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ABSTRACT
Entity alignment (EA), which aims to discover equivalent entities
in knowledge graphs (KGs), bridges heterogeneous sources of in-
formation and facilitates the integration of knowledge. Recently,
based on translational models, EA has achieved impressive per-
formance in utilizing graph structures or by adopting auxiliary
information. However, existing entity alignment methods mainly
rely on manually labeled entity alignment seeds, limiting their ap-
plicability in real scenarios. In this paper, a simple but effective
Uncertainty-aware Pseudo Label Refinery (UPLR) framework is
proposed without manually labeling requirement and is capable
of learning high-quality entity embeddings from pseudo-labeled
data sets containing noisy data. Our proposed model relies on two
key factors: First, a non-sampling calibration strategy is provided
that does not require artificially designed thresholds to reduce
the influence of noise labels. Second, the entity alignment model
achieves goal-oriented uncertainty correction through a gradual
enhancement strategy. Experimental results on benchmark datasets
demonstrate that our proposed model outperforms the existing
supervised methods in cross-lingual knowledge graph tasks. Our
source code is available at: https://github.com/Jia-Li2/UPLR/.
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• Computing methodologies → Knowledge representation;
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1 INTRODUCTION
Knowledge graphs (KGs), which store facts as triples in the form
of (subject entity, relationship, object entity) or (subject entity, at-
tribute, text value), play an essential role in today’s knowledge
graphs machine learning. Many tasks [6, 7, 9] rely on the quality of

∗ Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3511926

the knowledge graph to successfully conduct their operations. As
knowledge graph was initially proposed to enhance the searching
results of the search engines, it is widely used in Web applications
such as Google search. However, with different KGs usually ex-
tracted from different data sources or contributed by people with
diverse expertise, KGs are incomplete, severely hindering knowl-
edge graphs’ practicality.

In order to use the information obtained in various knowledge
graphs, the knowledge graphs are expected to be integrated. The
entity alignment task [37] is defined to identify entities that refer to
the same object in the real world from two knowledge graphs, which
plays a vital role in automatically integrating multiple knowledge
graphs.

Existing methods usually aim to solve the alignment problem in a
supervised manner through the artificially designed features [46] or
the entity representation learned from the KG embedding method
[8, 22, 24]. In addition, some semi-supervised methods [18, 38, 47]
are also proposed to improve the performance of supervised entity
alignment, such as names, attributes, and text descriptions with
auxiliary information data to help embed learning. Supervised or
semi-supervised alignment methods have significantly discovered
semantically related entities.

However, they rely on clean labeled entity pairs as the train-
ing set, and creating clean pre-aligned labeled entity pairs (seeds)
requires many resources. Significantly, the lack of label sets will re-
duce the performance of traditional entity alignment models when
applied in the real world since the knowledge graph usually con-
tains millions of entities, relationships, and triples. Unsatisfactory
alignment results will be obtained if the model does not have a
sufficient ratio of labeled entity pairs. For example, the reduced
seed seriously affects the model’s optimization of the geometric
arrangement of the vector space of the two knowledge graphs. In
DBP15KZH-EN, the model [29] Hits@1 is about 50% when the pro-
portion of seed alignment is 50%, whereas the model Hits@1 is
about 25% when the proportion of entity alignment seed of the
model is reduced to 10%.

In the process of entity alignment, in order to get rid of the
constraint of labeling entity (seed), the idea of using entity seman-
tic information to construct cross-lingual entity pseudo-label is
proposed to realize unsupervised entity alignment.

Due to two main challenges, its implementation is not easy:

• The newly proposed pseudo-label pairs inevitably contain
noise pairs. Through experiments (SE of Table 3), it is found
that the accuracy of the constructed pseudo-labels is only
58.6% in the DBP15KZH-EN dataset. It is not clear where the
noise is, and it is expensive and laborious to distinguish
whether the marked entity is noise or not. Therefore, the
designed model should reduce the impact of noise without
any supervision.
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• An unified model for joint training is designed to reduce the
impact of noise and cross-lingual entity alignment. On the
one hand, the noisy pseudo-label data set is beneficial to solve
the entity alignment problem in an unsupervised method.
On the other hand, a high-precision entity alignment model
is conducive to constructing a high-quality pseudo-label data
set. However, the difficulty in designing the expected uni-
fied model lies in building a high-precision entity alignment
model because it requires clean labeled entity pairs as train-
ing data, and noisy labels are also challenging to detect. In
addition, even if the influence of noise has been reduced, it is
hard to design feedback from reducing the influence of noise
to entity alignment. Therefore, designing a joint training
strategy is a challenging issue.

This paper proposes an Uncertainty-aware Pseudo Label Re-
finery (UPLR) framework that aligns entities without using any
cross-graph alignment label set. UPLR achieves higher performance
than state-of-the-art contrastive methods without using negative
pairs. It iteratively bootstraps the outputs of a network to serve as
targets for an enhanced representation. Moreover, UPLR is more
robust to the choice of label augmentations than contrastive meth-
ods; It is suspected that not relying on negative pairs is one of the
leading reasons for its improved robustness. Though previous meth-
ods based on bootstrapping have used pseudo-labels [14], cluster
indices [4], or a handful of labels [1, 13, 34], directly bootstrapping
the representations is proposed. Specifically, a set of pseudo-labels
denoting potential cross-graph entity pairs is created based on
semantic embeddings of entities. When extracting entity charac-
teristics, the GAT instead of the graph convolutional network is
used. It is an advantage that GAT can implicitly specify different
weights to different nodes in a neighborhood, avoiding the possi-
ble effects of noise propagation on nodes in the graph. The GAT
model further enhances the validity of the representative feature
vectors of the entity. Then, attention scores help us capture and
filter the importance of the remote nodes related to the central
node. Finally, a gate graph attention network (GateGAT) is trained
with pseudo-labeling seeds to update semantic embeddings of en-
tities and generate high-quality aligned entities. This process is
performed iteratively to gradually improve the pseudo-labeling
accuracy and obtain the final entity alignment result. Experiments
on three benchmark datasets demonstrate that the UPLR model in
a completely unsupervised environment has achieved better results
than supervised methods trained with manually labeled alignment
seeds.

Figure 1 illustrates the difference between traditional methods
and our proposed model. Top (Traditional Method): The traditional
method to implement the entity alignment model is to perform neg-
ative sampling based on the manual entity alignment seed. Bottom
(UPLR): Our proposed model to implement the entity alignment
model is to construct a pseudo-labeled data set by using seman-
tic embedding and directly input the unlabeled data set without
negative sampling.

The contributions of this paper are listed as follows:

• A new Uncertainty-aware Pseudo Label Refinery (UPLR)
framework is proposed, which adaptively mines confident
samples from unlabeled data that will be labeled into trusted
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Figure 1: A comparison of different learning frameworks.

“positive” (pseudo label) classes. A hybrid loss is applied
to both the augmented “labeled” examples and remaining
unlabeled data for “supervision”.

• Considering the existence of errors in the pseudo labels, a
novel non-sampling calibration strategy without any manu-
ally designed threshold is proposed to reduce the influence
of noisy labels on entity representation learning.

• The drawback with pseudo-labels is that if the domains are
not similar enough, it is not easy for us to obtain high-quality
pseudo-labels since the labeling noise might be too high to
hurt the performance. Therefore, a gradual enhancement
strategy is proposed to enhance the similarity of the two
domains.

2 RELATEDWORK
2.1 EA based on translational models
The TransE-based [2] method represents the entity by modeling the
triples involved, which provides fine-grained relational semantics of
knowledge. Among the various translational methods, BootEA [31],
and TransEdge [32] both utilize an iterative strategy to optimize
model performance, which is a key technology to improve per-
formance. NAEA [48] designs an attentional mechanism based on
TransE to learn neighbor-level representations through weighted
combinations of neighbor representations. KECG [15] combines
the advantages of TransE and GCN, just like GCN, it convolves all
the adjacent information of the entity while keeping the TransE
translation between the head, relationship, and tail. PRASE [25]
establishes corresponding filtering rules through the pre-training
model. Furthermore, the adversarial learning of AKE [16] and SEA
[23] based on TransE fails to achieve the desired effect, which is due
to the high heterogeneity of KG that makes it difficult to convert
from one KG to another through linear mapping functions similar
to multilingual lexical space transformations.
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2.2 EA based on graph structures
The GCN-based method GCN-Align [37] represents the entity by
recursively aggregating the features of its neighbors, which utilizes
the global KG structure. AliNet [33] shows the effectiveness of the
multi-hop neighbors. HyperKA [28] maps the entity embedding
obtained by GNN to the hyperbolic space for entity alignment. REA
[24] has designed noise detection and noise perception to improve
entity alignment performance. DGMC [8] employs synchronous
message passing networks to iteratively re-rank the soft corre-
spondences to reach a matching consensus in local neighborhoods
between graphs. RREA [22] uses relational reflection transforma-
tion to obtain relation-specific embeddings for each entity in a more
efficient way. DINGAL [45] expands the coupling distance between
the parameter matrix in GCN and the topology of the underly-
ing graph. Dual-AMN [19] not only models both intra-graph and
cross-graph information, but also greatly reduces computational
complexity. Although good results have been achieved, high-quality
entity alignment seed are required. If the proportion of seeds is
reduced, its performance will be greatly reduced.

2.3 EA with auxiliary information
In addition to graph structure information, some studies also add
entity features based on auxiliary information into the process
of entity encoding, including semantic embedding [39], attributes
[18, 35, 38, 47], images [17] and description [46]. GM-Align [43],
RDGCN [39] and HGCN [40] are models that combine semantic
embedding of entity names. They distinguish different neighbors
by initializing the entity representation. Therefore, their perfor-
mance is better than the original GCN-align model [37]. AttrGNN
[18], CEAFF [47] and EPEA [38] are models that combine entity at-
tribute information. In the encoding process of the above methods,
entity embedding is optimized by adding entity attribute infor-
mation. However, additional information is not always available;
thus, our proposed model solves entity alignment from a different
perspective.

2.4 Model Learning from Pseudo-labelling
Pseudo-labelling has been mainly adopted by methods [14, 26, 27]
based on deep learning. For unlabelled samples, the probability dis-
tribution of the model prediction is used as an indicator for pseudo-
label the data [14]. By using the simple and efficient method, the
system can easily add more data to help re-train the model. He and
Sun. [11] proved that using a batch of samples with the highest
prediction probability of the model can help enhance the perfor-
mance of the model. For pseudo-label based methods, Lee et al.
[14] and Xie et al. [42] generated pseudo labels for unlabeled data
and then added them to train with labeled samples for enlarging
data quantity jointly. In this regard, the quality of the pseudo label
is vital. The difference among these methods is how to promote
the accuracy of generated pseudo labels: Lee et al. [14] only uti-
lized the high confidence pseudo labels by setting a threshold and
avoided using the low-confidence label that may introduce the label
noise; Xie et al. [42] refined the generated pseudo labels round by
round with the introduced noisy student model, which is based
on the assumption that the model would learn the essential and
distinct features under the noisy input of each round and gradually

generate more precise pseudo labels. Our proposed model employs
pseudo-labeling but inherits the spirit of label propagation. To avoid
exhaustive labeling of unobserved samples, the graph structure in-
formation for selecting candidates that can be reliably labelled is
exploited. Unlike previous studies, we propose a new loss function
that can be used to efficiently train neural network models from
pseudo-labeled and unlabeled data.

3 UPLR
Our proposed model builds a gate graph attention network based on
the graph attention network and further develops a non-sampling
calibration strategy combined with a gradual enhancement strat-
egy to optimize the final knowledge graph embedding. Figure 2
shows the framework of the model, and our proposed model will
be described in more detail below.

3.1 Problem Formulation
Formally, a KG is represented as G = (E,R,T ) and E, R, T are
the sets of entities, relations and triples respectively. Let Gs =
(Es , Rs , Ts ) andGt = (Et , Rt , Tt ) be two cross-lingual knowledge
graph to be aligned. That is, an entity in Es may have its counterpart
in Et in different language or in different surface names. As a
starting point, an equivalent cross-lingual knowledge graph entity
pairs between Es and Et based on the semantic embedding as a
pseudo-labels set L = {(es , et ) |es ∈ Es , et ∈ Et } is established, and
an entity alignment task aims to automatically find more correct
equivalent entities pair using the entity alignment seed (pseudo-
labels) is defined.

3.2 Gate Graph Attention Networks
In this section, we adapt the non-local model of [41] to introduce
gate to the Graph Attention Networks (GAT) [36] framework, en-
abling the entity alignment model to efficiently model relationships
between widely separated spatial regions. We call the proposed
model Gate Graph Attention Networks (GateGAT) because of its
gate module [33] (see Figure 2).

GAT can be interpreted as performing the propagation of the
attention message and updating on nodes. At each layer, the node
features ei ∈ G (G = (e1, e2, . . . , ei , . . . , en )) will be updated by its
attention neighbor messages to e ′i ∈ G as follows:

e′i = σ
©«

∑
j ∈{i }∪Ni

αi jW ei
ª®¬ (1)

where σ is a non-linear activation,Ni represents the one-hop neigh-
bor set of node s, andW is a trainable parameter. The attention
coefficient αi, j is computed as follows, with parameters of a weight
vectorW . Moreover, to further explore the translation informa-
tion for relations based on triples, and inspired by TransE [2], our
designs a relational translation matrixMr

i, j as follows:

αi, j = so f tmax j
(
ei, j

)
=

exp
(
ei, j

)∑
k ∈Ns exp (eik )

(2)

where

ei, j = LeakyRelu
(
Mr
i, jW

T [
Wei ∥Wej

] )
, (3)
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Figure 2: The overall framework of the UPLR. The dotted line represents the process of initializing the pseudo label.

Mr
i, j = rir

T
j
(
ri , r j ∈ R

)
, (4)

where R is the set of r relations in G.
The entity features from the previous hidden layer e ′i ∈ R

N×N

are first transformed into two feature spaces f , д to calculate the
attention, where

βi, j =

exp
(
f
(
Wf e

′
i

)T
д
(
Wдe

′
j

))
∑N
i=1 exp

(
f
(
Wf e

′
i

)T
д
(
Wдe

′
j

)) , (5)

and βi, j indicates the extent to which the model attends to the i
th location when synthesizing the j th region.Wf ∈ RN×N ,Wд ∈

RC×N . Here, C is the number of channels, N is the number of
feature locations of features from the previous hidden layer. The
output of the attention layer is o = (o1,o2, . . . ,oi , . . . ,on ) ∈ RN×N ,
where

oi =
N∑
i=1

βi, j
(
f
(
e ′i
)
− д

(
e ′j

))
, (6)

θi = siдmoid (Moi + b) , (7)

where θ as the gate to control the combination of both source entity
and target entity. M and b are the weight matrix and bias vector,
respectively. Finally, the new vector of the node is obtained by
inputting the node ei vector and the new information vector of
node oi into Equation (8).

e
(l+1)
i = (1 − θi ) ⊙ o

(l )
i + θi ⊙ e

(l )
i (8)

where (1 − θi⊙) and θi⊙ are working as selectors to choose in-
formation to be forgotten and remembered, respectively. e(l+1)i is
the embedding of node i, which is the output feature vector of the
(l+1)-th GateGAT layer with respect to node i .

3.3 Graph Interactive Divergence
In order to mine parallel data without supervision signals, we use
graph interaction divergence to measure the pair of source entities
and target entities. We aim to construct a new metric that can
measure the difference score between a pair of entities (es , et ). If two
entities are similar, we expect their differences to be insignificant.
We construct the divergence by calculating the distance between
the source entity and the target entity, which are defined as follows:

D(es , et ) = cos(es , et ) (9)
where D(., .) is the divergence between two entities, cos(., .) is the
cosine distance, es is the source entity, and et is the target en-
tity. To calculate the divergence of the cross-lingual knowledge
graph neighbor entity nodes of the source entity and the target
entity, respectively, and construct the graph interaction divergence
GID(es , et ) between the entities, which is defined as follows:

GID(es , et ) = D(es , et ) − α div(D)(es , et ) (10)
where α represents a hyper-parameters, and

div(D)(es , et ) =
∑

p∈N (et )

D(es ,p) +
∑

q∈N (es )

D(et ,q) (11)

where N (.) is the set of neighbor nodes of the entity, p and q repre-
sent the entity neighbor nodes.

3.4 Building Entity Alignment Seeds
In the Unsupervised algorithm for Building Entity Alignment seeds
(UBEA) algorithm (Algorithm 1), the key idea is to calculate the
graph interaction divergence of cross-lingual knowledge graph en-
tity pairs. An unsupervised algorithm is created to build a pseudo-
labels set based on the graph interaction divergence. Entity sets
es and et are constructed in the source knowledge graph Es and
the target knowledge graph Et , respectively. The initial entity em-
bedding is obtained from the initial semantic embedding, and then
the similarity of cross-lingual knowledge graph entities through
the graph interaction divergence is measured. For each pair of the
entities (es , et ), (et , es ), our constructs a rule (6 and 7 of Algorithm
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Algorithm 1 Unsupervised algorithm for Building Entity Align-
ment seeds (UBEA)
Input: Es , Et , SE(Semantic Embedding)
//SE: GloVe embedding;
Output: PLS //Pseudo-Labels Set
//Construct pseudo-labels set through graph interaction divergence.
1: PLS = [ ]
2: for es in Et and es in Et do
3: es, et = SE[es ], SE[et ]
4: A=sorted(GID(es, et))
5: B=sorted(GID(es, et))
6: for es , et in A do
7: if B[es ][1] = es : then
8: PLS .append[es , et ]
9: end if
10: end for
11: if (es , et ) in PLS then
12: Es .remove(es )
13: Et .remove(et )
14: end if
15: end for
16: return PLS

1) to enhance the entity label pair (es , et 1),(es 1, et ) (1 represents
the 1-ranked entity), and aggregate all the cross-lingual knowledge
graph entity pairs

(
e1s , e

1
t
)
mined into a pseudo-labels set. An outline

of the algorithm is shown in Algorithm 1.

3.5 Non-sampling calibration strategy
As KGs provide semantic relations between entities, it is natural to
incorporate the semantics of the relational facts into entity mod-
eling. As discussed in Section 2, GCN needs the structures of two
KGs to be highly similar or relation alignment for entity alignment.
Here, we borrow the translational assumption from TransE [2]. The
detailed steps are as follows:

r =
1
|Tr |

∑
(s,t )∈Tr

(es − et ) (12)

where Tr is the subject-target entity pairs of relation r . Then the
following relation loss for refinement is minimized:

Lr =
∑
r ∈R

1
|Tr |

∑
(s,t )∈Tr

∥es − et − r∥ (13)

where R is the set of the total relations in the KGs.
An efficient optimization method without sampling is introduced

in this section, which is the basis for learning our proposed model
from the whole heterogeneous feedback data. The observed inter-
actions are somewhat limited for pseudo-labeled data, while the
number of unobserved examples is high. To learn model param-
eters, He and Sun [12] introduce a weighted regression loss that
associates confidence to each prediction in the implicit data matrix.
Following this idea, for a batch of pseudo labels PLS(es , et ) and the
whole entity set E, their loss of a matrixME is:

Algorithm 2 Iterative Learning (IL)
Input:
(1) Es and Et
(2) PLS //come from UBEA(Algorithm 1)
(3) total number of iterations T
1: while t < T do
2: E = GateGAT(Es , Et , PLS)
3: PLS = UBEA(Es , Et , E)

// Until the iteration reaches T.
4: end while
5: return PLS

Ls =
∑
es ∈Ps

∑
e ∈E

Wesv (M(es ) −M(e))
2

=
∑
es ∈Ps

∑
e ∈E

Wesv

(
M2

(es ) − 2M(es )M(e) +M
2
(e)

) (14)

Lt =
∑
e t ∈Pt

∑
e ∈E

We tv (M(es ) −M(e))
2

=
∑
e t ∈Pt

∑
e ∈E

We tv

(
M2

(e t ) − 2M(e t )M(e) +M
2
(e)

) (15)

whereW is a weight matrix to be learned. The time complexity
of computing this loss is O(|P | |E |d). The final objective of UPLR is
the combination of the relation loss and without negative sampling
loss, aiming at injecting relation semantics to the preserved graph
structures:

LN = λ(2Lr − Ls − Lt ) + b (16)

where λ and b are hyper-parameters.

3.6 Iterative Learning
Based on the construction algorithm of the unsupervised entity
alignment seed (Algorithm 1), a gradual enhancement strategy is
proposed to iteratively build the entity pseudo-label set and learn
the knowledge graph representation (Algorithm 2). The goal is to
optimize the pseudo-labels set and improve the mapping between
the two spaces. In Algorithm 2, the pseudo-labels set and knowledge
representation of entity are optimized by iterating T times. In the
iteration process, updating the pseudo-labels set from the new
training model every iteration will be updated (Algorithm 2, line 7).

4 EXPERIMENTS
DBP15K [30] contains three datasets built from DBpedia, namely
DBP15KZH-EN (Chinese-English), DBP15KJA-EN (Japanese-English)
and DBP15KFR-EN (French-English). Each dataset has 15 thousand
reference entity alignment, and the relation alignment is partially
known.

4.1 Evaluation Metrics
Like previous works [3, 5, 15], we use Hits@k (Hk) and Mean Re-
ciprocal Rank (MRR) to evaluate the effectiveness of our proposed
model, where aHits@k (Hk) score (higher is better) is computed by
measuring the proportion of correctly ranked cross-lingual knowl-
edge graph entity pairs ranked in the top k .
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Table 1: Statistics of the DBP15K

Datasets Entities Relations Triples

DBP15KZH-EN
ZH 66,469 2,830 153,929
EN 98,125 2,317 237,674

DBP15KJA-EN
JA 65,733 2,043 164,373
EN 95,680 2,096 233,319

DBP15KFR-EN
FR 66,858 1,379 192,191
EN 105,889 2,209 278,590

4.2 Implementation Details
The configuration is:Attention-heads= 2, α = 0.5, γ = 3 , lr = 0.005,
Depth = 3, Node-hidden=125, Rel-hidden = 125, epoch = 6, T=5. In
order to utilize entity names in different KGs for better initialization,
they [39] uses Google Translate to translate Chinese, Japanese, and
French entity names into English, and then use pre-trained English
semantic embedding GloVe.840B.300d to construct the input entity
representations for the primal graph. Note: Google Translate can
not guarantee accurate translations for named entities without any
context. We use Tensorflow along with Python 3.6 to perform our
experiments. All experiments are executed on a Linux machine
with processor Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz, 256GB
RAM, and GeForce RTX 1080Ti GPU.

4.3 Settings of Experiments
In order to analyze the performance of the model, we selected some
classic and state-of-the-art entity alignment methods as baselines
in our experiments (the parameters of the baseline models are all
default parameters set in public resources). Our proposed model
evaluates the performance of the model from three aspects: (1) Main
results; (2) Ablation study; (3) Auxiliary Experiments.

4.4 Main Results
Our proposed model has omitted some methods that require auxil-
iary entity information that is not used by others (see Section 2).
Although the semantic information in the process of unsupervised
entity alignment is added, we do not add semantic information to
knowledge representation. Therefore, there are three types of com-
parative experiments designed: Graph structure, Graph structure +
Iterative learning, and Unsupervised.

Only use graph structures.
Our proposed model compares the differences in methods based

on graph structural features, which includes nine approaches. Table
2 shows the performance comparison of the basic graph structure
methods. Obviously, on all evaluation indicators, the model’s per-
formance is consistently rated as the best among all elementary
graph structure methods. In particular, compared with the state-of-
the-art method RREA, the method on the DBP15KZH-EN dataset im-
proves by 12.6% onH1, and the method on the DBP15KJA-EN dataset
increases by 13.8% on H1, and the method on the DBP15KFR-EN
dataset improves by 18.0% on H1. The main reason is that the un-
supervised entity alignment algorithm establishes more seeds for
entity alignment, and the information between knowledge graphs
across languages can be better optimized through unsampled loss
functions.

In addition, our proposed model unsupervised entity alignment
algorithm can significantly improve the performance of all methods
on all datasets. We observe that the performance gap of textual
methods in different datasets is much more important than that of
structural methods. The performance of the model has increased
most in the French dataset. This is because French words are easily
mapped into English when constructing entity alignment seeds
based on semantic embeddings. All in all, UPLR breaks the up-
per limit of the performance of the purely structure-based entity
alignment method, which proves that the design is efficient.

Use graph structure and iterative learning.
Our proposed model outperforms the eight models using only

graph structures and iterative learning models and achieves the
best results for all datasets. Specifically, BootEA is a transe-based
model with better performance than some models that only use
the graph structure because it uses a bootstrap strategy to expand
entity alignment seeds iteratively. This demonstrates that the itera-
tive strategy can significantly improve the performance of entity
alignment.

Our proposed model adds an iterative strategy to improve H1
by at least 6%. Our proposed unsupervised method enables better
knowledge representation for KGs, thereby improving the entity
alignment performance of the model.

Unsupervised.
Compared with other unsupervised entity alignment methods,

Our proposed model has certain advantages. This method is im-
proved on the DBP15K data set, which confirms that the seed based
on semantic embedding can improve the performance of unsuper-
vised entity alignment more effectively than the seed based on im-
age information. In reality, image information is often not directly
obtained, or it is not easy to get high-quality image-entity transla-
tion pairs. In addition, although SEU has achieved good results, it
solves the task of entity alignment through static embedding (se-
mantic embedding). Due to the difference between static embedding
and real data (We discuss the performance of the static embedding
based model in the SE in Table 3), the model performance is not as
good as our proposed model. Therefore, this method is considered
one of the most effective unsupervised entity alignment methods.

4.5 Ablation Study
In the above experiments, the overall effectiveness of the method
is proved. In this section, we demonstrate the validity of each com-
ponent of UPLR (GateGAT+LN +P+IL). Ablation studies were con-
ducted from multiple aspects, and the results are shown in Table
3. Ls represents a margin-based scoring function (this is a com-
monly [39] used method for calculating loss functions in supervised
learning), GAT represents graph attention network, GateGAT rep-
resents gate graph attention network, LS represents supervised
loss function [39] requiring seeds, IL represents iterative learning,
LN represents our non-sampling calibration strategy, S represents
entity-aligned seeds (seed accounts for 30% of the total dataset) and
P represents pseudo-label dataset. SE stands for semantic embed-
ding (it comes from GloVe.840B.300d, and is detailed in (4.2)). In
experiments requiring S, the H1 value of GateGAT was higher than
that of GAT H1. However, the H10 value of GateGAT is slightly
lower than GAT H10, which may be because Gate reduces the
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Table 2: Performance on DBP15K

Models ZH-EN JA-EN FR-EN
H1 H10 MRR H1 H10 MRR H1 H10 MRR

Graph structure
MTransE [5] 0.209 0.512 0.310 0.25 0.572 0.360 0.247 0.577 0.360
KECG [15] 0.478 0.835 0.598 0.49 0.844 0.610 0.486 0.851 0.610
MuGNN [3] 0.494 0.844 0.611 0.501 0.857 0.621 0.495 0.870 0.621
RSN [10] 0.508 0.745 0.591 0.507 0.737 0.590 0.516 0.768 0.605

GMNN [44] 0.539 0.826 - 0.433 0.681 - 0.465 0.728 -
AliNet [33] 0.539 0.826 0.628 0.549 0.831 0.552 0.645 0.852 0.657

HyperKA [28] 0.572 0.865 0.678 0.564 0.865 0.673 0.597 0.891 0.704
MRAEA(Basic) [21] 0.638 0.886 0.736 0.646 0.891 0.735 0.666 0.912 0.765
RREA(Basic) [22] 0.715 0.929 0.794 0.713 0.933 0.793 0.739 0.946 0.816

Dual-AMN(Basic) [19] 0.731 0.923 0.799 0.726 0.927 0.799 0.756 0.948 0.827
UPLR(Basic) 0.841 0.965 0.887 0.851 0.974 0.898 0.919 0.991 0.948

Graph structure + Iterative Learning
BootEA [31] 0.629 0.847 0.703 0.622 0.854 0.701 0.653 0.874 0.731
NAEA [48] 0.650 0.867 0.720 0.641 0.873 0.718 0.673 0.894 0.752

TransEdge [32] 0.735 0.919 0.801 0.719 0.932 0.795 0.710 0.941 0.796
MRAEA(Iter) [21] 0.757 0.930 0.827 0.758 0.934 0.826 0.781 0.948 0.849

DGMC [8] 0.801 0.874 - 0.848 0.897 - 0.933 0.960 -
RREA(Semi) [22] 0.801 0.948 0.857 0.802 0.952 0.858 0.827 0.966 0.881

Dual-AMN(Semi) [19] 0.808 0.940 0.857 0.801 0.949 0.855 0.840 0.965 0.888
RNM [49] 0.840 0.919 0.870 0.872 0.944 0.899 0.938 0.981 0.954

Unsupervised
PRASE [25] 0.651 - - 0.726 - - 0.757 - -
EVA [17] 0.761 0.907 0.814 0.762 0.913 0.817 0.793 0.942 0.847

SEU(w) [20] 0.816 0.923 0.854 0.865 0.952 0.896 0.953 0.989 0.967
UPLR 0.902 0.970 0.927 0.912 0.978 0.937 0.967 0.994 0.974

Table 3: The ablation experiment of each component of the
model.

ZH-EN JA-EN FR-EN
H1 H10 H1 H10 H1 H10

SE 0.586 0.710 0.664 0.784 0.825 0.897
GAT+LS + S 0.707 0.931 0.705 0.935 0.729 0.952

GAT+LS + S + I L 0.798 0.946 0.793 0.948 0.819 0.962
GateGAT+LS + S + I L 0.807 0.940 0.799 0.946 0.840 0.966

UPLR(w/o LN ) 0.846 0.947 0.883 0.961 0.951 0.990
UPLR(w/o Gate ) 0.893 0.971 0.906 0.979 0.959 0.994
UPLR(w/o IL) 0.841 0.965 0.851 0.974 0.919 0.991

UPLR 0.902 0.970 0.912 0.978 0.967 0.994

weight of the noise entity, thereby increasing the critical metric H1,
whileH10 is slightly lower. As discussed in Section 3, UPLR has two
novel designs : (1) Gate and (2) LN . From Table 3, the performance
of both designs is greatly improved. These ablation experiments
show that the design is meaningful and has improved significantly.

4.6 Auxiliary Experiments
4.6.1 The impact of pseudo-labeling. Our proposed method con-
structs a new pseudo-labels set (The results are shown in Figure
3(a)) for DBP15K by random selection.

The randomly selected parameters are based on SE in Table
3. Our proposed method constructs a pseudo-labels set of cross-
lingual knowledge graph entity pairs with DBP15KZH-EN: 58.6%,
DBP15KJA-EN: 66.4%, and DBP15KFR-EN: 82.5% accuracy, respec-
tively. The results are presented in Figure 3. Although the randomly
selected pseudo-labels set and the pseudo-labels set calculated by
semantic embedding have the same number of correct label entity
pairs and the same number of incorrect label entity pairs, their final
results are different. The performance of the randomly selected
pseudo-labels set deteriorates in the three languages pairs. This
experiment found that with the same correct labels, entities with
different types of mislabeled have different contributions to the
model, and mislabeled entity pairs obtained through semantic em-
bedding can play a positive role in the entity alignment process.
Therefore, the model’s good performance depends not only on the
algorithm but also on the important cross-lingual knowledge graph
entity pairs discovered through semantic embedding.

4.6.2 The impact of different ratios of semantic embedding. In prac-
tical applications, constructing entity pseudo-labels by semantic
embedding consumes many computing resources, especially for
large-scale KGs. We hope that this model can maintain a good per-
formance under the condition of limited semantic embedding. The
results are presented in Figure 3(b). In order to examine the impact
of semantic embedding with different ratios on the performance of
the entity alignment model, Our proposed model sets up multiple
sets of experiments. To investigate the performance with different
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Figure 3: Auxiliary Experiments

pre-aligned ratios, we set the ratios from 0.1 to 1. It is noted that
if we only use a 0.1 ratio of semantic embedding information is
used, our proposed model can surpass AliNet [33] (AliNet uses 30%
seed). The growth rate of the model performance is the highest
when semantic embedding with 40% coverage is added to the model.
With more semantic embedding added to the model, the model per-
formance increases slowly, although the model can be enhanced.
These results show that the unsupervised entity alignment model
is effective. A small amount of semantic embedding can achieve
good results for entity alignment tasks without entity alignment
seeds.

4.6.3 The impact of different epoch. In addition to our proposed
architecture, the non-sampling calibration loss is one of our main
contributions, and to verify its effectiveness, we compare DBP15K
datasets of different epochs in different languages. The result is
shown in Figure 3(c).

It is observed that our proposed non-sampling calibration strat-
egy can make the model converge faster and achieve the best per-
formance. In the experiment, the supervised loss function (RREA
[22] uses 3000 epochs) usually requires thousands of epochs to
converge. In the DBP15KZH-EN data set, our proposed model with
a non-sampling calibration strategy is 5.6% higher than the model
with a supervised loss function (Table 3, UPLR (w/o LN )). Experi-
mental results show that our proposed non-sampling calibration
loss function significantly improves the convergence speed without
affecting the accuracy.

4.6.4 The impact of different iteration. In order to verify the ef-
fectiveness of this method, the impact of different iteration times
on performance is further analyzed. The result is shown in Fig-
ure 3(d). It is observed that the H1 score of our model increases

with the number of iterations. This observation is consistent with
our expectations because pseudo-labels are continuously refined
through iterations. The UPLR model will quickly converge to the
optimal solution if an appropriate number of iterations is selected.
However, if the number of iterations is too large, the algorithm can-
not converge. However, UPLR still shows satisfactory performance
without iteration compared with other methods. It is noted that our
proposed model has exceeded the performance of SEU [20] (SEU
uses 10 iterations) without iteration.

5 CONCLUSIONS
We break the dependence of entity alignment models on seeds, and
we propose an uncertainty-aware pseudo label refinery (UPLR) for
entity alignment. We find that the challenge of solving the entity
alignment task using pseudo-labels is to reduce the impact of noise
on the model. We propose a non-sampling calibration strategy and
a progressive enhancement strategy to reduce the influence of noise
on the model. The non-sampling calibration strategy can reduce
the impact of noise on the model without artificially designing a
threshold, and can effectively reduce the impact of noise on the
model in model optimization. The gradual enhancement strategy
can enhance the similarity of the two domains, so that high-quality
pseudo-labels can be generated. In future work, we will apply our
proposed model to more datasets.
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