
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 6

Optimizing Ontology Alignment for Nuclear

Information System

M.Ramesh

PG Scholar, Software Engineering, Indian Institute of Information Technology, Srirangam,

Tiruchirappalli, Tamilnadu, India.

P.Karthikeyan

Assistant Professor, Department of CSE/IT, BIT Campus, Anna University,

Tiruchirappalli, Tamilnadu, India.

Dr.N.Madurai Meenachi

Scientific Officer, Resource Management Group, Indira Gandhi Centre for Atomic Research,

 Kalpakkam-603102, Tamilnadu, India.

Dr. M.Sai Baba

Associate Director, Resource Management Group, Indira Gandhi Centre for Atomic Research,

 Kalpakkam-603102, Tamilnadu, India.

Abstract – Ontology is the interrelationship of entities which is

used for searching hierarchical data. It is the foundation of the

semantic web that plays an important role in enabling

interoperability between applications. Ontology mapping is an

essential part of the semantic web which have role of finding

alignments among the entities of the given ontologies. Ontology

mapping is a necessary step for establishing interoperation and

knowledge sharing among semantic web applications. The

proposed methodology for mapping the ontologies gives more

efficiency than existing methodologies. It classifies the given

input into classes, subclass and properties using OWLAPI. It

matches using S-Match technique in memetic algorithm to get

optimized results. As shown by experiments, this approach gives

best results than existing methods.

Index Terms – ontology alignment; memetic algorithm; smoa

distance; heterogenity problem.

1. INTRODUCTION

The general definition of ontology is an interrelationship of

entities which is representation of entities along with the

relation and properties. It used for searching hierarchical type

of data. Ontology plays an important role in enabling the

interoperability between applications [1]. This ontology

defines same entity with different names which causes

heterogeneity problem for semantic interoperability between

applications. To address this problem, ontology alignment

plays an important role for increasing and utilization of

semantic web based applications. But it is difficult to align

ontologies when the size is considerably large [2]. Hence,

various ontology alignment systems have been created in

recent years. Each system uses different methodologies for

calculating similarity between entities from ontologies. Most

of the similarity measure could not provide best results

independently, so different types of similarity measures are

together aggregated to align their results. This process is called

meta-matching which can also be viewed as an optimization

problem.

This optimization problem is addressed by many approaches

like Evolutionary Approach [3]. This system has been

implemented to solve interoperability among heterogeneous

system. This ontology alignment process is performed by

calculating similarity values among the concepts of different

ontologies in terms of lexical, linguistic and structural

similarity approaches [4]. The existing genetic algorithm has a

problem of knowledge domain. Hence this paper tries to solve

this issue using memetic algorithm [5] by different similarity

matching technique. This algorithm extends the genetic

algorithm with the local optimization methods (e.g., stochastic

hill climbing and edge count method) to improve the quality of

the solution of problems. The main purpose of this ontology

alignment is to solve semantic heterogeneity problem which is

main obstacles of semantic interoperability. The system

implementation section describes how our proposal calculates

ontology alignment in more suitable and in efficient way than

genetic algorithm.

2. RELATED WORK

Recently, the ontology alignment problem has been risen and

its complexity to develop automatic and semi-automatic

ontology alignment systems [1]. The first one among these

systems is PROMPT [10]. It is a semi-automatic matching

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 7

system which gives a set of suggestions to be used for

matching classes and properties in mapping a file. The

drawback of this system is it does not produce its output as

alignment. The Automatic Ontology matching system is Cupid

[11], it calculates the mapping between two ontologies by

selecting pair of entities with an aggregated similarity value

greater then threshold. This similarity is computed with

weights and threshold manually. Since then, various types of

automatic ontology alignment system have been implemented

by using different techniques. Among these systems, recent

systems are MapPSO [12], ASMOV [13], CODI [14],

COMA++ [15] and so on.

The memetic aggregation of similarity measures [16] tries to

solve semantic heterogeneity problem for different ontologies

with same information. To get optimized results, the author

used different similarity measures. This method will aggregate

the similarity measures without using a prior knowledge about

ontologies under reference alignment. It yields good results in

terms of alignment quality when related to Ontology

Alignment Evaluation Initiative. The No Reference alignment

technique was implemented using UIR (Unanimous

Improvement Ratio) and MatchFMeasure [17]. This method

prevents three defects from the previous methods. It used

rough evaluation metric on no reference alignment for

appropriate f-measure and UIR. It gives the optimized results

with respect to state of the art ontology matching systems.

For matching two large ontologies many techniques can be

used such as parallel matching, search space and self-tuning

[18]. A cluster based approach [19] will break the matching

problem into smaller matching problems. It first uses structure

based clustering approach for partition each schema graph into

clusters. Then this system efficiently determines the similar

type of clusters between every set of clusters which is a small

matching task. This technique used to COMA++ to solve the

individual matching tasks and then combine their results.

In this Coincidence Based Scoring [20] approach, the given

ontologies are interpreted as types of graphs embedded in the

metric space in which the coincidence of the structure of the

two ontologies is formulated. By using this formulation we can

define mechanism to score mappings. The scoring is used to

extract good alignment among the number of sets. The three

approaches used in this paper are Straight Forward, Genetic

Algorithm and Based on Approximative Approach. The

Straight forward finds the optimum alignment and checks for

all possible alignment so it takes more runtime and also it has

limited to small ontologies. But in Genetic Algorithm, it shows

some effectiveness for some certain test collections. The final

Approximative approach will apply a maximum weight

matching method for ontology mapping that would be quite

inefficient because it will lose inherent structure and

interrelationships of both ontologies. The idea of coincidence

is a measure for evaluating how coincident the two ontologies

as a whole.

3. PROPOSED METHOD

The proposed methodology comprises of three steps namely

Preprocessing, Optimization module and Alignment module.

The first step will preprocess and categorize input files. The

second step will do optimization by memetic algorithm. The

final step will align the output files with result.

3.1. Preprocessing

The first step of the work is preprocessing of the given input

ontology files. The Input ontology file is developed by a

knowledge expert using protégé Tool which is open source

tool for creating Ontology OWL files. The Input contains

Classes, Properties, Instance etc., For every classes there are

Superclass, Subclasses for it. Property contains Object

Property, Data Property etc., The preprocessing step categorize

the each of the classes and properties in Ontology.

After preprocessing step, the given input is converted into

small tree structure format like class, its super class and its sub

class. All the inputs are converted into this type. It will give

the best matching result compared to the existing normal

String Matching. For selecting the inputs from the given

dataset, we use Memetic algorithm which has few steps for

selecting the classes and providing the optimum solution.

3.2. Optimization Module

In this module, Memetic algorithm was used for giving the

optimized results in the ontology matching [6]. It gives

different types of results for various types of domains. In this

paper, nuclear domain is taken as an input domain for which

nuclear ontologies are created using protégé tool. This

algorithm is the extended version of the GA (Genetic

Algorithm) with which includes Stochastic Hill Climbing

search for local refining process.

Fig. 1. Architecture of the proposed system.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 8

The process of creating an initialized population is called as

Initialization. The population is usually random generated and

also it can be at any size. The created population is called as

genetic population. The crossover is like selection also known

as Convergence operation. It pulls population towards the

local minimum/maximum. The Mutation is also known as

Divergence operation. It breaks one or more members of

population of the local minimum/maximum.

The fitness function is used for finding the distance between

the two concepts in the ontologies. Here we use SMOA

(String Metrics for Ontology Alignment) to calculate distance

[7]. It is a well performed method especially made for

calculating the similarities of entities in ontology alignment.

For example, two given strings s1 and s2, the SMOA distance

between the given string can be defined by following

equation:

 SMOA(S1,S2)=Comm(S1,S2)- Diff(S1,S2)+ WinkImpr(S1,S2)

Where Comm(S1,S2) stands for the Commonality between S1

and S2 , Diff(S1,S2) is the difference and WinkImpr(S1,S2)

for improvement of the result.

The local search process uses stochastic hill climbing

algorithm. The strategy of this algorithm is to iterate the

process of randomly selecting a neighbor for an optimal

solution and only accept if it results in improvement.

3.3. Alignment Module

The alignment is normally calculated on the basis of two

measures commonly known as precision and recall. The

precision is the average of threshold with calculations of total

number of classes and number of matching classes.

Precision, 𝑃 =
|𝑀𝑐 ∗ 𝐴𝑣𝑔𝑇|

𝑇𝑐
+
|𝑈𝑀𝑐|

𝑇𝑐

The recall is the average value of the predetermined values

with some calculations described below.

Recall, 𝑅 =
|𝑀𝑐 ∗ 𝐴𝑣𝑔𝑃|

𝑇𝑐
+
|𝑈𝑀𝑐|

𝑇𝑐

Where Mc is the number of matching class, AvgT is the

average of Threshold values, Tc is the total number of classes,

UMc is number of unmatched class and AvgP is the average

of prescribed value.

The F-measure (Final Measure) is the expected output result

which is the average of Precision and Recall.

Fmeasure, 𝐹𝑚 =
|𝑃 + 𝑅|

2

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup

To implement this system for ontology matching process, we

conducted experiments which implemented with Java Server

Pages using OWLAPI [8], INIS thesaurus [9] and Java String

Similarity Functions. The experiment methodology works as

follows. First each classes or entities are extracted from the

two given ontologies which are named as concepts. The

preprocess step will categorize class with their subclass and

properties. Then for each string similarity algorithm in the

package, we calculate a similarity score for each pair of classes

that belongs to two ontologies respectively. We extract

alignment results using memetic algorithm [5]. The

experiments were conducted on Intel Core i5 4570 3.20 GHz

processors and 4 GB RAM under windows 8. The data set

comprises of nuclear ontologies. The inputs are created using

the protégé tool with the knowledge of domain expert. We

compute the values of precision, recall and F-measure.

4.2. Experimental Results

Fig. 2. Comparision of value with Dataset1.

Fig. 3. Comparision of value with Dataset2.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 9

For each string similarity metric, the alignment results are

extracted for a certain threshold value ranging from 0.1 to 1.

The alignment result consists of precision, recall and F-

measure. In this evaluation, the string distance calculation like

Levenstein, Jaro-winkler and SMOA are computed using the

proposed algorithm. The computed results are shown in fig.2

and fig.3

The above figures show that proposed system is more efficient

than the existing methods. Our system computes the alignment

containing only correspondences between classes and

properties which exclude individual matching. The existing

methods take more computation time with less efficiency. The

F-measure values are computed starting from average of

precision and recall values.

5. CONCLUSION

Ontology Alignment is the key solution for Heterogeneity

problem in semantic web. This solution will identify the

correspondence between the entities of different ontologies. In

this paper, we propose to use SMOA for calculating the

correspondence of ontologies in order to replace previous

string matching techniques. Our proposed system will

categorize the ontology into class, subclass and various

properties. It uses memetic algorithm with String matching

technique. The experiment result shows that our approach

provides optimal solution among previous methods.

Comparing with state of the arts ontology matching system our

proposed approach is able to get more accurate results. In

future work, we want to extend this system with different types

of matching strategies by taking further algorithms for

efficiency and further application domain into account.

REFERENCES

[1] P. Shvaiko, J. Euzenat, “Ontology matching: State of the art and future
challenges”, IEEE Transactions on Knowledge and Data Engineering,
25(1), 2013, pp.158-176.

[2] W. Hu, Y. Qu, G. Cheng, “Matching large ontologies: A divide-and-
conquer approach”, Data and Knowledge Engineering, 67(1), 2008,
pp.140-160.

[3] G. Acampora, V. Loia, S. Salerno, & A. Vitiello, “A hybrid
evolutionary approach for solving the ontology alignment problem”,
International Journal of Intelligent Systems, 27, 2012, pp.189–216.

[4] Y. Sun , L. Maa, S. Wang, “A Comparative Evaluation of String
Similarity Metrics for Ontology Alignment”, Journal of Information and
Computational Science,12(3), 2015, pp.957-964.

[5] X. Xue, Y. Wang, A. Ren, “Optimizing ontology alignment through
Memetic Algorithm based on Partial Reference alignment”, Expert
Systems with Applications, 41, 2014, pp.3213-3222.

[6] J. Euzenat , P. Shvaiko, Ontology Matching, 2nd edition. Springer-
Verlag, Berlin Heidelberg, ISBN: 978-3-642-38721-0, 2013.

[7] G. Stoilos, G. Stamou, & S. Kollias (2005), “A string metric for
ontology alignment”, In Proceedings of 4th International Semantic Web
Conference (ISWC 2005), pp. 623– 637.

[8] OWLAPI, http://owlapi.sourceforge.net/.

[9] INIS Thesaurus, https://www.iaea.org/inis/links/index.html/.

[10] N.F. Noy, M.A. Musen, “PROMPT: algorithm and tool for automated
ontology merging and alignment”, Seventeenth National Conference on
Artificial Intelligence, 2000, pp. 450–455.

[11] J. Madhavan, P.A. Bernstein, E. Rahm, “Generic schema matching with
cupid”, Proceedings of the 27th International Conference on Very Large
Data Bases (VLDB), 2001.

[12] J. Bock, J. Hettenhausen, Discrete particle swarm optimisation for
ontology alignment, Information Sciences 192, 2012, pp.152–173.

[13] Y.R. Jean-Mary, E.P. Shironoshita, M.R. Kabuka, “Ontology matching
with semantic verification”, Journal of Web Semantics 7 (3), 2009,
pp.235–251.

[14] J. Noessner, M. Niepert, “CODI: Combinatorial Optimization for Data
Integration Results for OAEI 2010”, Proceedings of the 5th
International Workshop on Ontology Matching, 2010.

[15] H.H. Do, E. Rahm, “Matching large schemas: approaches and
evaluation”, Journal of Information System 3 (6) (2007) 857–885.

[16] G. Acampora, V. Loia & A. Vitiello, “Enhancing ontology alignment
through a memetic aggregation of similarity measures”, Information
Sciences, 250, 2013, pp.1-20.

[17] X. Xue, Y. Wang, Optimizing ontology alignments through a Memetic
Algorithm using both MatchFmeasure and Unanimous Improvement
Ratio, Artificial Intelligence, 223, 2015, pp.65-81.

[18] F. Hamdi, B. Safar, C. Reynaud, H. Zargayouna, “Alignment-based
partitioning of large-scale ontologies”, Advances in Knowledge
Discovery and Management. SCI, Springer, Heidelberg (2010), vol.
292, pp. 251–269.

[19] Algergawy A, Massmann and Rahme, “A Clustering-Based Approach
for Large-Scale Ontology Matching”, Springer-Verlag Berlin
Heidelberg, ADBIS 2011, pp. 415-428.

[20] Abolhassani, H., Haeri, S. H. & Hariri, B., “Coincidence Based Scoring
of mapping in Ontology Alignment”, Journal of Advanced
Computational Intelligence and Intelligent Informatics (2007), Vol.11
No.7, pp.1-14.

https://www.iaea.org/inis/links/index.html/

