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ABSTRACT
As search engines are becoming smarter at interpreting user
queries and providing meaningful responses, they rely on
ontologies to understand the meaning of entities. Creat-
ing ontologies manually is a laborious process, and resulting
ontologies may not reflect the way users think about the
world, as many concepts used in queries are noisy, and not
easily amenable to formal modeling. There has been con-
siderable effort in generating ontologies from Web text and
query streams, which may be more reflective of how users
query and write content. In this paper, we describe the
Latte system that automatically generates a subconcept–
superconcept hierarchy, which is critical for using ontologies
to answer queries. Latte combines signals based on word-
vector representations of concepts and dependency parse
trees; however, Latte derives most of its power from an on-
tology of attributes extracted from the Web that indicates
the aspects of concepts that users find important. Latte
achieves an F1 score of 74%, which is comparable to expert
agreement on a similar task. We additionally demonstrate
the usefulness of Latte in detecting high quality concepts
from an existing resource of IsA links.

1. INTRODUCTION
One of the recent dramatic changes in Web search is the

appearance of answers in response to user queries, comple-
menting the usual collection of Web links. If a user searches
for a politician or a movie, all major search engines display
a “knowledge panel” with salient information about the en-
tity in the query, including a collection of related entities, or
entities of a similar “type” (e.g., movies with the same ac-
tor). These answers are derived from large knowledge bases
modeled by ontologies—structured formal or semi-formal de-
scriptions of entities and their attributes. While ontologies
and knowledge bases have been essential components of in-
telligent systems for decades, the size and coverage of ontolo-
gies used by search engines today is largely unprecedented.
Google’s Knowledge Graph, for example, is reported to have
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more than 570 million entities [4].
Even with enormous resources spent on developing knowl-

edge bases, they still cover only a fraction of the concepts,
instances, and attributes that users are searching for. As a
consequence, many queries that can be answered by struc-
tured data are not recognized as such by search engines.
In response, several approaches have been used for mining
the long tail of concepts and attributes that interest users.
Hearst patterns [11] are commonly used to extract IsA rela-
tions, for example, the text“Asian countries, such as China,”
indicates China is an instance of Asian countries. The re-
sulting IsA relations can be either subconcept–superconcept
or instance–concept relations. Along the same lines, previ-
ous work extracted an order of magnitude more attributes
than is modeled in Freebase by mining a query stream and
Web text [10] (e.g., discovering that countries may have
Coffee production or Railway minister). These signals
display broad coverage, however they contain noise.

A crucial aspect of a useful ontology is having an accurate
subsumption hierarchy between its concepts. For example,
the ontology should know that European capitals is a
subconcept of European cities. Creating such a hierarchy
is challenging for two reasons. First, it turns out that the
logical definition of subsumption (i.e., concept A is a subset
of B if and only if every instance of A is an instance of B)
is limiting in the context of Web ontologies, and many sub-
sumption relations are accepted in practice, though they do
not satisfy this definition (see Section 2). The second chal-
lenge is that traditional signals do not produce a concept
hierarchy with high precision. Specifically, analyzing depen-
dency parse trees of concepts, their word-vector representa-
tions [16], or distributional similarity [7, 22] is not sufficient
to determine that one is a subconcept of the other.

This paper describes the Latte1 system that produces a
subsumption hierarchy for concepts extracted from the Web.
The observation underlying Latte is that attributes that
are frequently associated with instances of concepts are in-
dicative of subsumption relationships between them. Latte
uses this signal in conjunction with semantic and distribu-
tional features to produce a hierarchy that corresponds to
commonly accepted subsumptions. Examples of extracted
relations are shown in Figure 1. Our experiments demon-
strate that Latte achieves an F1 score of 74%, which is
comparable to expert agreement on a similar task. Finally,
we show that using predictions made by Latte we can de-
tect high-quality concepts from a noisy resource of IsA links.

1Latte is a popular espresso-based drink whose interpreta-
tion varies significantly depending on location and context.
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Figure 1: Subsumption relations predicted with high
probability. For example, Drug was predicted as a
superconcept of Painkiller; it was predicted that
Weight loss drug and Diet drug were synonyms, by
finding bidirectional subsumption between them.

Category Subconcept Superconcept

Clear Photo Visual material
Part time job Work

Ambiguous concept
names

Pen School item
Stream Natural obstacle

Subjective or
relative relations

Monkey Large animal
Gluten Health food

Religious/political views Pope Politician

Temporal and local Cellular phone Small device
Metal hybrid Solid

Large overlap Lanthanides F-block

Common references LED light Technology

Generic superconcepts Entree Category

Table 1: Subsumption relations found in our data.

2. SUBSUMPTION IN WEB ONTOLOGIES
Given a set of concepts C, our goal is to discover subsump-

tion relationships among pairs of concepts in C. For example,
a University is a type of organization that has a physical
location, so we would like to discover that it is a subconcept
of Organization and Location. We denote that concept
c1 is a subconcept of c2 by c1 v c2. Subsumption is direc-
tional: if c1 v c2 then c2 6v c1 unless c1 and c2 are synonyms.
Note that subsumption is different from the IsA relationship
that typically holds between an instance and a concept (e.g.,
Stockholm IsA City). Subsumption hierarchies add sig-
nificant power to ontologies in Web search because many of
the attributes of an entity (concept or instance) are attached
to its superconcepts, therefore it is important to be able to
navigate the hierarchy of concepts [8, 31, 2].

The definition of subsumption in Mathematical Logic re-
quires that c1 v c2 if and only if every instance of c1 is
an instance of c2. However, in the context of Web-based
ontologies, this definition is too limiting as it deprives us
from considering diverse and context-dependent aspects of
the world. Table 1 illustrates the broader types of subsump-
tion we encounter in practice. The first examples show clear

&DQGLGDWH�6XEVXPSWLRQ�5HODWLRQV

6\QWDFWLF�DQG�6HPDQWLF�)HDWXUHV

&RQFHSW�+LHUDUFK\

690�&ODVVLILHU�IRU�
6XEVXPSWLRQ�5HODWLRQV

&DQGLGDWH�*HQHUDWLRQ�EDVHG�
RQ�$WWULEXWH�2YHUODS

3LSHOLQH

&ROOHFWLRQ�RI�
&RQFHSWV

'HSHQGHQF\�3DUVH�
%DVHG�5HODWLRQV %LSHUSHGLD &RQFHSW�:RUG�

9HFWRUV

'HSHQGHQF\�
3DUVLQJ�)HDWXUHV

$WWULEXWH�&RQWH[W�
)HDWXUHV

&RUSXV�&RQWH[W�
)HDWXUHV

Figure 2: The Latte system pipeline.

subconcept–superconcept relations (Photo v Visual ma-
terial). In the following examples, concept names are am-
biguous or lack context: a Pen is an item used in school,
but also an enclosure in which animals are kept. Some re-
lations are subjective, or depend on a relative scale, or a
religious or political affiliation: some Monkeys are Large
animals, others are small, and some are just larger than
others. Similarly, some relations hold only temporally or
locally: Metal hybrids can be Solid, depending on the
environmental conditions. In some cases, the subsumption
is almost complete: all but one of the Lanthanide chemi-
cal elements belong in the F-block. In some examples, the
common way of referring to a concept is not accurate: LED
is a technology that produces light sources with high lumi-
nous efficacy. The LED light itself is a light source, but it
is widely used to refer to the LED technology, making it a
good subconcept of Technology. Finally, some concepts
are so general that they do not contribute to a useful hierar-
chy (e.g., Category, Term). In the manual evaluation of
Latte, we instructed evaluators to examine relations based
on whether there is a reasonable scenario in which they hold.
We additionally assessed the agreement among evaluators.

3. THE LATTE SYSTEM
Figure 2 shows the Latte system pipeline for building a

concept hierarchy. The pipeline takes an input set of con-
cepts C. The key stages of the pipeline are: (1) We generate
candidate subsumption relations from input concepts. (2)
We generate features representing contextual and semantic
properties of concepts in candidate relations. (3) We pre-
dict subsumption relations between concepts using an SVM
classifier (we use the LibSVM [5] linear kernel classifier).

The key to the performance of Latte lies in the features
we attach to each concept. Apriori, we imagined that we
could leverage state of the art techniques in Natural Lan-
guage Processing, such as the dependency parse of con-
cept names, and advances in Deep Learning using word vec-
tors [16, 18], which represent the local context of a concept
in a text corpus. However, we found that these methods do
not produce good subsumption relations. A stronger signal



Concept: University
Academic/Student Life Organization Location

Football roster Online payment Country
Admission statistics Non profit Address

Sororities Tax return Zip code

Table 2: Sample attributes of University.

comes from examining the attributes that are associated (in
queries and Web text) with instances of the concepts.

Latte builds on techniques that extract attributes for
concepts [20, 1, 10]. In particular, Latte uses Biperpe-
dia [10], which mines thousands of attributes for every con-
cept from search queries and Web text. In Biperpedia, at-
tributes represent binary relationships between two entities
(e.g., ceo) or between an entity and a value (e.g., gdp).
The concept University, for example, has 2,787 attributes
(some listed in Table 2, grouped by topics). Some address
academic or student life (e.g., Sororities). Others reflect
the fact that a university is a Non profit organization, al-
lowing Online payment. Additional attributes recognize
that universities have a physical location, with an Address
and Zip code. In Biperpedia, the organizational attributes
of University are also attributes of the concept Organiza-
tion and the location attributes are attributes of Location.
It seems plausible, that attributes shared by two concepts
give strong evidence of whether a subsumption holds be-
tween them. We now describe the components of Latte.

3.1 Candidate Subsumption Relations
If we consider all concepts mentioned on the Web, a ran-

domly selected pair of concepts is not likely to be related.
It is also not computationally feasible to examine all pairs
in search for subsumption relations. We produce candidate
pairs that are likely related, based on their common at-
tributes, and then evaluate a subsumption relation between
them. We create two indexes: (1) for an attribute a, Ca is
the set of concepts that have this attribute; (2) C′

a contains
only the concepts for which attribute a is one of their top
ranking attributes, using a TF-IDF based ranking (see Sec-
tion 3.2.3). The Cartesian product of Ca and C′

a contains
pairs of concepts that share at least attribute a and it is im-
portant for at least one of them. We use only Ca sets with
fewer than 5,000 concepts, and eliminate attributes that are
too frequent. For each concept pair 〈c1, c2〉 ∈ Ca×C′

a, where
c1 6= c2, we evaluate in the rest of the pipeline subsumption
relations in both directions: c1 v c2 and c2 v c1.

3.2 Computing Features for Concepts
For each candidate subsumption relation c1 v c2, we gen-

erate features that reflect similarity, or a directional relation-
ship, between c1 and c2. We first explore two baseline ap-
proaches to generating features that indicate subsumption:
a rule-based method using the dependency parse tree of a
concept name, and using word vectors to assess the contex-
tual similarity of concepts. Finally, we evaluate contextual
similarity based on the attributes of c1 and c2.

3.2.1 Dependency Parsing
As a baseline, we consider an intuitive semantic analysis

of concept names. Given the dependency parse tree of a
string representing concept c ∈ C (e.g., Figure 3), we fol-
low linear paths on the dependency edges starting from the
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Figure 3: Dependency parse tree for the concept
Major coffee producing country.

ROOT noun and produce partial terms, which we treat as
potential superconcepts to c. For the concept in Figure 3,
the extracted superconcepts are then, Country, Major
country, Producing country and Coffee producing
country. We denote a dependency-parse based subsump-
tion by vdp. We keep relations whose concepts both appear
in C, so if Producing country 6∈C, we remove dependency
based subsumptions that include this concept. Note that
this method does not always produce reliable relations, e.g.,
a Hot dog is not a subconcept of Dog. Dependency parsers
are also prone to errors, especially on complex noun phrases.

Given a candidate subsumption relation c1 v c2 (created
following the procedure described in Section 3.1), we create
two binary features that indicate whether the dependency-
based relation c1 vdp c2, or the inverse relation c2 vdp c1
appear in the set of generated dependency-parse relations
(giving two true/false features). Intuitively, we expect the
former feature to provide positive evidence for the existence
of a subsumption relation, and the latter negative evidence.

3.2.2 Word Vectors
Models based on word-vector representations successfully

detect continuous similarities among words, normally esti-
mated by comparing the distance or angle of word vector
encodings in high-dimensional space. The vectors contain a
dense representation of local word context in a large corpus,
and they are trained using a Neural Net Language Model
[16, 18]. Recently, word vectors have been achieving state-
of-the-art performance on a variety of pattern-recognition
tasks including machine translation, sentiment analysis, and
word sense disambiguation [17, 32, 26, 13, 28]. Many of these
tasks rely on the fact that the vector representations allow
for a quick and reliable way to assess syntactic and seman-
tic similarities between entities, an observation that is also
useful for recovering subsumption relations.

We trained 300-dimensional word vectors on a corpus sam-
pled from Google News (containing 16B words), and we use
them to assess similarities between concepts. We treat con-
cept names as compound words, meaning that we produce
a single vector representation for each concept. Given a
candidate relation c1 v c2, with word vectors v1 and v2
for the respective concepts, we evaluate their similarity us-
ing several distance functions. Cosine distance is commonly
used to assess word vector similarity. We additionally use
the symmetric Chebychev and Euclidean distances. Finally,
we assess a directional relation between c1 and c2 with an
asymmetric variation on Euclidean distance:

∑
i (v1i − v2i).

These metrics constitute our features based on word vectors.

3.2.3 Attributes of Concepts
We now detail features based on attributes in Biperpedia.
Relationships between attribute sets: We consider

the intersection and difference in attributes associated with
concepts in a candidate relation c1 v c2. Consider the over-
lap among attributes of the concepts University and Lo-



cation. The attributes Country and Map are in the in-
tersection of the attribute groups; intuitively, they account
for the similarities among the concepts. However, Wind di-
rection is only an attribute of Location and Sororities
is only an attribute of University so, intuitively, they ac-
count for the specialization of either concept relative to the
other. We describe the relationship between A1 and A2, the
attribute sets of c1 and c2, by the size of the intersection,
union, Jaccard similarity, the relative size of the intersection
to A1 and A2, and the absolute size of each attribute set.

Importance of attributes: Not all attributes for a given
concept are equally important, hence, we add features that
capture the importance of attributes for a concept. For
each attribute–concept pair, Biperpedia includes support-
ing evidence explaining why they are linked. For instance,
the concept Country has an attribute Coffee produc-
tion, and Biperpedia recorded all the countries for which
it found mentions of coffee production in text or in queries
(e.g., Brazil). The evidence for concept c and attribute a is
aggregated using several measures: (1) instances(a, c) is the
number of unique supporting instances found for concept c;
(2) frequency(a, c) is the number of occurrences of a with
supporting instances in the corpus (e.g., the occurrence of
Brazil with Coffee Production); and (3) rank(a, c) is the
rank of a, ordered by instances and frequency.

For each candidate pair, c1 and c2, we consider the set
of intersecting attributes I shared by the two concepts. We
look at the coverage of attributes in I relative to all at-
tributes of each concept, in terms of their frequency, in-
stances, and the following rank coverage (shown for c1),

RankCoverage(I) =
∑

a∈I

1

rank(a, c1)
(1)

We distinguish between two sets of intersecting attributes,
including all intersecting attributes, or only ones for which
subconcept c1 has fewer or as many supporting instances.
This distinction addresses transitivity, assuming that, in
theory, every instance of the subconcept also supports the
superconcept (CMU is a University and a Location),
but the opposite does not hold (Lake Ontario is a Loca-
tion but not a University). We compute coverage features
based on both intersecting sets.

TF-IDF of attributes: We use an additional adjusted
ranking based on the TF-IDF of the frequency of an at-
tribute and concept. TF-IDF is widely used in information
retrieval to highlight how important a word is in a specific
document, based on a combination of its frequency in the
document and its overall uniqueness in the corpus [15]. Here,
we consider an attribute a as a word, and a concept c as a
document, resulting in a ranking based on:

TF-IDF(a, c) = log(frequency(a, c) + 1) · (2)

log
( |C|
|{c′ ∈ C : frequency(a, c′) > 0}|+ 1

)
We include coverage features similar to the ones described
above using TF-IDF based frequency and ranking.

Attribute synonyms: Biperpedia provides synonyms
and common misspellings for each attribute. When compar-
ing the attributes of two concepts, we match attributes using
an exact match, and also allow for synonym-based match-
ing. For example, if concept c1 has the attribute Boat and
concept c2 has the attribute Yacht and these are detected
by Biperpedia as synonyms, we consider them as matching
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Figure 4: ROC curves of classifiers trained on re-
lations from the IsA Network or KG Classes, using
different subsets of features (see legend). A star
marks the highest F1, also noted in parentheses.

attributes. We replicate the above attribute-based features
where new features use synonym matching. In total, we use
97 attribute-based features for each candidate concept pair.

4. EXPERIMENTAL EVALUATION
We evaluate Latte on two sets of concepts, one from a

large network of automatically extracted IsA relations, and
another from a smaller, manually curated knowledge base.

4.1 Latte for the IsA Network
We use a set of 17M concepts extracted from Web text

along with 493M hypernym–hyponym relationships. We call
it an IsA Network, as it was extracted using IsA patterns:
e.g., “X is a Y”, indicates X is a subconcept of Y [25]. This
collection contains many concepts, but is inherently noisy.

We applied Latte to concepts from this set that have at
least one known attribute. The IsA Network does not distin-
guish subsumption from instance-of relations, therefore, we
include only concepts with more than 10 hyponyms in the
data, which indicates they are not instances, leaving 47K
concepts. As the network was generated automatically, we
first manually estimated its quality by asking 5 experts to
label 5K randomly selected IsA relations from the data. Ac-
cording to the experts, it has 0.54 precision, meaning that
while it provides a rich set of concepts, we need to over-
come the noise inherent to the extraction process. We found
unanimous agreement among three experts on whether an
IsA relation is valid in 74% of a random set of 1K relations.



Method IsA Network KG Classes

Dep. Parse 0.634 0.811
Word Vectors 0.663 0.805
Dep. Parse & Word Vectors 0.667 0.821

Attributes 0.713 0.975
All 0.736 0.976

Expert Agreement 0.74 N/A

Table 3: Best F1 results for subsumption classi-
fiers on labeled relations from the IsA Network and
KG Classes, using different subsets of features. The
last row depicts expert agreement, showing that our
classifier achieves accuracy close to expert labeling.

Top-N samples: 100 1K 10K 100K 1M 2.4M
Precision: 1 0.94 0.72 0.68 0.36 0.3

Table 4: Estimated precision at top-N.

To evaluate Latte, we collected 10K subsumption rela-
tions based on this IsA network, with 5K extracted directly
from the corpus, and 5K created using our candidate ex-
traction process (Section 3.1), all were labeled by 5 experts.
We kept all positive examples (2,839) and randomly selected
negatives, to give a balanced labeled set. We used a 90%-
10% train/test split to evaluate classifiers on labeled data
using combinations of the features described above. Fig-
ure 4 shows ROC curves on the test set, and the best F1
values are summarized in Table 3. Features based on depen-
dency parsing provide the most limited information. While
the semantics of concepts gives strong indication of hierar-
chy, it lacks coverage, partly since many concept names are
short. Dependency parsing is also not fully reliable (e.g., a
Hot dog is not a Dog). Surprisingly, word vectors, which
reflect the corpus context of a concept, do not perform as
well as attribute based context, even when combined with
semantic information. Importantly, attributes are the best
performing single source of features, with only a minor im-
provement when combined with other signals. The best F1
of the full system is 0.736, an interesting result given that
the agreement of expert labeling on this data was 0.74.

Large-scale prediction analysis: To generate the full
set of subsumption relations that Latte can produce on the
IsA Network, we use our candidate-generation process on
concepts in the full unlabeled network, and predict relations
using the best classifier. The result is a concept hierarchy
with 2.4M predicted relations. We estimated the accuracy
of the hierarchy by manually evaluating 6 sets of 50 random
samples from the top predicted relations, by probability (Ta-
ble 4). Estimated precision on the set of top 100-100K pre-
dictions is consistent with our evaluation on the fully labeled
test set. While precision on the full set is significantly lower,
note that the confidence of this estimate is similarly low due
to a small number of samples relative to the set size.

Sample predictions are given in Table 5, including rela-
tions predicted in a directional way (positively predicted
only the input relation), and in a bidirectional way (pos-
itively predicted the input and reverse relation). Bidirec-
tional prediction indicates we identified synonymy (e.g., 〈Bass
player, Bassist〉). A sample hierarchy composed of top
predicted relations is shown in Figure 1.

Subconcept Superconcept p

IsA Network Directional Predictions:
Mosquito borne disease Virus 0.993

Blood thinner Medication 0.993
Fat soluble vitamin Antioxidant 0.992

IsA Network Bi-Directional Predictions:
Advertising agency Ad agency 0.997

Bass player Bassist 0.997
Malicious software Malware 0.996

KG Classes Predictions:
Country albums Studio albums 0.998

Rugby league teams Sports teams 0.996
Trade fairs Conference series 0.996

Newsmagazines Periodicals 0.995

Table 5: Relations from the IsA Network (top), pre-
dicted in a directional way or a bi-directional way (in-
dicating synonymy), and their probability (p). Bot-
tom rows show predictions from KG Classes.

Category Example Subconcept-Superconcept #

Generic/indirect
relation

〈University department,
Representation〉

9

Reverse relation 〈Health care practitioner, Physician〉 7
True for few or
some instances

〈Blood borne pathogen,
Severe illness〉

7

Different
specialization

〈Barbiturate,
Cholesterol lowering drug〉

4

Related 〈Etiology, Inflammatory disorder〉 19
Unrelated 〈Opposition party, Purpose 〉 4

Table 6: Error analysis.

Error analysis: We evaluated a sample of 50 predic-
tions extracted from the 2.4M predicted relations, unani-
mously labeled as an error. Table 6 shows categories of er-
rors containing at least four examples. Remaining relations
were grouped based on whether their concepts were Related
or Unrelated. Note that out of 50 examples, only 4 con-
tained unrelated concepts. The biggest category contains
predictions where the superconcept is generic, or the rela-
tion is otherwise indirect. These errors were expected based
on the level of disagreement among evaluators over generic
concepts. Some predictions hold a reverse subsumption rela-
tion: a Physician is a Health care practitioner, but we
predicted the reverse. Other relations are true for a subset
of instances: some Blood borne pathogens (e.g., HIV,
Ebola) cause Severe illness, while others are mild. In
some cases, the subconcept has a different specialization of
the superconcept: Barbiturate is a sedative Drug, how-
ever, it does not lower cholesterol.

In many of these errors the predicted concepts are highly-
related; it may be that their distinguishing aspects are not
reflected by their attributes. This can happen for attributes
not explicitely mentioned in any Web text (sometimes named
common sense facts, they are notoriously hard to mine [30]),
or if they are discarded due to low occurrence frequency.

4.2 Latte for KG Classes
We use a second set of concepts from a manually cu-

rated schema extending Freebase [3]: a structured knowl-
edge base containing millions of facts, organized by 10K
types (concepts), with 10K subsumption relations defined



between them. We call this set KG Classes.
We applied Latte to concepts from KG. As positive train-

ing examples, we used the manually created relations among
concepts in the set, keeping the 5K relations whose concepts
appear in our text corpus and have known attributes. We
then randomly select 5K examples, likely to be negative,
from the following sources: (1) The reverse of the positive
examples. (2) An additional Knowledge Graph resource of
concepts that are overlapping, but not subsumed. (3) Candi-
dates created with our candidate generation method; while
some of these are true subsumptions, any random pair is
likely negative. We use 90% of all examples for training, and
manually label the 10% used for testing. Attribute-based
features (Figure 4 and Table 3) perform markedly better
than the baselines, giving an F1 of 0.975, versus 0.976 using
all features. This data contains concepts with long names,
uncommonly found in a text corpus, causing the word vec-
tor method to perform relatively poorly. In comparison, the
elaborate semantics of the names results in a better perform-
ing dependency-parse classifier. Using the full pipeline we
predict all subsumption relations over this data; our predic-
tions constitute a 7% addition to the high-quality relations
manually created for this set (samples shown in Table 5).

Comparison of hierarchies: Our results show that start-
ing with higher-quality data (as in KG), we get a higher-
quality hierarchy. In comparison, the IsA network is larger
and noisier and it produces a larger hierarchy (2.4M relations
vs 734 in KG), of reasonably high quality. This difference
reflects the tradeoff between diverse and reliable concepts.

5. FINDING HIGH-QUALITY CONCEPTS
We show the ability of Latte in detecting high-quality

concepts from a noisy resource. The IsA network described
above is noisy, its relations estimated at 54% precision. Here,
we wish to extract from it concepts with high-precision IsA
links, showing Latte can be used to clean up the network.

We select the top 1,000 pairs of concepts identified by
Latte on the network and extract the 50 most frequently oc-
curring concepts in this set. Using solely the IsA network re-
source, concepts for which IsA relations were extracted with
high frequency, should presumably have high quality. There-
fore, as a baseline, we extract 50 concepts with comparable
IsA relation frequency to the 50 extracted using Latte. As
a second baseline, we consider the 50 most frequent con-
cepts in the network. Our analysis is based on the top 10
hypernyms and hyponyms of each of the 150 concepts.

We manually evaluate the precision of all 3,000 IsA re-
lations; the precision of a concept is the average precision
of its IsA relations. The improvement in quality is marked:
Latte identified concepts with higher quality hypernyms,
hyponyms, and total IsA relations (Table 7). Figure 5 shows
a histogram of average concept quality using all IsA rela-
tions. The results indicate that attribute-based relations can
be used to increase the quality of existing IsA resources—our
pipeline extracted concepts with high IsA relation precision,
which could not be detected using frequency.

6. RELATED WORK
Hierarchy construction follows two approaches, which aim

at discovering semantic relations between pairs of concepts,
forming the backbone of a hierarchy. In the first approach,
subsumption relations are extracted based on lexical pat-

Latte Similar Frequency Most Frequent

Hyponyms 0.97 (0.07) 0.55 (0.3) 0.87 (0.2)
Hypernyms 0.68 (0.23) 0.6 (0.23) 0.54 (0.24)
Total 0.83 (0.12) 0.58 (0.2) 0.7 (0.18)

Table 7: Average concept quality (with standard de-
viations) of concepts from Latte and from the IsA
network (similarly or most frequent).
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Figure 5: Histogram of average concept quality in
Latte (black), and in the similarly (gray) or most
(white) frequent concepts from the IsA network.

terns, correlated with a hierarchical relation (such as “X is a
Y”) [11], similar to the IsA Network described above. Sim-
ilar semantic relation classifiers have been introduced for
meronyms, synonyms and other analogy relations [9, 12, 27].
Here, we compare Latte to a similar rule-based method, us-
ing the dependency parse tree of concept names.

The main drawback of pattern-based methods, is that
they rely on direct evidence appearing in text and lack global
context. Conversely, the second approach considers distribu-
tional similarity, based on the semantic context of concepts.
Hierarchy learning in this case is based on clustering or clas-
sification [29, 7, 19, 22, 21], where the context distribution is
often evaluated using mutual information, the log-likelihood
ratio, cosine similarity or relative entropy [6, 23, 24, 14]. In
Section 3.2.2 we explored the recent success of word vector
representations, used to account for word similarities. In
comparison, we show attributes are useful as semantic con-
text, for the task of hierarchy building. Latte presents a
hybrid approach to ontology construction, combining a rule-
based signal with distributional similarity based on corpus
and attribute context. This combination allows us to over-
come the coverage and noise limitations common when using
the base methods on data from the Web.

7. CONCLUSIONS
We describe a system that finds high-quality subsump-

tion relations among given concepts. These relations try to
capture a latent conceptualization of how millions of users
query the Web. Our evaluation shows that signals based on
concept attributes contribute significantly to detecting high
precision relations, out performing state-of-the-art baseline
methods. Our system achieves an F1 of 74% on concepts
from a network of IsA relations, initially estimated at 54%
precision, and an F1 of 98% using higher-quality input con-
cepts. We further illustrate our method finds concepts with
high-precision IsA relations, showing that an attribute-based
signal can be used to clean resources with noisy concepts.
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