.google.com/p/word2vec
6For the Schema.org - DBpedia scenario’s experiments,

the recounter-fitting process has not been applied.

the rows 1, 4, 2, 5 of Table 6, respectively. The re-
ported results provide evidence that the greater the
coverage of synonyms and antonyms, the greater
the performance of DeepAlignment will be.

Dataset Experiment
Setting P R Micro-F1

Conference

With no antonyms from
PPDB & WikiSynonyms

0.67 0.76 0.71

With only a subset of
the PPDB synonyms

0.67 0.76 0.71

With all the available
synonyms/antonyms

0.71 0.80 0.75

Schema.org
DBpedia

With no antonyms from
PPDB & WikiSynonyms

- 0.76 -

With no synonyms from
WikiSynonyms

- 0.73 -

With all the available
synonyms & antonyms

- 0.76 -

Table 6: Dependency of DeepAlignment’s perfor-
mance on the external resources’ coverage6.

5 Conclusion

In this paper, we propose the refinement of pre-
trained word vectors with the purpose of deriv-
ing ontological entity descriptions which are tai-
lored to the ontology matching task. The refined
word representations are learned so that they in-
corporate domain knowledge encoded in ontolo-
gies as well as knowledge extracted from seman-
tic lexicons. The refinement procedure does not
use any explicit information relevant to the ontol-
ogy matching task making the entity representa-
tion task completely unsupervised. We perform
ontology matching by applying the Stable Mar-
riage algorithm over the entities’ pairwise dis-
tances. Our experimental results demonstrate sig-
nificant performance gains over the state-of-the-
art and show a novel way to study the problem of
ontology matching under the setting of NLP.
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