
Research Article
Matching Large Scale Ontologies Based on Filter and Verification

Yingxin Li,1 Zhou Jianhui ,2 Jihong Liu ,3 and Yongzhu Hou3

1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2School of Computer and Network Engineering, Shanxi Datong University, Datong 037009, China
3School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Correspondence should be addressed to Zhou Jianhui; zhjh19851101@163.com

Received 9 December 2019; Revised 20 March 2020; Accepted 16 April 2020; Published 22 May 2020

Academic Editor: Gaetano Giunta

Copyright © 2020 Yingxin Li et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ontology matching is an effective method to realize intercommunication and interoperability between heterogeneous systems.
/e essence of ontology matching is to discover the similar entity pairs between source ontology and target ontology, which is a
process calculating the similarity between entities in ontologies./e similarity can be calculated utilizing various features between
entity pairs, such as string similarity, structural similarity, and semantic similarity. /e larger the ontology scale, the lower the
efficiency and accuracy rate of ontology matching. As the ontology scale increases, the amount of entities in ontologies will be
larger and the ontologies will become more heterogeneous. /is paper proposes an innovative method of matching large scale
ontologies based on filter and verification, which firstly reduces the heterogeneous of large scale ontologies in the filter phase and
then matches the reduced ontologies in the verification phase. Large scale ontologies will be partitioned into several subontologies
to get a proper scale before matching./e benchmark of Anatomy and Food in OAEI is adopted to evaluate the proposed method,
and the experimental result illuminates that the recall rate is improved in the situation of retaining efficiency and accuracy rate
using the proposed method.

1. Introduction

Ontology matching can solve the problems of intercom-
munication and interoperability between heterogeneous
systems. With the development of the Internet and infor-
mation technologies, the volume of data is growing rapidly,
which leads to the increase of the scale of ontology. Because
the scale of ontology is becoming larger, the complexity of
the ontology matching algorithm increases exponentially; as
a result, the efficiency of ontology matching becomes lower.
In addition, the increase of the ontology scale enhances the
degree of heterogeneity between ontologies. /e greater the
degree of heterogeneity, the more difficult it is to discover
similar entities between ontologies, as the neighbouring
entities have more heterogeneous information. It also results
in that accuracy rate and recall rate of ontology matching is
lower.

/e idea of partitioning ontology into several sub-
ontologies before matching them can effectively reduce the
scale of ontology beforehand and reduce the degree of

heterogeneity between ontologies, which can not only im-
prove the efficiency of ontology matching but also improve
the accuracy rate and recall rate of ontology matching. For
instance, between source ontology and target ontology, a
large number of dissimilar entities exist, which are named as
irrelevant entities pairs. It is the core idea of our proposed
method that how to recognize the irrelevant entities pairs
without calculating their similarities. As shown in Figure 1,
the entity named concentration in source ontology is ir-
relevant to the entity named trunk in target ontology, which
is generally found by calculating the integrated similarity
between the entities named concentration and trunk.
However, this result can be found according to the fact that
neighbouring entities of concentration and neighbouring
entities of trunk are irrelevant, so it is unnecessary to cal-
culate integrated similarities. Removing the irrelevant entity
pairs from matching candidates will reduce the heteroge-
neous degree between source ontology and target ontology.
In this paper, a method of matching large-scale ontologies
based on filter and verification is proposed, in which both

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 8107968, 10 pages
https://doi.org/10.1155/2020/8107968

mailto:zhjh19851101@163.com
https://orcid.org/0000-0002-6318-1393
https://orcid.org/0000-0003-2983-8766
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8107968

source ontology and target ontology are partitioned into
several subontologies firstly, then these subontologies are
matched, and finally the alignments of every subontology
matching are integrated.

Although reducing the scale of ontologies before
matching them can improve the efficiency of ontology
matching, it will lead to the lower recall rate of ontology
matching because some pairs of entities are previously
considered irrelevant, but they are actually related. How to
improve the recall rate in the situation of retaining the ef-
ficiency is a key problem in large-scale ontology matching.
/e main idea of solving this problem is that the lower
irrelevant probability, the more chance is given to calculate
their similarities. In other words, entities at the margin of
one subontology should be allowed to appear in other
subontologies so that chances of calculating the similarities
of these entities will increase. Compared with the entities of
large-scale ontology, the number of these entities is small, so
the efficiency is retained reasonably in this paper.

/e remainder of the paper includes five sections. Sec-
tion 2 introduces some related works about large-scale
ontologies matching. Section 3 introduces the overall
framework of the proposed method. In Section 4, each step
in the filter phase for partitioning ontologies is elaborated.
/e verification phase is illuminated in Section 5, in which
subontologies are matched. Finally, in Section 6, the pro-
posed method is evaluated by the benchmark of Anatomy
and Food.

2. Related Works

/e process of ontology matching is to calculate the simi-
larity between entities in source ontology and target on-
tology. /e similarities include string similarity, structural
similarity, and semantic similarity [1]. String similarity was
calculated by the distance between label strings of entities,
such as edit distance, Euclidean distance, and Hamming
distance [2]. Structural similarity was calculated by utilizing
the defined hierarchies and concept connections between
entities [3]. Semantic similarity was calculated by depending
on the external resources, such as WordNet and other ex-
ternal ontologies [4].

/ree types of similarities exist simultaneously between
entities in source ontology and target ontology. /ere are
two approaches to match ontologies. /e first approach was
to generate part of alignments by calculating string simi-
larities between entities, and then to generate the remaining
alignments by calculating structural similarities or sematic
similarities between entities [5, 6]. /e second approach was
to integrate the three type similarities between entities. In
[7], an adaptive method was deployed to obtain the weights
of three type similarities, and an artificial neural network was
utilized to integrate them.

According to the conclusion of OAEI report [8], in
reference alignments, about 30% alignments were obtained
by calculating the string similarities between entities in
source ontology and target ontology, about 50% alignments
were obtained by calculating the structural similarities be-
tween entities, and about 20% alignments were obtained by
calculating the semantic similarities between entities.
/erefore, it is important to calculate structural similarities.

With the growth of information, the scale of ontology is
increasing rapidly. /e number of entities and relationships
between entities are also increasing. For instance, the
number of entities in Anatomy and Food was more than
2500 and 20000, respectively [9]. In addition, the scale of
some domain ontologies in complex product design fields
was large, such as aircraft, robots, and vehicle domain
ontologies. /e number of entities in them was usually
7000–8000, and the relationships between entities were more
than 30000 [10].

/e larger the scale of ontology, the greater the het-
erogeneity between ontologies and the more difficult to
utilize structural information to calculate structural simi-
larities between entities [11]. As mentioned before, 50%
alignments were obtained by calculating structural simi-
larities between entities. /us, the recall rate of large-scale
ontology became lower because of the high heterogeneity
between ontologies. At present, the recall rate of large-scale
ontology matching reaches only 40%–50% [12].

In the research of large-scale ontology matching, there
are two kinds of approaches. /e first is based on distributed
computing, which parallelized the computing process to
improve the computing efficiency [13]. /e second is to

Sensitive
element

RMS current

Wavelength

RMS voltage

Acoustic
sensor

Interface
element Inverter

Auxiliary
power

Fundamental
voltage

Harmonic
voltage

Fundamental
power

Temperature

Thermal
resistance

Conductance

PH

Concentration
Sensor

Resistance
Sensor

Chemosensor

Photosensitive
sensor

Thermistor
sensor

(a)

Emitter

Trunk

Arm

Leg

Head joint

Shoulder
joint

Ankle joint

Knee joint

Battery

Motor

Microphone

Touch
sensor

Sonic
sensor

Vision
Sensor

Pressure
sensor

Joint

Main body

Humanoid
robot

Power

Sensor

Loudspeaker

(b)

Figure 1: Instance of heterogeneous ontologies. (a) Source ontology. (b) Target ontology.

2 Mathematical Problems in Engineering

partition large-scale ontology into several blocks before
matching them. It reduced the computational complexity at
the algorithm level [14, 15]. Research in this paper belongs to
the second kind of approaches.

In [14], a machine learning strategy for generating
possible candidate pairs was designed to filter the uncorrelated
entities pairs, and then logical consistency checking was
deployed to generate final alignments. /e main idea of the
machine learning strategy was that pairs of entities were possible
candidates if their neighbouring pair of entities has high string
similarity. While the degree of heterogeneity between ontologies
is increasing, as previously mentioned, a mass of entities lost
their candidate access by this strategy, which results in reducing
the recall rate of ontology matching. In [15], a divide-and-
conquer approachwas proposed tomatch large-scale ontologies.
/is approach firstly partitioned large-scale ontology to some
blocks and then matched pairs of blocks to generate alignments.
However, the blocks were not aligned; some correct alignments
lost matching access because they were in different pairs of
blocks, which was the main reason of reducing the recall rate of
ontology matching. According to the above, the proposed
method in this paper aligns the blocks by partitioning or
merging blocks before matching them and extends the blocks to
subontologies. Entities are allowed to appear repetitively in
different subontologies. Although it is a little bit time con-
suming, the recall rate of ontologymatching improves obviously.

In this paper, a method of matching large-scale ontol-
ogies based on filter and verification is proposed. It reduces
the heterogeneity by partitioning ontologies into several
subontologies not blocks. Compared with the method that
partitioned ontologies into blocks, the proposed method has
two differences. On one hand, it is no need to traverse all
entity pairs between ontologies, but it has to search relevant
entities. On the other hand, the entities are allowed to appear
in different subontologies repetitively which is the key cause
to improve the recall rate of large-scale ontology matching.

3. Framework

/e framework of the proposed method deploys the filter
and verification strategy whose main idea is to reduce the
scale of ontologies before matching them. As shown in
Figure 2, the framework contains twomain phases, one is the
filter phase and the other is the verification phase.

In the filter phase, the reduction of the scale of ontologies
is completed through 4 steps:

(1) Generating typical entities: the inputs are source
ontology and target ontology. /e outputs are some
pairs of entities whose name are typical entities,
which have high string similarities.

(2) Clustering typical entities: the inputs are typical
entities. /e outputs are some blocks of typical
entities, which are obtained by the method of
clustering.

(3) Partitioning/merging blocks: the inputs are some
blocks of typical entities. /e outputs are pairs of
blocks between ontologies.

(4) Extracting subontologies: the inputs are some pairs
of blocks. /e outputs are pairs of subontologies,
which are obtained by the extension method.

In the verification phase, each pair of subontologies is
matched through calculating integrated similarities, which
include structure similarities and sematic similarities.

In order to elaborate more details of the framework, a
pseudocode description is presented in Algorithm 1. /e
novelty of the proposed framework is mainly in Step 1, Step
3, and Step 4. In Step 1, length and prefix of entities are
utilized to generate typical entities without traversing all
pairs of entities between source ontology and target on-
tology. In Step 3, heterogeneous blocks are transformed to
homogeneous blocks by the method of partitioning or

Generating
typical
entities

Ontologies

Step 1

Clustering
typical
entities

Step 2

Partitioning/
merging

blocks

Step 3

Extracting
subontologies

Step 4

Matching
subontologies

Step 5

[2, c3, c4, =, 0.8]

[3, c5, c6, =, 0.6]

[4, c7, c8, =, 0.5]

Alignments

Typical entities

Blocks

Subontologies

Filter Verification
Blocks pairs

[1, c1, c2, =,1.0]

Figure 2: /e framework of the proposed method.

Mathematical Problems in Engineering 3

Inputs: Source ontology (SO) and Target ontology (TO)
Outputs: Alignments (A)
Variables:ik
hashmap<(length, prefix), ID>//save length and prefix of entities in SO and TO
typicalList< IDeso, IDeto>//save typical entities in SO and TO
blockSetSO//save the set of blocks of SO
blockSetTO//save the set of blocks of TO
subOntoSetSO//save the set of sub-ontologies of SO
subOntoSetTO//save the set of sub-ontologies of TO
(1) //Step 1: generate typical entities
(2) for entity ei in SO, TO:
(3) length� number of letters in label of ei
(4) prefix� prefix of label of ei
(5) hashmap.put(length, prefix, IDei)
(6) end for
(7) for key (length, prefix) in hashmap:
(8) for IDs in values (IDe1, IDe2, . . ., IDen):
(9) if simT(IDei, IDej)> threshold and IDei ∈ SO and IDej ∈TO://simT is shown in formula (2)
(10) typicalList.add(IDei, IDej)
(11) end if
(12) end for
(13) end for
(14) //Step 2: clustering typical entities
(15) for every entities IDeso, IDeto in typicalList< IDeso, IDeto>:
(16) setSO.add(IDeso), setTO.add(IDeto)
(17) blockSetSO� partition(setSO), blockSetTO� partition(setTO)//partition is shown in [15].
(18) end for
(19) //Step 3: partitioning/merging blocks
(20) for every entity sets Si in blockSetSO:
(21) for every entities IDeso[k] in Si:
(22) tempEntity� typicalList.get(indexOf(IDeso[k])).get(1)
(23) if k� 0:
(24) //correSet records the corresponding setTO in blockSetTO
(25) correSet� setTO which contains tempEntity in blockSetTO
(26) else if tempEntity is not in correSet:
(27) //sourceSet records the corresponding setSO in blocksSetSO
(28) sourceSet� setSO which contains tempEntity in blockSetSO
(29) correSet.add(tempEntity)
(30) sourceSet.delete(tempEntity)
(31) end if
(32) end for
(33) end for
(34) //Step 4: extracting sub-ontologies
(35) for every entity sets Si in blockSetSO, blockSetTO:
(36) do:
(37) n� Si.size
(38) tempSet� null
(39) //rH, rC, ek is shown as formula (3)∼(8)
(40) for every entities IDeso[k] in Si:
(41) candidateEntity� IDeso[k].get(rdfs:sub-ClassOf)
(42) if rH(candidateEntity, IDeso)> threshold:
(43) tempSet.add(candidateEntity)
(44) candidateEntity� IDeso[k].get(rdfs: hasSomeValueFrom)
(45) if rC(candidateEntity, IDeso)> threshold:
(46) tempSet.add(candidateEntity)
(47) update extension factor ek
(48) end for
(49) Si.add(tempSet)
(50) while(Si.size !� n)
(51) end for
(52) subOntoSetSO� blockSetSO

ALGORITHM 1: Continued.

4 Mathematical Problems in Engineering

merging blocks, ensuring that better subontologies can be
extracted in the subsequent step. In Step 4, a method of
extracting subontologies is proposed which allows entities at
the margin of subontologies to repetitively appear in dif-
ferent subontologies. /at improves the recall rate of the
final matching step.

According to the pseudocode in Algorithm 1, the pro-
posed approach has two circulations at most. So, its algo-
rithm complexity is O (n2).

4. Reduction of Large-Scale Ontologies in
Filter Phase

Step 1 (generating typical entities).
Alignment is the result of ontology matching, and it is

made up of a set of correspondences. Each correspondence is
a tetrad, which is denoted as follows:

cor � e1, e2, r, s , (1)

(53) subOntoSetTO� blockSetTO
(54) //Step 5: matching sub-ontologies
(55) for every pair sub-ontologies (subSO[i], subTO[i]) in subOntoSetSO, subOntoSetTO:
(56) //matchStruc by V-DOC in [18].
(57) structureAlignment�matchStruc(subSO[i], subTO[i])
(58) //matchSema by GMO in [19].
(59) sematicAlignment�matchSema(subSO[i], subTO[i], structureAlignment)
(60) A.add(structureAlignment), A.add(sematicAlignment)
(61) end for

ALGORITHM 1: Pseudocode description of the framework.

DVDCD Publisher

Person

Product

has_creator

has_author

has_author

Science

Pocket

Children
has_publisher

Book

Human

Volume

has_subject_

Literary_
critics

Politics

Essay

Autobiogr
aphy

Novel

Poetry

Literature

Writer

Biograph
y

Anchor

eT in O1

eT in O2

Figure 3: Typical entities’ sample.

Person

Writer

Zoology

Mammal

Marine
animal

Person

Writer

Zoology

Mammal

Marine animal

block b1 block b1

Person

Writer

Zoology

Mammal

Marine
animal

Person

Writer

Zoology

Mammal

Marine
animal

block b2 block b2

Figure 4: Typical entities’ block partition.

Mathematical Problems in Engineering 5

where cor is the correspondence; e1 and e2 are entities in source
ontology and target ontology, respectively; r is relationship
between e1 and e2; and s is similarity between e1 and e2.

Typical entities (eT) are referred to the entities in the
correspondences whose similarities are high. In [15], the
correspondences whose similarity was high were called
anchors. /erefore, as shown in Figure 3, eT are the entities
which are connected by anchors, and eT can be generated by
finding anchors. As the ontologies are large, finding anchors
by calculating each pair of entities between full ontologies is
time consuming. A similarity join algorithm was employed
to find anchors, and the framework of this algorithm was a
filter-verification framework based on signature, and it used
as a light-weight filtering technique to identify a set of
candidate pairs and prune lots of dissimilar pairs [16]. In the
filter step, length filtering and prefix filtering were both
employed to prune the dissimilar pairs; in the verification
step, Edit distance was utilized to measure the string sim-
ilarity between entities. Let r and s be two strings, and the
similarity between r and s was denoted as simT (r, s), and it
was determined as follows:

simT(r, s) � comm(r, s) − diff(r, s) + winkler(r, s), (2)

where comm (r, s) and diff (r, s) are the commonality and
difference between r and s, respectively, and winkler (r, s) is
the correction coefficient introduced in [17].

Step 2 (clustering typical entities).
/rough the previous step, some typical entities are

obtained in source ontology and target ontology respec-
tively. Employing the ontology partition algorithm in [15],
typical entities in the source ontology and target ontology

are clustered, respectively, to some typical entities blocks, as
shown in Figure 4.

Step 3 (partitioning/merging blocks).
/rough the previous step, some blocks in ontologies are

obtained, whose entities have anchors between each other. If
entity ei in block b1 has the anchor to entity ej in block b2,
then b1 and b2 are connected, which denoted as b1⟶b2.

For each ei in b1, if only one ej in b2 has the anchor to it,
and for each ej in b2, if only one ei in b1 has the anchor to it,
then b1 and b2 are regarded as homogeneous, else they are
inhomogeneous.

If b1 and b2 are inhomogeneous, then b1 or b2 need to be
partitioned with the purpose of changing them to be ho-
mogeneous, as shown in Figure 4.

Step 4 (extracting subontologies).
/rough the previous step, some pairs of homogeneous

blocks are obtained. In this step, taking typical entities in the
blocks as input, the extension method is deployed to extract
subontologies from source ontology and target ontology,
respectively. In other words, if n subontologies are extracted
in source ontology, then n subontologies are extracted in
target ontology correspondingly.

/e extension method of extracting subontology is
shown in Figure 5. Taking typical entities in blocks as start
entities’ set, the extension on structure dimension and
constraint dimension are carried out alternately and re-
petitively. /e extension factor is updated in iteration. It-
eration is terminated when the extension result no longer
changes.

On structure dimension, extension is executed by searching
relationship whose label is rdfs: sub-ClassOf in ontology. With

Start entities

e1
Related entities

A1

Related entities
A2

Related entities
An

………

e2

e0

Extension factors in
every iteration

Start e0= 0

Extend on structure dimension
Extend on constraint dimension
Calculate extension factor

Related entities
B1

Related entities
B2

Related entities
Bn

Entities in
subontology

whose typical
entities were
start entities

A1∪B1∪A2∪B2
∪...∪An∪Bn

Figure 5: Extension method of extracting subontology.

6 Mathematical Problems in Engineering

these relationships, the structure of entities is hierarchy. /e
similarity between entities which have hierarchical structure can
be calculated by (3), where ci and cj are entities labels; depth (x)
is the depth of entity whose label is x; and cij is deepest common
parent entity of ci and cj. On this basis, the relevancy between
entities can be calculated by (4), where e is the extension factor,
and it will be illustrated in the subsequent content:

sim ci, cj �
2depth cij

depth ci(+ depth cj
, (3)

rH ci, cj � sim ci, cj ×(1 + e). (4)

If relevancy rH (ci, cj) is greater than threshold given
artificially, correlative entities are selected as a set, whose
name is related entities’ set, denoted as Ak, where k rep-
resents the kth iteration.

On constraint dimension, taking Ak as start entities’ set,
extension is executed by searching relationship whose label
is rdfs:hasSomeValueFrom or rdfs:hasAllValueFrom in on-
tology. With these relationships, entities are correlated by
constraints. /e relevancy between entities equals the
similarity between them, which can be calculated by (5),
where ci’ is entity who has constrain to A; depth’(x) is the
virtual depth of entity whose label is x; and Aci is deepest
common parent entity of A and ci. Among them, virtual
depth is the depth of entity whose constraint relationship is
regard as hierarchy relationship. For example, if the depth of
entity U was 3, and one constraint relationship between
entityV andU existed, thenVwas regard as the parent entity
or child entity, and the virtual depth of entity V was 2 or 4.
Virtual depth can be calculated by (6):

rC A, ci(� sim A, ci(�
2depth Aci(

depth(A) + depth′ ci
′((

, (5)

depth’ ci
′(�

depth ci(+ 1 ci hasValue From ci
′,

depth ci(− 1 ci
′ hasValue From ci.

 (6)

Like extension on structure dimension, if relevancy rC
(A, ci) is greater than threshold given artificially, correlative
entities are selected as a set, whose name is related entities
set, denoted as Bk, where k represents the kth iteration. Bk is
the start entities set of the extension on structure dimension
in the k+ 1th iteration.

Extension factor refers to the ratio of increase on con-
straint dimension between Bk and S, and S is the start en-
tities’ set. It can be calculated after each iteration by (7), and
then in next iteration, the extension factor is applied to
calculate relevancy on structure dimension, as shown in (8):

ek �
rk

C S, Bk(− sim S, Bk((

sim S, Bk(
, (7)

r
(k+1)
H Bk, ci(� sim Bk, ci(× 1 + ek(. (8)

In (7) and (8), after the kth iteration, ek is calculated, and
in the k+ 1th iteration, ek is applied.

While extension iteration is terminated, overall Ak and
Bk are union as one entities’ set, in which overall entities
compose one subontology.

After Step 4, source ontology and target ontology are
partitioned to several pairs of subontologies. Subontology has
two characteristics: (1) one subontology in source ontology
must correspond one subontology in target ontology. It is
one-to-one, and it means that only the similarities of entities
which come from one-to-one pair of subontologies will be
calculated. /at retains the efficiency of large-scale ontology
matching. (2) Some entities may appear in more than one

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Anatomy Food

Falcon
RiMOM
Our method

(a)

Falcon
RiMOM
Our method

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Anatomy Food

(b)

Figure 6: Comparison between falcon, RiMOM, and the proposed method on (a) accuracy and (b) recall.

Table 1: Comparison between falcon, RiMOM, and the proposed
method on efficiency.

Falcon (min) RiMOM (min) Our method (min)
Anatomy 7 75 7
Food 23 240 28

Mathematical Problems in Engineering 7

subontologies. It is vague that these entities are or not ir-
relevant to other entities. /erefore, more subontologies
contain them, more chance of calculating they have. /at
improves the recall rate of large-scale ontology matching.

5. Matching Subontologies in
Verification Phase

Step 5 (matching subontologies).
In the previous phase, same number subontologies in

source ontology and target ontology are obtained. In this
phase, each pair of subontologies between them will be
matched, and the result will be union as the alignments
between them.

Structure similarity and semantic similarity are cal-
culated between entities in subontologies, respectively.

Take each pair of subontologies as input, and V-DOC
and GMO are deployed to generate internal alignments
and external alignments, respectively. About structure
similarity, V-DOC is deployed to generate internal
alignments between subontologies, whose novelty lies in
the construction of virtual documents [18], and then
about semantic similarity, GMO is deployed to generate
external alignments between subontologies, which use
RDF Bipartite Graphs to represent ontologies [19]. Fi-
nally, the internal and external alignments are union as
the output.

6. Evaluation and Discussion

In our research, we developed the Dynamic Ontology
Matching System (DYOM), in which the core component of

6%

13%

16%

25%

40%

Filter: step 1
Filter: step 2
Filter: step 3

Filter: step 4
Verification

(a)

Filter: step 1
Filter: step 2
Filter: step 3

Filter: step 4
Verification

10%

12%

14%

28%

36%

(b)

Figure 7: Execution time of every steps in filter and verification phases. (a) Anatomy. (b) Food.

0 50 100

Food

Anatomy

Yes

No

(%)

(a)

0 50 100

Food

Anatomy

Yes

No

(%)

(b)

Figure 8: Percent of entities participating in calculation in (a) filter phase and (b) verification phase.

8 Mathematical Problems in Engineering

ontology matching used the proposed method in this paper.
DYOM is an offline system and it was encoded by Java 1.7.
DYOM has been employed in a robot design project
mentioned in the Acknowledgments section.

Anatomy and Food are selected as benchmark datasets
provided by OAEI organization. Anatomy and Food can be
obtained from the website mentioned in the Data Avail-
ability section. In Anatomy track, ontologies denoted as
Human and Mouse were input to the algorithm. Human
contains 3304 entities and Mouse contains 2743 entities.
Food track includes two ontologies denoted as AGROVOC
and NALT. AGROVOC contains 28439 entities and NALT
contains 42326 entities. /e scale of these two datasets are
orders of 1000 and 10000, respectively.

Two large ontology matching system named Falcon and
RiMOM are adopted to be compared with our method
because the performance of these two system is better than
others in large-scale ontology matching, according to the
conclusion in 2007 OAEI report. /e reason of choosing
2007 OAEI report is that there are very few research studies
on large-scale ontology matching and performance of these
few systems was almost the same with Falcon and RiMOM
after 2007 [20]. In addition, the criteria of accuracy rate,
recall rate, and efficiency were included in 2007 OAEI report,
which can be obtained from the website mentioned in the
Data Availability section.

In the proposed method, there is only one parameter,
which is the threshold given artificially in our system. We
took 0.75 as the value of threshold because Falcon took 0.75
also. It ensured that the evaluation about accuracy rate and
recall rate is a baseline test. As shown in Figure 6, our
method improves the recall rate of large-scale ontology
matching, and the accuracy rate is almost same as the other
systems.

In order to test time consumption between our method
and others, we try to adopt the computer configuration at
2007 (CPU Intel Core 2 Duo E4300, 1GB DDR2, Inno3D
7900GS). However, it is not a baseline test that is on the
efficiency between our method and Falcon, RiMOM. /e
results of this experiment are only for reference. Considering
about order of magnitude, as shown in Table 1, our method
has almost the same efficiency with the other methods.

We also test the execution time of each step in the filter
phase and verification phase, respectively. As shown in
Figure 7, it illustrates that the execution time consumed in
the filter phase is longer than that in the verification phase.
Because the computational complexity of partitioning on-
tologies is lower than the computational complexity of
matching ontologies, our method can retain the efficiency.
As shown in Figure 8, in the filter phase, 70%–80% entities
participate in the calculation; in verification, only 50% en-
tities participate in the calculation. About 20%–30% entities
are reduced in the filter phase which also illustrates that our
method can retain the efficiency.

7. Conclusions

Aiming at solving the problems existing in large-scale on-
tology matching, a method of matching large-scale ontologies

based on filter and verification was proposed in this paper.
/e proposed method included two phases: filter phase and
verification phase. In the filter phase, ontology was partitioned
into several subontologies. It reduced the degree of hetero-
geneity and scale of ontology. Varieties of irrelevant entities
pairs were recognized beforehand, whose similarities were not
calculated in subsequent steps. In the verification phase,
extracted subontologies were matched and the alignments of
each subontology pairs were integrated as the final output.
Anatomy and Food were used for evaluation, and the ex-
periments demonstrated that the proposed method improved
the recall rate of large-scale ontology matching and retained
accuracy rate and efficiency. However, the proposed method
also has some drawbacks. Since the original structure of the
ontology was changed due to the extraction of subontology in
the filtering phase, the accuracy rate was slightly lower. In the
future, blank entities will be adopted to replace the original
entities to maintain the original structure of ontology and to
improve the accuracy rate of large-scale ontology matching.

Data Availability

/e Anatomy and Food ontology used in this article are
available from OAEI organization (http://oaei.
ontologymatching.org).

Conflicts of Interest

/e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

/is work was supported by /e National Key Research and
Development Program of China (Grant no.
2018YFB1701703) and Science and Technology Program of
Datong City (Grant no. 2019165).

References

[1] J. Euzenat and P. Shvaiko, “Classifications of ontology
matching techniques,” Ontology Matching, Springer, Berlin,
Germany, 2013.

[2] M. Cheatham and P. Hitzler, “String similarity metrics for
ontology alignment,” Advanced Information Systems Engi-
neering, Springer, Berlin, Germany, 2013.

[3] M. Pietranik and N. T. Nguyen, “A multi-attribute based
framework for ontology aligning,” Neurocomputing, vol. 146,
pp. 276–290, 2014.

[4] S. Hussain, J. D. Roo, and M. C. Jaulent, “Proof-based on-
tology matching: finding semantic similarities between an-
cestor graph structures,” in Proceedings of the IEEE Sixth
International Conference on Semantic Computing, Palermo,
Italy, September 2012.

[5] V. Mascardi, A. Locoro, and P. Rosso, “Automatic ontology
matching via upper ontologies: a systematic evaluation,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22,
no. 5, pp. 609–623, 2010.

[6] P. Arnold and E. Rahm, “Enriching ontology mappings with
semantic relations,” Data & Knowledge Engineering, vol. 93,
pp. 1–18, 2014.

Mathematical Problems in Engineering 9

http://oaei.ontologymatching.org
http://oaei.ontologymatching.org

[7] M.Mao, Y. Peng, andM. Spring, “An adaptive ontologymapping
approach with neural network based constraint satisfaction,”
Journal of Web Semantics, vol. 8, no. 1, pp. 14–25, 2010.

[8] D. Faria, C. Martins, A. Nanavaty et al., “Agreement maker
light results for OAEI 2014,” CEUR Workshop Proceedings,
vol. 1317, 2014.

[9] M. Vargas-Vera and M. Nagy, “State of the art on ontology
alignment,” Mobile Computing and Wireless Networks, IGI
Global, Philadelphia, PA, USA, 2015.

[10] J. Zhou, J. Liu, and H. Yang, “Dynamic ontology for engi-
neering knowledge management of complex product research
& development,” Journal of Computer-Aided Design &
Computer Graphics, vol. 28, no. 11, pp. 1957–1964, 2016.

[11] M. Pietranik and N. T. Nguyen, “A method for ontology
alignment based on semantics of attributes,” Cybernetics and
Systems, vol. 43, no. 4, pp. 319–339, 2012.

[12] T. H. Duong and G. S. Jo, “Enhancing performance and
accuracy of ontology integration by propagating priorly
matchable concepts,”Neurocomputing, vol. 88, pp. 3–12, 2012.

[13] Y. Wu, S. Yang, and X. Yan, “Ontology-based Subgraph
querying,” in Proceedings of the IEEE 29th International
Conference on Data Engineering, Brisbane, Australia, April
2013.

[14] G. Diallo, “An effective method of large scale ontology
matching,” Journal of Biomedical Semantics, vol. 5, no. 1,
pp. 44–62, 2014.

[15] W. Hu, Y. Qu, and G. Cheng, “Matching large ontologies: a
divide-and-conquer approach,” Data & Knowledge Engi-
neering, vol. 67, no. 1, pp. 140–160, 2008.

[16] Y. Lin, J. Zhang, Y. Ying et al., “FVBM: A Filter-Verification-
Based Method for finding top-K closeness centrality on dy-
namic social networks,” Web Technologies and Applications,
Springer, Berlin, Germany, 2016.

[17] W.Winkler,;e State of Record Linkage and Current Research
Problems, Technical Report, Statistics of Income Division,
Internal Revenue Service Publication, Washington, DC, USA,
1999.

[18] X. Su and J. A. Gulla, “An information retrieval approach to
ontology mapping,” Data & Knowledge Engineering, vol. 58,
no. 1, pp. 47–69, 2006.

[19] J. Hayes and C. Gutiérrez, “Bipartite graphs as intermediate
model for RDF,” in Proceedings of the 3rd International
Semantic Web Conference, vol. 3298, Springer, Hiroshima,
Japan, pp. 47–61, November 2004.

[20] M. Mohammadi, W. Hofman, and Y. Tan, “SANOM results
for OAEI 2019,” in Proceedings of the 14th International
Workshop on Ontology Matching, Auckland, New Zealand,
October 2019.

10 Mathematical Problems in Engineering

