
Ontology alignment based on word embedding
and random forest classification

Ikechukwu Nkisi-Orji1[0000−0001−9734−9978], Nirmalie Wiratunga1, Stewart
Massie1, Kit-Ying Hui1, and Rachel Heaven2

1 Robert Gordon University, Aberdeen, UK
{i.o.nkisi-orji�, n.wiratunga, s.massie, k.hui}@rgu.ac.uk

2 British Geological Survey, Nottingham, UK
reh@bgs.ac.uk

Abstract. Ontology alignment is crucial for integrating heterogeneous
data sources and forms an important component of the semantic web.
Accordingly, several ontology alignment techniques have been proposed
and used for discovering correspondences between the concepts (or enti-
ties) of different ontologies. Most alignment techniques depend on string-
based similarities which are unable to handle the vocabulary mismatch
problem. Also, determining which similarity measures to use and how
to effectively combine them in alignment systems are challenges that
have persisted in this area. In this work, we introduce a random forest
classifier approach for ontology alignment which relies on word embed-
ding for determining a variety of semantic similarities features between
concepts. Specifically, we combine string-based and semantic similarity
measures to form feature vectors that are used by the classifier model to
determine when concepts match. By harnessing background knowledge
and relying on minimal information from the ontologies, our approach
can handle knowledge-light ontological resources. It also eliminates the
need for learning the aggregation weights of a composition of similarity
measures. Experiments using Ontology Alignment Evaluation Initiative
(OAEI) dataset and real-world ontologies highlight the utility of our
approach and show that it can outperform state-of-the-art alignment
systems.

Keywords: Ontology alignment · Word embedding · Machine classifi-
cation · Semantic web.

1 Introduction

Ontology alignment or matching deals with the discovery of correspondences
between the entities of different ontologies. This has been the subject of vari-
ous research works over the years with several techniques adopted from meth-
ods for integrating heterogeneous databases. The utility of ontologies are en-
hanced through alignment and the reduced semantic gap enables applications
requiring cross-ontology reasoning or data exchange. Interest in ontology align-

2 I. Nkisi-Orji et al.

ment is reflected through the Ontology Alignment Evaluation Initiative (OAEI)3
which provides a platform to assess and compare systems for automated or semi-
automated alignment. Also, the Linking Open Data community project4 which
aims to align ontologies on a Web scale currently have hundreds of datasets from
different contributors in multiple domains such as DBpedia, WordNet, GeoN-
ames, and MeSH.

The ontology alignment process is challenging, especially when the ontolo-
gies are of heterogeneous origins leading to inherent differences between them.
Ontologies can vastly vary in levels of formalisation and vocabulary use even
when they are of similar domain. The predominant methods for alignment use
a composition of multiple string-based similarity metrics on textual features of
entities [2]. Semantic matching is essential for discovering correspondences by
meaning when the vocabularies of source and target ontologies differ. However,
there is a shortage of semantic matching techniques [18, 19]. Lexical databases
such as WordNet have been leveraged for semantic matching but they lack suf-
ficient coverage and this becomes apparent when dealing with domain-specific
terminology. Accordingly, word embedding approaches which are effective at cap-
turing language semantics have been proposed for semantic matching in ontol-
ogy alignment [21,22]. Semantic matching approaches do not always outperform
string-based similarity and effectively combining both strategies in alignment
systems remain a challenge [18].

In this work, we introduce a novel matching system that integrates string-
based similarity and semantic similarity features using word embedding to build
a machine learning model, a random forest classifier. Alignment is completed in
two stages by first selecting a set of candidate alignments using basic match-
ing techniques. Afterwards, a machine classifier determines which entity pairs of
the candidate alignments are true alignments. The classifier uses feature vectors
that are generated from a variety of direct and indirect similarity indicators.
Our main contributions are the incorporation of word embedding for semantic
match discovery in the alignment process and the introduction of novel features
for a machine classifier for alignment. The alignment system relies on minimal
information from the ontologies making it suitable for aligning knowledge-light
ontological resources. Although it requires training a classifier model, our ap-
proach eliminates the need to learn aggregation weights for multiple similarity
measures. We evaluate the alignment system on benchmark datasets from OAEI
and dataset from EuroVoc (EU’s multilingual thesaurus)5.

The remainder of this paper is organised as follows: section 2 reviews relevant
works in literature; section 3 presents our ontology alignment approach; section
4 is an experimental evaluation which compares our approach to alternative
approaches; and section 5 concludes with an outline for future work.

3 http://oaei.ontologymatching.org/
4 http://linkeddata.org/
5 European Union, 2018, http://eurovoc.europa.eu/

Random forest classifier for ontology alignment 3

2 Related work

Ontology alignment establishes semantic links between the entities of different
ontologies which is a solution to the semantic heterogeneity problem [6, 19].
Alignment reduces the semantic gap between overlapping representations of a
domain and trends show increasing interest in this area [18]. Establishing corre-
spondences between the entities of different ontologies generally follows pairwise
comparisons (direct or indirect) to identify best matches. Techniques for match-
ing entities can be element-level or structure-level [18]. Element-level matching
uses intrinsic features of entities such as natural language labels and defini-
tions [10]. Instead of exact string matching, edit distance approaches such as
Levenshtein and Jaro–Winkler distances are commonly used for fuzzy matching
to account for spelling variations and word inflection. Structure-level matching
considers the ontological neighbourhood of entities in order to determine sim-
ilarity. Even when entities share little element-level features, correspondences
can be discovered by similarity of structures such as having similar ancestors or
descendants [17].

String similarity methods differ and an individual approach cannot be always
relied on for effective alignment [2]. Accordingly, most alignment systems use a
composition of multiple similarity metrics (basic matchers) which are aggregated
sequentially or in parallel [3, 10] or form features for a machine learner [5, 16].
This leads to a categorisation of research in ontology alignment as matching
techniques or matching systems [18]. Matching techniques deal with measures
of similarity and strategies that determine the extent to which the concepts of
different ontologies relate while matching systems use one or more matching
techniques to align ontologies. The choice of matching techniques and deter-
mining composition weights for multiple similarity metrics have been subject
of several research works [7, 13]. As ontologies differ widely, it is not unusual
to encounter alignment systems which work well for some alignment tasks and
perform weakly on others.

String comparison is less effective for alignment when the vocabulary of on-
tologies differ. As a result, external knowledge resources such as WordNet and
Wikipedia have been used to estimate semantic similarities [8, 9, 12]. Use of
external resources requires anchoring entities being compared to the external
resources which is then used for inferencing. By matching by meaning, semantic
matching can discover alignments which are omitted by string-based similarity
approaches. Yet, semantic matching is rarely used because effective integration
of string-based similarity and semantic similarity remains a challenge [18, 19].
Recent experiments show that matching using word embedding vectors outper-
forms use of lexical databases such as WordNet for semantic matching [22].
Word2vec models are popular implementations of word embedding using shal-
low neural network architecture to embed words in a dense continuous vector
space based on their linguistic contexts in a corpus [14]. Word embedding pre-
serves several linguistic regularities and similarity between word vectors have
been shown to correlate well with human judgements. The use of word embed-
ding is also promising for cross-lingual alignment by jointly embedding ontologies

4 I. Nkisi-Orji et al.

in a vector space [21]. An even more effective use of word embedding for ontol-
ogy alignment is a hybrid similarity approach that incorporates string similarity
using edit distance [22]. To the best of our knowledge, no other system has ex-
tended use of word embedding for alignment beyond a hybrid similarity of edit
distance and vector similarity. We extend the hybrid similarity approach by in-
troducing other similarity features which are used by a random forest classifier
to align ontologies.

3 Classifier-based ontology alignment

Our approach is based on generating a machine classifier model using a hybrid
of element-level string-based features, semantic similarity features, and context-
based structure-level similarity features. A high-level overview of the alignment
process is presented in Figure 1 and the rest of this section describes the process
in detail. The alignment process starts with the selection of candidate alignments
using a variety of basic matching techniques. A feature vector is then generated
for each candidate alignment which is passed to the machine classifier. The
classifier determines whether the concept pair is accepted as a correspondence
or discarded.

Fig. 1: Overview of ontology alignment process using machine learning.

Random forest classifier for ontology alignment 5

Notations, scope and assumptions An ontology, θ specifies a set of con-
cepts (or entities), θ = {c1, ..., cn}. A concept c ∈ θ represents the semantic
definition of a meaningful entity in a domain. Although some ontologies also
specify data properties and object properties, we use this minimal specification
to include knowledge-light ontological resources such as thesauri and controlled
vocabularies. Let labels(c) return the set of textual labels of a concept includ-
ing alternative names (or synonyms), labels(θ) return an ontology’s document
collection which is all labels of all concepts of θ, and tok(l) return all words
from a concept’s label, l ∈ labels(c). To illustrate with Figure 2, concept #3945
has two labels making label(#3945) = {“petroleum industry” , “oil industry”},
tok(“petroleum industry”) = {“petroleum”, “industry”} , and label(θ) returns
eight labels. We assume that the ontologies being aligned specify some form
of subsumption relations between concepts such as “is-a” or “broader-than” rela-
tions. This allows for the identification of a concept’s semantic context and depth
on the ontology structure. The subsumption relation between two concepts ci
and cj is represented as ci ≺ cj specifying that ci is a broader concept of cj (e.g.
#2673 ≺ #3945 in Figure 2).

Fig. 2: Example of concepts’ hierarchy with textual labels.

The output of the alignment process between the source ontology θ and tar-
get ontology θ′ is the alignment, A which is a set of correspondences between
semantically equivalent concepts of both ontologies. Each correspondence a ∈ A
is a 4-tuple, a :< c, c′,≡, s > where c ∈ θ, c′ ∈ θ′, ≡ indicates equivalent relation
type between c and c′, and s is the confidence of alignment correspondence in
[0.0, 1.0] interval. Confidence is either 1 (correspondence) or 0 (no correspon-
dence) for crisp alignment.

3.1 Identification of alignment candidates

The objective for selecting candidate alignments is to avoid including concept
pairs that have little or no chance of being aligned in subsequent machine classi-

6 I. Nkisi-Orji et al.

fication stage. A pair of concepts being compared become candidate alignments
if their similarity exceeds the threshold for any of four similarity measures. Ac-
cordingly, similarity thresholds for candidate selection are kept low enough to
maximise recall but not very low to select the entire similarity matrix. This
avoids having to generate features for concept pairs with very low similarities
and also leads to a better class balance for training a classifier. We also use a
Max1 selection approach for each similarity measure such that if multiple con-
cepts in the target ontology exceed the selection threshold, we only choose the
pair(s) with highest similarity value. This is commonly used to enforce a one-
to-one correspondence in alignment [19]. A variety of ways in which concepts
can be similar were considered in selecting similarity measures for identifying
candidate alignments as follows.

1. Hybrid similarity (hybrid): combines word embedding and edit distance,
2. Vector space model (vsm): cosine similarity of term vectors using term fre-

quency – inverse document frequency (tf-idf) scheme,
3. ISUB similarity (isub): string similarity metric designed for ontology align-

ment, and
4. Similarity of semantic context (context): indirect similarity between concepts

by comparing their neighbours on the ontology structure.

Hybrid similarity Hybrid similarity combines the use of word embedding and
edit distance measures [22]. After discarding words which occurred less than
10 times, we embedded a November 2016 database dump of Wikipedia English
language articles in vector space of 300 dimensions using Word2vec’s contin-
uous skip-gram architecture. The word embedding model was generated using
an open-source deep learning library6. There is an abundance of literature and
software tools on word embedding therefore, we will not discuss details of im-
plementation further. We also used the Google New Corpus model7 as an al-
ternative word embedding model for comparison. The edit distance component
of our hybrid similarity is based on Levenshtein distance. In contrast to [22],
a threshold is imposed on the edit distance component. This is because below
certain thresholds, similarity by sharing similar characters is no more than a
coincidence. Similarity between terms is based on the approach for measuring
sentence similarity [11] as shown in equation 1.

hybrid(c, c′) =

max
{l∈labels(c),l′∈labels(c′)}

{
1

maxLen(l, l′)
·
∑
w∈l

∑
w′∈l′

max(emb(w,w′), lev(w,w′))

}
(1)

6 https://deeplearning4j.org/word2vec.html
7 https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.
bin.gz

Random forest classifier for ontology alignment 7

maxLen(l, l′) = max(|tok(l)|, |tok(l′)|) is length of the longer label, emb(w,w′) is
the cosine similarity between the embedding vectors of w and w′, and lev(w,w′)
is normalised Levenshtein similarity. First, Levenshtein distance is normalised
to [0.0, 1.0] interval by dividing by the length of the longer string. Similarity
is then determined as 1 − normalised distance and is only considered when up
to 0.8. In other words, equation 1 compares each word from one label with
every word in the other label and selects the maximum similarity of either word
embedding or edit distance. The sum of best pairwise similarities is then divided
by the length of the longer label. For example, in comparing “oil industry” and
“petroleum industry”, the best similarities are emb(oil, petroleum) = 0.65 using
the Google model and lev(industry, industry) = 1.0 giving an overall similarity
1
2 (0.65+1) = 0.825. The most similar labels are used when concepts have multiple
labels. A low hybrid similarity threshold of 0.4 was chosen in our experiments
to maximise recall.

Vector space model The second similarity measure is based on the vector
space model using cosine similarity of tf-idf weights. Each ontology forms a
collection, D (D = labels(θ)). The tf-idf weight of each word, w in a document,
d (a concept’s label) is determined as shown in equation 2.

tf-idf(w) = fw,d · log
|D|
nw

(2)

fw,d is the frequency of w in d, and nw is the number of documents in which
w appears. Since multiple documents can belong to a concept, VSM similarity
is determined as the maximum similarity of the documents of a concept pair as
shown in equation 3.

vsm(c, c′) = max
{d∈c,d′∈c′}

{cosSim(d, d′)} (3)

cosSim(d, d′) is the cosine similarity between documents d and d′ using their tf-
idf weight vectors. By weighing terms such that frequently occurring words in an
ontology contribute less to similarity, we discover alignments that will otherwise
be missed as observed in [17]. Similarity threshold was set at 0.7 which is low
enough for good recall.

ISUB similarity The third similarity approach is a string similarity metric
which was specifically designed for the purpose of aligning ontologies [20]. The
similarity between two strings is determined by the extent of their common
substrings which is offset by their differences (equation 4).

isub(c, c′) = max
{l∈labels(c),l′∈labels(c′)}

{Comm(l, l′)−Diff(l, l′) + winkler(l, l′)}

(4)
Comm(l, l′) is a function of common substrings, Diff(l, l′) is a function of the
difference between the strings, and winkler(l, l′) is for improving the results. We
used an implementation of ISUB similarity in the Alignment API [4].

8 I. Nkisi-Orji et al.

Context similarity When the lexical forms of textual features of a pair of
concepts are different, comparing their ontological neighbourhoods can discover
correspondences which are missed by direct comparisons. Accordingly, we indi-
rectly measure the similarity of concepts by comparing their semantic contexts.
If the parents and children of the concepts being compared are similar, the pair
are included in the set of candidate alignments. Let the immediate parent con-
cepts of c be P (c) and its immediate child concepts be C(c), we implemented
context similarity as in equation 5.

context(c, c′) = max

{
1

2
· (hybrid(cp, c′p) + hybrid(cc, c

′
c))

}
(5)

max indicates that only the most similar parent and child concepts are used
to determine context similarity with cp ≺ c|cp ∈ P (c), c ≺ cc|cc ∈ C(c), c′p ≺
c′|c′p ∈ P (c′) and c′ ≺ c′c|c′c ∈ C(c′). We set selection threshold at half of hybrid
similarity threshold since equation 5 is an average.

3.2 Features for alignment classification

In the second stage, feature vectors are generated for candidate alignments which
are used by a machine classifier to determine whether they are actual alignments.
We introduce various novel features in addition to similarity metrics that are
commonly used for basic matching. Features are grouped into three categories
(selection, direct similarity, and context features) and summarised in Table 1.
Recall that each alignment candidate comprises of a concept from the source
ontology (c ∈ θ) and the most similar concept it in the target ontology (c′ ∈ θ′).
We also note the next most similar concept to c in the target ontology (c′′ ∈ θ′)
for the purpose of determining features which are related to similarity offsets.

Selection features These features are determined during the selection of can-
didates alignments to reflect the best similarity value (sim), the method of simi-
larity used (matchType), and similarity offset to the next most similar concept in
target ontology (simOffset).matchType is a nominal attribute used to indicate
the similarity method that was used to select a candidate alignment. sim is de-
termined as max(hybrid(c, c′), vsm(c, c′), isub(c, c′), context(c, c′)). simOffset
is determined as sim(c, c′)− sim(c, c′′) and this captures the distinctiveness of a
candidate alignment. High sim and simOffset values are expected to be good
indicators of actual alignments. Finally, we also include each of the similarity
methods for selecting candidate alignments as a separate feature.

Direct similarity features This category comprises other similarity metrics
that directly compare textual labels of concepts. These include five commonly
used string-based similarity measures – Levenshtein (lev), Fuzzy Score8 (fuzzy),
8 https://commons.apache.org/proper/commons-text/apidocs/org/apache/
commons/text/similarity/FuzzyScore.html

Random forest classifier for ontology alignment 9

Table 1: Feature vectors for alignment
Feature category Feature Description

Selection

matchType Similarity method to select alignment
sim max(hybrid, vsm, isub, context)

simOffset Offset to the next best sim
hybrid Combines lev and emb
vsm Similarity based on vector space model
isub String similarity for ontology alignment
context hybrid of semantic contexts

Direct similarity

lev Similarity based on Levenshtein distance
fuzzy Fuzzy string score gives bonus points as char-

acters in matched substrings increases.
lcs Similarity based on Longest Common Subse-

quence
dice Similarity based on Sorensen-Dice coefficient
mongeElkan Monge-Elkan similarity measure
prefixOverlap Prefix overlap divided by length of shorter

string
suffixOverlap Suffix overlap divided by length of shorter

string
emb Similarity of word embedding vectors

Context

parentsOverlap Hybrid similarity of parent concepts
childrenOverlap Hybrid similarity of child concepts
contextOverlap Hybrid similarity of all context words
contextOverlapOffset Offset to next best contextOverlap
hasParents Indicates if both, one, or none of the concepts

have parent nodes
hasChildren Indicates if both, one, or none of the concepts

have child nodes
depthDiff Difference in relative depths of concepts

Longest Common Subsequence (lcs), Sorensen-Dice (dice), and Monge-Elkan
(mongeElkan) [2, 15]. These were chosen to provide a variation of string sim-
ilarities as each algorithm differs in its approach. Also, we include features for
similarity based on word embedding alone (emb) and maximum prefix overlap
(prefixOverlap) and suffix overlap (suffixOverlap) of concept labels. Prefix
overlap and suffix overlap are the number of contiguous characters shared at
the beginning and ending of strings respectively and are normalised by diving
by the length of the shorter string. Most of the string similarity measures were
implemented using publicly available API9.

9 http://github.com/tdebatty/java-string-similarity

10 I. Nkisi-Orji et al.

Context features Features in this category are determined by the place-
ment of concepts on the ontology structure. These include parentsOverlap and
childrenOverlap which are hybrid similarities of parent and child concepts (of
candidate nodes) respectively. We also introduce contextOverlap which is the
hybrid similarity between all context words. That is, contextOverlap(c, c′) =
hybrid((P (c) ∪ C(c)), (P (c′) ∪ C(c′))). contextOverlapOffset is given as
contextOverlap(c, c′) − contextOverlap(c, c′′). Furthermore, we introduce two
features (hasParents and hasChildren) for additional insight into the neigh-
bourhood of candidate alignments. hasParents uses nominal features to indicate
whether both concepts in a candidate alignment have parent nodes, only one con-
cept have parent nodes, or none have parent nodes. Similarly with hasChildren,
we indicate the presence or absence of child nodes. Finally, depthDiff is the ab-
solute difference of the relative depths of concepts being compared. The depth
of a concept is the number of edges in the shortest path between the root node
and that concept. We assume the presence of a top concept (root node) even
when an ontology does not specify one. A concept’s relative depth is the ratio
of its depth to the total number of edges on the concept’s path (i.e. from root
to leaf passing through the concept). In Figure 2 for example, the relative depth
of concept #3945 is 0.5 since #3945 is halfway down on the shortest path.

3.3 Machine learning

The final step is the classification of candidate alignments as either true or
false correspondences. We use a Random Forest classifier which is an ensem-
ble method using multiple decision trees for improved classification and to avoid
overfitting. Each decision tree uses a subset of features and classification is based
on majority voting of decision trees’ predictions [1]. Decision trees have been
previously shown to outperform other machine learning algorithms for aligning
ontologies [16]. In the training phase, feature vectors (as in Table 1) are gener-
ated for candidate alignments and class labels are determined by the reference
alignments. Reference alignments form the gold standard as they specify actual
correspondences between source and target ontologies. When a correspondence
from the candidate alignments is also present in the reference alignment, it is
labelled as a true alignment, otherwise, it is labelled as a false alignment. In
the prediction (or classification) phase, the trained model uses generated feature
vectors to determine if unseen candidate alignments are true alignments.

4 Evaluation

4.1 Experiment setup

We perform experiments to evaluate the performance of our approach on two
alignment datasets as follows.

Random forest classifier for ontology alignment 11

Benchmark dataset The Conference track of 2016 Ontology Alignment Eval-
uation Initiative (OAEI)10 which consists of 7 small to medium-sized ontologies
specifying concepts in the domain of conference organisation. The ontologies
have heterogeneous origins resulting in differences in structure and vocabulary.
The gold standard is 21 reference alignments representing the entire alignment
space between ontology pairs.

EuroVoc dataset This consists of two large controlled vocabularies – the Eu-
ropean Union multilingual thesaurus (EuroVoc)11 and the GEneral Multilingual
Environmental Thesaurus (GEMET)12 describing 7,234 and 5,220 concepts re-
spectively. The gold standard is 1,126 correspondences between equivalent con-
cepts in both ontologies13.

Alternative alignment approaches

– StringEquiv: An OAEI baseline which discovers alignments by exact string
matching of concept labels.

– edna: Another OAEI baseline which uses edit distance (Levenshtein distance)
for approximate string matching of concept labels.

– WordEmb Word embedding approach using Word2Vec’s continuous skip-
gram model and Wikipedia data dump (version 20161130). Concepts are
compared by the cosine similarity their label vectors.

– Hybrid Combines word embedding and edit distance to discover correspon-
dences [22].

Our approach which we refer to as Rafcom14 with two variants, RafcomW

and RafcomG for Wikipedia-based and Google News word embedding models
respectively. Leave-one-out approach is used for the Conference dataset by leav-
ing a pair of ontologies out in turn while a model is trained using the remaining
dataset. The trained model is then used to aligned left out ontologies. Since the
EuroVoc dataset have a pair of ontologies only, we use ten-fold cross-validation
for evaluation. Alignment performance is based on standard precision, recall and
F-measure which are averaged over all the folds for each dataset. Precision is the
proportion of set of correspondences returned that are present in the reference
alignment. Recall is the proportion of correspondences in the reference alignment
that are discovered by an alignment system.

4.2 Results and discussion

The performances of alignment approaches at best F1-measures are as shown
in Tables 2 and 3 for the Conference and EuroVoc datasets respectively. Best
10 http://oaei.ontologymatching.org/2016/conference/
11 http://eurovoc.europa.eu
12 http://www.eionet.europa.eu/gemet/en/themes
13 http://data.europa.eu/euodp/en/data/dataset/eurovoc/resource/

3430afb6-51c7-44d8-b1c7-a1e045ef5696
14 https://bitbucket.org/paravariar/rafcom

12 I. Nkisi-Orji et al.

performances for each evaluation metric are in boldface. Our approach clearly
outperformed the others on the Conference dataset for all evaluation metrics with
RafcomG slightly outperforming RafcomW . About 84% of true correspondences
were discovered in the candidate selection stage and the classifier achieved about
96% accuracy in classifying candidate alignments. Performance differences were
more subtle for EuroVoc. In this dataset, RafcomW and RafcomG had bet-
ter precisions while edna was best in recall. Similar to the Conference dataset,
84% of true correspondences were included in the candidate alignments selected.
However, the classifier achieved about 90% accuracy in telling true alignments
and false alignments apart. edna outperformed StringEquiv on both datasets
using F1-measures and this is consistent with results at the OAEI challenge
and previous works [2]. Also, hybrid outperformed its components as had been
expected [22].

Table 2: Performances on OAEI 2016 conference track (classes only)
Approach Precision Recall F1-measure

StringEquiv 0.878 0.498 0.635
edna 0.880 0.537 0.667

WordEmb 0.881 0.544 0.673
Hybrid 0.880 0.564 0.687

RafcomW 0.889 0.680 0.770
RafcomG 0.891 0.695 0.781

Table 3: Performances on EuroVoc dataset (EuroVoc–GEMET alignment)
Approach Precision Recall F1-measure

StringEquiv 0.580 0.746 0.653
edna 0.572 0.776 0.659

WordEmb 0.581 0.746 0.653
Hybrid 0.581 0.768 0.662

RafcomW 0.714 0.632 0.671
RafcomG 0.714 0.629 0.669

Figure 3 shows results of alignment systems on the Conference dataset at the
OAEI challenge ordered by F1-measure. Although the systems may have com-
peted under a different circumstance, our results are promising when compared
with the best systems at the challenge.

Random forest classifier for ontology alignment 13

Fig. 3: Performance of alignment systems on OAEI 2016 conference track (classes
only)15.

Influence of similarity methods in discovering alignment types The
easiest correspondences to discover are exact string matches. Both hybrid and
isub can discover such correspondences. There are observed differences between
similarity approaches when concept labels do not match as shown in Table 4. The
correspondence “edas#Academic_Event” ≡ “ekaw#Scientific_Event” was found
using hybrid because “academic” and “scientific” were embedded in similar vec-
tor space for an overall similarity of 0.84. “conference#Track-workshop_chair”
≡ “ekaw#Workshop_Chair” was discovered using isub. ISUB similarity puts
greater emphasis on common substrings resulting in high similarity of 0.91. The
similarity between this pair is 0.6 using the Levenshtein distance approach. The
word “conference” appeared multiple times in conference# ontology resulting in
a low tf-idf weight. The correspondence “conference#Conference_document” ≡
“ekaw#Document” has a high similarity of 0.94 using vsm highlighting the re-
duced importance of “conference”. Also interesting is the comparison between
“edas#Paper” and “iasted#Submission” which returned low similarity scores
for all direct comparisons. The concepts have relations “edas#Document” ≺
“edas#Paper” and “iasted#Document” ≺ “iasted#Submission”. Comparing their
semantic neighbourhoods using context rightly identifies the pair as alignment
candidates with 0.76 similarity.

Influence of feature categories We dropped feature categories during clas-
sification of candidate alignments to analyse how the features influenced perfor-
mance. Precision and recall values were observed for each group of feature cate-

15 http://oaei.ontologymatching.org/2016/conference/eval.html

14 I. Nkisi-Orji et al.

Table 4: Similarity values for some correspondences discovered
Source concept

vs
Target concept

Similarity approaches

hybrid isub vsm context

conference#Paper
vs

confOf#Paper
1.0 1.0 1.0 0.28

edas#Academic_Event
vs

ekaw#Scientific_Event
0.84 0.61 0.34 0.72

conference#Track-workshop_chair
vs

ekaw#Workshop_Chair
0.56 0.91 0.42 0.25

conference#Conference_document
vs

ekaw#Document
0.57 0.81 0.94 0.33

edas#Paper
vs

iasted#Submission
0.18 0.0 0.0 0.76

gories as shown in Figure 4. Previous experiment configurations were reused and
performances were based on 10-fold cross-validation on the Conference dataset.

Fig. 4: Impact of excluding features categories.

Classification using all features (group 1) was best but only marginally bet-
ter than dropping the context features (group 7). Context features contributed
least to performance and this is further highlighted by weak performance when

Random forest classifier for ontology alignment 15

context features alone (group 4) are used for classification. We attribute the
weak performance on context features to insufficient data. Analysis showed that
only 3% of the candidate alignments identified using context similarity were ac-
tual alignments. Accordingly, the classifier model did not learn to effectively use
context information due to a significant class imbalance in training data. Also
interesting is the slight difference between using direct similarity features alone
(group 3) and dropping the direct similarity features (group 6). This suggests
that some similarity features are redundant for classifying candidate alignments.

5 Conclusion and future work

We introduced a classifier-based approach for ontology alignment which uses
a hybrid of string-based similarity features, semantic similarity features, and
semantic context features. Word embedding was used to generate semantic fea-
tures for a random forest classifier in addition to other novel similarity fea-
tures. Our experiments showed promising results and outperformed previous
known approach which incorporates word embedding. Also, comparison with
best-performing alignment systems at the OAEI challenge show that it can out-
perform state-of-the-art systems.

Future work will investigate a systematic determination of similarity thresh-
olds for selecting candidate alignments and how to deal with class imbalances in
generating the classifier model. Also, the ability to transfer a trained model to a
different domain will be explored. This is particularly useful in the initial stages
of alignment where there are no reference alignments with which to generate a
classifier model.

Acknowledgement

This work was supported in part by the British Geological Survey (BGS) through
the BGS University Funding Initiative (BUFI S291). We are grateful for the
valuable comments of our reviewers.

References

1. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
2. Cheatham, M., Hitzler, P.: String similarity metrics for ontology alignment. In:

International Semantic Web Conference. pp. 294–309. Springer (2013)
3. Cruz, I.F., Antonelli, F.P., Stroe, C.: AgreementMaker: Efficient matching for large

real-world schemas and ontologies. Proceedings of the VLDB Endowment 2(2),
1586–1589 (2009)

4. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API
4.0. Semantic web 2(1), 3–10 (2011)

5. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to
match ontologies on the semantic web. The VLDB Journal 12(4), 303–319 (2003)

6. Euzenat, J., Shvaiko, P., et al.: Ontology matching, vol. 333. Springer (2007)

16 I. Nkisi-Orji et al.

7. Gulić, M., Vrdoljak, B., Banek, M.: Cromatcher: An ontology matching system
based on automated weighted aggregation and iterative final alignment. Web Se-
mantics: Science, Services and Agents on the World Wide Web 41, 50–71 (2016)

8. Husein, I.G., Akbar, S., Sitohang, B., Azizah, F.N.: Review of ontology matching
with background knowledge. In: Data and Software Engineering (ICoDSE), 2016
International Conference on. pp. 1–6. IEEE (2016)

9. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for
linked open data. In: The Semantic Web–ISWC 2010, pp. 402–417. Springer (2010)

10. Li, J., Tang, J., Li, Y., Luo, Q.: RIMOM: A dynamic multistrategy ontology align-
ment framework. Knowledge and Data Engineering, IEEE Transactions on 21(8),
1218–1232 (2009)

11. Li, Y., McLean, D., Bandar, Z.A., O’shea, J.D., Crockett, K.: Sentence similarity
based on semantic nets and corpus statistics. IEEE transactions on knowledge and
data engineering 18(8), 1138–1150 (2006)

12. Lin, F., Sandkuhl, K.: A survey of exploiting wordnet in ontology matching. In:
IFIP International Conference on Artificial Intelligence in Theory and Practice.
pp. 341–350. Springer (2008)

13. Martínez-Romero, M., Vázquez-Naya, J.M., Nóvoa, F.J., Vázquez, G., Pereira, J.:
A genetic algorithms-based approach for optimizing similarity aggregation in on-
tology matching. In: International Work-Conference on Artificial Neural Networks.
pp. 435–444. Springer (2013)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Monge, A.E., Elkan, C., et al.: The field matching problem: Algorithms and appli-
cations. In: KDD. pp. 267–270 (1996)

16. Ngo, D., Bellahsene, Z.: YAM++: A multi-strategy based approach for ontology
matching task. In: Knowledge Engineering and Knowledge Management, pp. 421–
425. Springer (2012)

17. Ngo, D., Bellahsene, Z., Todorov, K.: Opening the black box of ontology matching.
In: Extended Semantic Web Conference. pp. 16–30. Springer (2013)

18. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology
matching: A literature review. Expert Systems with Applications 42(2), 949–971
(2015)

19. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Transactions on knowledge and data engineering 25(1), 158–176 (2013)

20. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In:
International Semantic Web Conference. pp. 624–637. Springer (2005)

21. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving
embedding. In: International Semantic Web Conference. pp. 628–644. Springer
(2017)

22. Zhang, Y., Wang, X., Lai, S., He, S., Liu, K., Zhao, J., Lv, X.: Ontology matching
with word embeddings. In: Chinese Computational Linguistics and Natural Lan-
guage Processing Based on Naturally Annotated Big Data, pp. 34–45. Springer
(2014)

