
Bipartite Graph Matching Algorithms for Clean-Clean
Entity Resolution: An Empirical Evaluation

George Papadakis1, Vasilis Efthymiou2, Emmanouil Thanos3, Oktie Hassanzadeh4
1National and Kapodistrian University of Athens, Greece gpapadis@di.uoa.gr

2Foundation for Research and Technology - Hellas, Greece vefthym@ics.forth.gr
3KU Leuven, Belgium emmanouil.thanos@kuleuven.be

4IBM Research, USA hassanzadeh@us.ibm.com

ABSTRACT
Entity Resolution (ER) is the task of finding records that refer to
the same real-world entities. A common scenario is when entities
across two clean sources need to be resolved, which we refer to as
Clean-Clean ER. In this paper, we perform an extensive empirical
evaluation of 8 bipartite graph matching algorithms that take in
as input a bipartite similarity graph and provide as output a set of
matched entities. We consider a wide range of matching algorithms,
including algorithms that have not previously been applied to ER, or
have been evaluated only in other ER settings.We assess the relative
performance of the algorithms with respect to accuracy and time
efficiency over 10 established, real datasets, from which we extract
>700 different similarity graphs. Our results provide insights into
the relative performance of these algorithms and guidelines for
choosing the best one, depending on the data at hand.

1 INTRODUCTION
Entity Resolution is a challenging, yet well-studied problem in
data integration [4, 23]. A common scenario is Clean-Clean ER
(CCER) [5], where the two data sources to be integrated are both
clean (i.e., duplicate-free), or are cleaned using single-source entity
resolution frameworks. Example applications include Master Data
Management [39], where a new clean source needs to be integrated
into the clean reference data, and Knowledge Graph matching and
completion [18, 46], where an existing clean knowledge base needs
to be augmented with an external source.

We focus on methods that take advantage of a large body of work
on blocking andmatching algorithms, which efficiently compare the
entities across two sources and provide as output pairs of entities
along with a confidence or similarity score [5, 9]. The output can
then be used to decide which pairs should be matched. The simplest
approach is specifying as duplicates all the pairs with a score higher
than a given threshold. Choosing a single threshold fails to address
the issue that in most cases the similarity scores vary significantly
depending on the characteristics of the entities. More importantly,
for CCER, this approach does not guarantee that each source entity
can be matched with at most one other entity. If we view the output
as a bipartite similarity graph, where the nodes are entity profiles
and the edgeweights are thematching scores between the candidate
duplicates, what we need is finding a matching (or independent
edge set [31]) so that each entity from one source is matched to at
most one entity in the other source.

In this paper, we present the results of our thorough evaluation
of efficient bipartite graph matching algorithms for CCER. To the
best of our knowledge, our study is the first to primarily focus

on bipartite graph matching algorithms, examining the relative
performance of the algorithms in a variety of data sets and methods
of creating the input similarity graph. Our goal is to answer the
following questions:Which bipartite graph matching algorithm is
the most accurate one, which is the most robust one, and which offers
the best balance between effectiveness and time efficiency? How well
do the main algorithms scale? Which characteristics of the input
graphs determine the absolute and the relative performance of the
algorithms? By answering these questions we intend to facilitate
the selection of the best algorithm for the data at hand.

In summary, we make the following contributions:
• In Section 3, we present an overview of eight efficient bipar-

tite graph1 matching algorithms along with an analysis of their
behavior and complexity. Some of the algorithms are adaptations
of efficient graph clustering algorithms that have not been applied
• In Section 4, we organize the input of bipartite graph partition-

ing algorithms into a taxonomy that is based on the learning-free
source of similarity scores/edge weights.
•We perform an extensive experimental analysis that involves

739 different similarity graphs from 10 established real-world CCER
datasets, whose sizes range from several thousands to hundreds of
million edges, as explained in Section 5.
• In Section 6, we assess the relative performance of thematching

algorithms with respect to effectiveness and time efficiency.
•We have publicly released the implementation of all algorithms

as well as our experimental results.1

2 PRELIMINARIES
We assume that an entity profile or simply entity is the description
of a real-world object, provided as a set of attribute-value pairs in
some entity collection 𝑉 . The problem of Entity Resolution (ER) is
to identify such entity profiles (called matches or duplicates) that
correspond to the same real-world object, and place them in a
common cluster 𝑐 . In other words, the output of ER, ideally, is a
set of clusters 𝐶 , each containing all the matching profiles that
correspond to a single real-world entity.

In this paper, we focus on the case of Clean-Clean ER (CCER),
in which we want to match profiles coming from two clean (i.e.,
duplicate-free) entity collections 𝑉1 and 𝑉2. This means that the
resulting clusters should contain at most two profiles, one from each
collection. Singular clusters, corresponding to profiles for which no
match has been found, are also acceptable.

1See https://github.com/scify/JedAIToolkit for more details.

ar
X

iv
:2

11
2.

14
03

0v
3

 [
cs

.D
B

]
 2

5
Fe

b
20

22

https://github.com/scify/JedAIToolkit

Papadakis, Efthymiou, Thanos, Hassanzadeh

To generate this clustering, a typical CCER pipeline [5] involves
the steps of (i) (meta-)blocking, i.e., indexing steps that generate
candidate matching pairs, this way reducing the otherwise quadratic
search space of matches, (ii) matching, assigning a similarity score
to each candidate pair, and (iii) bipartite graph matching, which
receives the scored candidate pairs and decides which pairs will be
placed together in a cluster. In this work, we evaluate how different
methods for the last step perform, when the previous ones are fixed.

Problem Definition. The task of Bipartite Graph Matching re-
ceives as input a bipartite similarity graph𝐺 = (𝑉1,𝑉2, 𝐸), where𝑉1
and𝑉2 are two clean entity collections, and 𝐸 ⊆ 𝑉1×𝑉2 is the set of
edges with weights in [0,1], corresponding to the similarity scores
between entity profiles of the two collections. Its output comprises
a set of partitions/clusters 𝐶 , with each one containing one node
𝑣𝑖 ∈ 𝑉1 ∪𝑉2 or two nodes 𝑣𝑖 ∈ 𝑉1 and 𝑣 𝑗 ∈ 𝑉2 that represent the
same real-world object.

Figure 1(a) shows an example of a bipartite similarity graph,
in which node partitions (entity collections) are labeled as 𝐴 (in
orange) and 𝐵 (in blue). The edges connect only nodes from 𝐴

to 𝐵 and are associated with a weight that reflects the similarity
(matching likelihood) of the adjacent nodes. Figures 1(b)–1(d) show
three different outputs of CCER, in which nodes within the same
oval (cluster) correspond to matching entities.

Related work. There is a rich body of literature on ER [4, 5].
Following the seminal Fellegi-Sunter model for record linkage [11],
a major focus of prior work has been on classifying pairs of input
records as match, non-match, or potential match. While even some
of the early work on record linkage incorporated a 1-1 matching
constraint [53], the primary focus of prior work, especially the most
recent one, has been on the effectiveness of the classification task,
mainly by leveraging Machine [22] and Deep Learning [3, 29, 36].

Inspired by the recent progress and success of prior work on
improving the efficiency of ER with blocking and filtering [43], we
target ER frameworks where the output of the matching is used
to construct a similarity graph that needs to be partitioned for the
final step of entity resolution. Hassanzadeh et al. [19] also target
such a framework, and perform an evaluation of various graph
clustering algorithms for entity resolution. However, they target a
scenario where input data sets are not clean or more than two clean
sources are merged into a dirty source that contains duplicates in
itself; as a result, each cluster could contain more than two records.
We refer to this variation of ER as Dirty ER [5]. Some of the bipartite
matching algorithms we use in this paper are adaptations of the
graph clustering algorithms used in [19] for Dirty ER.

More recent clustering methods for Dirty ER were proposed
in [?]. After estimating the connected components, Global Edge
Consistency Gain iteratively switches the label of edges so as to
maximize the overall consistency, i.e,. the number of triangles with
the same label in all edges.Maximum Clique Clustering ignores edge
weights and iteratively removes the maximum clique along with
its vertices until all nodes have been assigned to an equivalence
cluster. This approach is generalized by Extended Maximum Clique
Clustering, which removes maximal cliques from the similarity
graph and enlarges them by adding edges that are incident to a
minimum portion of their nodes.

Gemmel et al. [14] present two algorithms for CCER as well
as more algorithms for different ER settings (e.g., one-to-many

Table 1: Configuration parameters per algorithm.
Algor. Similarity Threshold 𝑡 Other
𝐶𝑁𝐶 ✓ ×
𝑅𝑆𝑅 ✓ ×
𝑅𝐶𝐴 ✓ ×
𝐵𝐴𝐻 ✓

maximum search steps (10,000)
maximum run-time per search step (2 min.)

𝐵𝑀𝐶 ✓ node partition used as basis
𝐸𝑋𝐶 ✓ ×
𝐾𝑅𝐶 ✓ ×
𝑈𝑀𝐶 ✓ ×

and many-to-many). Both algorithms are covered by the clustering
algorithms that are included in our study: the MutualFirstChoice is
equivalent to our Exact clustering, while the Greedy algorithm is
equivalent to UniqueMappingClustering. Finally, the MaxWeight
method [14] utilises the exact solution of the maximum weight
bipartite matching, for which an efficient heuristic approach is
considered in our Best Assignment Heuristic Clustering.

FAMER [46] is a framework that supports multiple matching and
clustering algorithms for multi-source ER. Although it studies some
common clustering algorithms with those explored in this paper
(e.g., Connected Components), our focus on bipartite graphs, which
do not support multi-source settings, makes the direct comparison
inapplicable. Note, though, that adapting FAMER’s top-performing
algorithm, i.e., CLIP clustering, to work in a CCER setting yields
an algorithm equivalent to Unique Mapping Clustering.

Wang et al. [49] follow a reinforcement learning approach, based
on a Q-learning [51] algorithm, for which a state is represented
by the pair (|𝐿 |, |𝑅 |), where 𝐿 ⊆ 𝑉1, 𝑅 ⊆ 𝑉2 are the nodes matched
from the two partitions, and the reward is computed as the sum
of the weights of the selected matches. We leave this algorithm
outside the scope of this study, as we consider only learning-free
methods, but we plan to further explore it in our future works.

Kriege et al. [24] present a linear approximation to the weighted
graph matching problem, but for that, they require that the edge
weights are assigned by a tree metric, i.e. a similarity measure that
satisfies a looser version of the triangle inequality. In this work, we
investigate algorithms that are agnostic to such similarity measure
properties, assuming only that the weights are in [0,1], as is the
case of most existing algorithms.

3 ALGORITHMS
We consider algorithms that satisfy the following selection criteria:

(1) They are crafted for bipartite similarity graphs, which apply
exclusively to CCER. Algorithms for the types of graphs
that correspond to Dirty and Multi-source ER have been
examined in [19] and [46], respectively.

(2) Their functionality is learning-free in the sense that they do
not learn a pruning model over a set of labelled instances.
We only use the ground-truth of real matches to optimize
their internal parameter configuration.

(3) Their time complexity is not worse than the brute-force
approach of ER, 𝑂 (𝑛2), where 𝑛 = |𝑉1 ∪𝑉2 | is the number
of nodes in the bipartite similarity graph 𝐺 = (𝑉1,𝑉2, 𝐸).

(4) Their space complexity is 𝑂 (𝑛 +𝑚), where𝑚 = |𝐸 | is the
number of edges in the given similarity graph.

Bipartite Graph Matching Algorithms for Clean-Clean ER

0.9
0.7

0.6
0.3

G3

A4

A2

A3

A1 B1

B2

B3

B4

A5

0.6

0.6
A1
B1

A2
B2

A3
B4

A5
B3

A4

A5
B1

A2
B2

A3
B4 A1

B3A4

A1

B1

A5

A2
B2

A3
B4

A4

(a) (c) (d)(b)

B3

Figure 1: Example of processing a similarity graph: (a) the similarity graph constructed for a pair of clean entity collections
(𝑉1 in orange and 𝑉2 in blue), (b) the resulting clusters after applying CNC, (c) the resulting partitions/clusters assuming that
the approximation algorithms RCA or BAH retrieved the optimal solution for the maximumweight bipartite matching or the
assignment problem, and (d) the resulting clusters after applying UMC, BMC or EXC.

Due to the third criterion, we exclude the classic Hungarian algo-
rithm, also known as the Kuhn-Munkres algorithm [25], whose time
complexity is cubic, 𝑂 (𝑛3). For the same reason, we exclude the
work of Schwartz et al. [48] on 1-1 bipartite graph matching with
minimum cumulative weights, which reduces the problem to a min-
imum cost flow problem and uses the matching algorithm of Fred-
man & Tarjan [12] to provide an approximate solution in O(𝑛2𝑙𝑜𝑔𝑛).
Note that most of the considered algorithms depend on the number
of edges𝑚 in the similarity graph, which is equal to 𝑛2 in the worst
case. In practice, though, its value is determined by the similarity
threshold 𝑡 , which is used by each algorithm to prune all edges with
a lower weight. For reasonable thresholds, 𝑂 (𝑛) ≤ 𝑚 ≪ 𝑂 (𝑛2).

Below, we describe the selected algorithms. Table 1 summarizes
their configuration parameters. Their implementation (in Java) is
publicly available through the JedAI toolkit [42].

Connected Components (CNC). This is the simplest algo-
rithm: it discards all edges with a weight lower than the simi-
larity threshold and then computes the transitive closure of the
pruned similarity graph. In the output, it solely retains the par-
titions/clusters that contain two entities – one from each entity
collection. Using a simple depth-first approach, its time complexity
is 𝑂 (𝑚) [6].

Ricochet Sequential Rippling Clustering (RSR). This algo-
rithm is an adaptation of the homonymous method for Dirty ER in
[19] such that it exclusively considers clusters with just one entity
from each entity collection. After pruning the edges weighted lower
than 𝑡 , RSR sorts all nodes from both𝑉1 and𝑉2 in descending order
of the average weight of their adjacent edges. Whenever a new
seed is chosen from the sorted list, the first adjacent vertex that
is currently unassigned or is closer to the new seed than it is to
the seed of its current partition is re-assigned to the new cluster.
If a partition is reduced to a singleton after a re-assignment, it is
placed in its nearest single-node cluster. The algorithm stops when
all nodes have been considered. Its time complexity is 𝑂 (𝑛 𝑚) [52].

Row Column Assignment Clustering (RCA). This approach
is based on the Row-Column Scan approximation method in [26]
that solves the assignment problem. It requires two passes of the
similarity graph, with each pass generating a candidate solution. In
the first pass, each entity from 𝑉1 creates a new partition, to which
the most similar, currently unassigned entity from 𝑉2 is assigned.
Note that, in principle, any pair of entities can be assigned to the

same partition at this step even if their similarity is lower than 𝑡 ,
since the assignment problem assumes that each vertex from 𝑉1
is connected to all vertices from 𝑉2 (any “job” can be performed
by all “men”). The clusters of pairs with similarity less than 𝑡 are
then discarded. In the second pass, the same procedure is applied
to the entities/nodes of𝑉2. The value of each solution is the sum of
the edge weights between the nodes assigned to the same (2-node)
partition. The solution with the highest value is returned as output.
Its time complexity is 𝑂 (|𝑉1 | |𝑉2 |) [40].

Best Assignment Heuristic (BAH). This algorithm applies a
simple swap-based random-search algorithm to heuristically solve
the maximum weight bipartite matching problem and uses the
resulting solution to create the output partitions. Initially, each
entity from the smaller entity collection is connected to an entity
from the larger one. In each iteration of the search process, two
entities from the larger entity collection are randomly selected in
order to swap their current connections. If the sum of the edge
weights of the new pairs is higher than the previous pairs, the
swap is accepted. The algorithm stops when a maximum number
of search steps is reached or when a maximum run-time has been
exceeded. In our case, the run-time limit has been set to 2 minutes.

BestMatchClustering (BMC). This algorithm is inspired from
the Best Match strategy of [34], which solves the stable marriage
problem [13], as simplified in BigMat [1]. For each entity of the one
entity collection, this algorithm creates a new partition, in which
the most similar, not-yet-clustered entity from the other entity col-
lection is also placed – provided that the corresponding edge weight
is higher than 𝑡 . Note that the greedy heuristic for BMC introduced
in [34] is the same, in principle, to Unique Mapping Clustering (see
below). Note also that an additional configuration parameter is the
entity collection that is used as the basis for creating partitions,
which can be set to 𝑉1 or 𝑉2. In our experiments, we examine both
options and retain the best one. Its time complexity is 𝑂 (𝑚) [40].

Exact Clustering (EXC). This algorithm is inspired from the
Exact strategy of [34]. EXC places two entities in the same partition
only if they are mutually the best matches, i.e., the most similar
candidates of each other, and their edge weight exceeds 𝑡 . This
approach is basically a stricter, symmetric version of BMC and
could also be conceived as a strict version of the reciprocity filter
that was employed in [10]. Its time complexity is 𝑂 (𝑛 𝑚).

Papadakis, Efthymiou, Thanos, Hassanzadeh

Király’s Clustering (KRC). This algorithm is an adaptation of
the linear time 3/2 approximation to the maximum stable marriage
problem, called “New Algorithm” in [21]. Intuitively, the entities
of 𝑉1 (“men” [21]) propose to the entities from 𝑉2 with an edge
weight higher than 𝑡 (“women” [21]) to form a partition (“get en-
gaged” [21]). The entities of 𝑉2 accept a proposal under certain
conditions (e.g., if it’s the first proposal they receive), and the par-
titions and preferences are updated accordingly. Entities from 𝑉1
get a second chance to make proposals and the algorithm termi-
nates when all entities of𝑉1 are in a partition, or no more proposal
chances are left. We omit some of the details (e.g., the rare case
of “uncertain man”), due to space restrictions, and refer the reader
to [21, 40] for more information (e.g., the acceptance criteria for
proposals). Its time complexity is 𝑂 (𝑛 +𝑚 𝑙𝑜𝑔𝑚) [21].

Unique Mapping Clustering (UMC). This algorithm prunes
all edges with a weight lower than 𝑡 , sorts the remaining ones in
decreasing weight/similarity and iteratively forms a partition for
the top-weighted pair as long as none of its entities has already
been matched to some other. This comes from the unique mapping
constraint of CCER, i.e., the restriction that each entity from the
one entity collection matches with at most one entity from the
other. Note that the CLIP Clustering algorithm, introduced for the
multi-source ER problem in [47], is equivalent to UMC in the CCER
case that we study. Its time complexity is 𝑂 (𝑚 𝑙𝑜𝑔𝑚) [40].

Example. Figure 1 demonstrates an example of applying the
above algorithms to the similarity graph in Figure 1(a). For all
algorithms, we assume a weight threshold of 0.5.

CNC completely discards the 4-node connected component (𝐴1,
𝐵1, 𝐴5, 𝐵3) and considers exclusively the valid partitions (𝐴2, 𝐵2)
and (𝐴3, 𝐵4), as demonstrated in Figure 1(b).

Algorithms that aim to maximize the total sum of edge weights
between the matched entities, such as RCA and BAH, will cluster
𝐴1with 𝐵1 and𝐴5with 𝐵3, as shown in Figure 1(c), if they manage
to find the optimal solution for the given graph. The reason is that
this combination of edge weights yields a sum of 0.6 + 0.6 = 1.2,
which is higher than 0.9, i.e., the sum resulting from clustering 𝐴5
with 𝐵1 and leaving 𝐴1 and 𝐵3 as singletons.

UMC starts from the top-weighted edges, matching 𝐴5 with 𝐵1,
𝐴2 with 𝐵2 and 𝐴3 with 𝐵4; 𝐴1 and 𝐵3 are left as singletons, as
shown in Figure 1(d), because their candidates have already been
matched to other entities. The same output is produced by EXC,
as the entities in each partition consider each other as their most
similar candidate. For this reason, BMC also yields the same results
assuming that 𝑉2 (blue) is used as the basis entity collection.

The partitions generated by RSR and KRL depend on the se-
quence of adjacent vertices and proposals, respectively. Given,
though, that higher similarities are generally more preferred than
increasing total sum by both of these algorithms, the outcome in
Figure 1(d) is the most possible one for these algorithms, too.

4 SIMILARITY GRAPHS
Two types of methods can be used for the generation of the simi-
larity graphs that constitute the input to the above algorithms [4]:

(i) learning-free methods, which produce similarity scores in an
unsupervised manner based on the content of the input entities, and

(ii) learning-based methods, which produce probabilistic similar-
ities based on a training set.

In this work, we exclude the latter, focusing exclusively on
learning-free methods. Thus, we make the most of the selected
datasets, without sacrificing valuable parts for the construction
of the training (and perhaps the validation) set. We also avoid de-
pending on the fine-tuning of numerous configuration parameters,
especially in the case of Deep Learning-based methods [50]. Besides,
our goal is not to optimize the performance of the CCER process,
but to investigate how the main graph matching algorithms per-
form under a large variety of real settings. For this reason, we
produce a large number of similarity graphs per dataset, rather
than generating synthetic data.

In this context, we do not apply any blocking method when
producing these inputs. Instead, we consider all pairs of entities
from different datasets with a similarity higher than 0. This allows
for experimenting with a large variety of similarity graph sizes,
which range from several thousand to hundreds of million edges.
Besides, the role of blocking, i.e., the pruning of the entity pairs with
very low similarity scores, is performed by the similarity threshold
𝑡 that is employed by all algorithms.

The resulting similarity graphs differ in the number of edges and
the corresponding weights, which were produced using different
similarity functions. Each similarity function consists of two parts:
(i) the representation model, and (ii) the similarity measure.

The representation model transforms a textual value into a
model that is suitable for applying the selected similarity measure.
Depending on the scope of these representations, we distinguish
them into (i) schema-agnostic and (ii) schema-based. The former
consider all attribute values in an entity description, while the latter
consider only the value of a specific attribute. Depending on their
form, we also distinguish the representations into (i) syntactic and
(ii) semantic. The former operate on the original text of the entities,
while the latter operate on vector transformations (embeddings) of
the original text that aim to capture its actual connotation, lever-
aging external information that has been extracted from large and
generic corpora through unsupervised learning.

The schema-based syntactic representations process each value
as a sequence of characters or words and apply to mostly short
textual values. For example, the attribute value “Joe Biden” can
be represented as the set of tokens {‘Joe’, ‘Biden’}, or the set of
character 3-grams {‘Joe’, ‘oe_’, ‘e_B’, ‘_Bi’, ‘Bid’, ‘ide’, ‘den’}.

The schema-agnostic syntactic representations process the set of
all individual attribute values. We use two types of models that
have been widely applied to document classification tasks [41]:

(i) an n-gram vector [33], whose dimensions correspond to char-
acter or token n-grams and are weighted according to their fre-
quency (TF or TF-IDF score). This approach does not consider the
order of n-gram appearances in each value.

(ii) an n-gram graph [15], which transforms each value into a
graph, where the nodes correspond to character or token n-grams,
the edges connect those co-occurring in a window of size 𝑛 and the
edge weights denote the n-gram’s co-occurrence frequency. Thus,
the order of n-grams in a value is preserved.

Following the previous example, the character 3-gram vector of
“Joe Biden” would be a sparse vector with as many dimensions as all
the 3-grams appearing in the entity collection and with zeros in all
other places except the ones corresponding to the seven character

Bipartite Graph Matching Algorithms for Clean-Clean ER

3-grams of “Joe Biden” listed above. For the places corresponding to
those seven 3-grams, the value would be the TF or TF-IDF of each
3-gram. Similarly, a token 2-gram vector of “Joe Biden” would be
all zeros, for each token 2-gram appearing in all the values, except
for the place corresponding to the 2-gram ‘Joe Biden’, where its
value would be 1. A character 3-gram graph would be a graph with
seven nodes, one for each 3-gram listed above, connecting the node
‘Joe’ to the nodes ‘oe_’ and ‘e_B’, each with an edge of weight 1,
‘oe_’ to ‘e_B’ and ‘_Bi’, etc. See [40] for more details.

Both approaches build an aggregate representation per entity:
the n-gram vectors treat each entity as a “document” and adjust
their weights accordingly, while the individual n-gram graphs of
each value are merged into a larger “entity graph” through the
update operator discussed in [15]. For both approaches, we consider
𝑛 ∈ {2, 3, 4} for character and 𝑛 ∈ {1, 2, 3} for token n-grams.

The semantic representations treat every text as a sequence of
items (words or character n-grams) of arbitrary length and convert
it into a dense numeric vector based on learned external patterns.
The closer the connotation of two texts is, the closer are their
vectors. These representations come in two main forms, which
apply uniformly to schema-agnostic and schema-based settings:

(i) The pre-trained embeddings of word- or character-level. Due
to the highly specialized content of ER tasks (e.g., arbitrary alphanu-
merics in product names), the former, which include word2vec [35]
and GloVe [44], suffer from a high portion of out-of-vocabulary
tokens – these are words that cannot be transformed into a vector
because they are not included in the training corpora [36]. This
drawback is addressed by the character-level embeddings: fastText
vectorizes a token by summing the embeddings of all its char-
acter n-grams [2]. For this reason, we exclusively consider the
300-dimensional fastText in the following.

(ii) Transformer-based language models [8] go beyond the shal-
low, context-agnostic pre-trained embeddings by vectorizing an
item based on its context. In this way, they assign different vectors
to homonyms, which share the same form, but different meaning
(e.g., “bank” as a financial institution or as the border of a river).
They also assign similar vectors to synonyms, which have different
form, but almost the same meaning (e.g., “enormous” and “vast”).
Several BERT-based language models have been applied to ER in
[3, 29]. They do suffer from out-of-vocabulary tokens, but to the
best of our knowledge, there is no established character-level lan-
guage model that could address this issue, as fastText does for
pre-trained embeddings. Among them, we exclusively consider the
768-dimensional ALBERT, due to its higher efficiency [27].

Every similarity measure receives as input two representation
models and produces a score that is proportional to the likelihood
that the respective entities correspond to the same real world object:
the higher the score, the more similar are the input models and
their textual values and the higher is the matching likelihood.

For each type of representation models, we considered a large
variety of established similarity measures. The following are com-
bined with the character-level schema-based representation models:
Damerau-Levenshtein, Levenshtein and q-grams distance, Jaro Sim-
ilarity, Needleman Wunch, Longest Common Subsequence and
Longest Common Subsequence. To the token-level, schema-based
models we apply: Cosine, Dice and (Generalized) Jaccard similarity
as well as Monge-Elkan, Overlap Coefficient, Block and Euclidean

distance. The schema-agnostic n-gram vectors are coupled with
Arcs and Jaccard similarity as well as with Cosine and General-
ized Jaccard similarity with TF or TF-IDF weights. For the n-gram
graphs, we consider Containment, (Normalized) Value and Overall
similarity. Finally, the semantic similarity models are combined
with Cosine, Euclidean and World Mover’s similarity. We formally
define these measures in the Appendix of [40].

5 EXPERIMENTAL SETUP
All experiments were carried out on a server running Ubuntu 18.04.5
LTS with a 32-core Intel Xeon CPU E5-4603 v2 (2.20GHz), 128 GB
of RAM and 1.7 TB HDD. All time experiments were executed on a
single core. For the implementation of the schema-based syntactic
similarity functions, we used the Simmetrics Java package2. For
the schema-agnostic syntactic similarity functions, we used the
implementation provided by the JedAI toolkit (the implementation
of n-gram graphs and the corresponding graph similarities is based
on the JIinsect toolkit3). For the semantic representation models, we
employed the Python sister package4, which supports both fastText
and ALBERT. For the computation of the semantic similarities, we
used the Python scipy package.5

Datasets. In our experiments, we use 10 real-world, established
datasets for ER, whose technical characteristics appear in Table 2,
where |𝑉𝑥 | stands for the number of input entities, |𝑁𝑉𝑃𝑥 | for the
total number of name-value pairs, |𝐴𝑥 | for the number of attributes
and |𝑝𝑥 | for the average number of name-value pairs per entity
profile in Dataset𝑥 . |𝐷 (𝑉1 ∩𝑉2) | denotes the number of duplicates
in the ground-truth and | |𝑉1 ×𝑉2 | | the number of pairwise compar-
isons executed by the brute-force approach. 𝐷1, which was intro-
duced in OAEI 20106, contains data about restaurants. 𝐷2 matches
products from the online retailers Abt.com and Buy.com [23]. 𝐷3

interlinks products from Amazon and the Google Base data API
(Google Pr.) [23]. 𝐷4 contains data about publications from DBLP
and ACM [23]. 𝐷5 − 𝐷7 contain data about television shows from
TheTVDB.com (TVDB) and movies from IMDb and themoviedb.org
(TMDb) [38]. 𝐷8 contains data about products from Walmart and
Amazon [36]. 𝐷9 contains data about scientific publications from
DBLP and Google Scholar [23]. 𝐷10 matches movies from IMDb
and DBpedia [42] (note that 𝐷10 contains a different snapshot of
IMDb movies than 𝐷5 and 𝐷6). All datasets are publicly available
through the JedAI data repository.7

Note that for the schema-based settings (both the syntactic and
semantic ones), we used only the attributes that combine high
coverage with high distinctiveness. That is, they appear in the
majority of entities, while conveying a rich diversity of values, thus
yielding high effectiveness. These attributes are “name” and “phone”
for 𝐷1, “name” for 𝐷2, “title” for 𝐷3, “title” and “authors” for 𝐷4,
“modelno” and “title” for 𝐷5, “title” and “authors” for 𝐷6, “name”
and “title” for 𝐷7, “title” and “name” for 𝐷8, “title” and “abstract”
for 𝐷9, and “title” for 𝐷10.

2https://github.com/Simmetrics/simmetrics
3https://github.com/ggianna/JInsect
4https://pypi.org/project/sister
5https://www.scipy.org
6http://oaei.ontologymatching.org/2010/im
7https://github.com/scify/JedAIToolkit/tree/master/data

https://github.com/Simmetrics/simmetrics
https://github.com/ggianna/JInsect
https://pypi.org/project/sister
https://www.scipy.org
http://oaei.ontologymatching.org/2010/im
https://github.com/scify/JedAIToolkit/tree/master/data

Papadakis, Efthymiou, Thanos, Hassanzadeh

Table 2: Technical characteristics of the real datasets for Clean-Clean ER in increasing number of computational cost.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Dataset1 Rest.1 Abt Amazon DBLP IMDb IMDb TMDb Walmart DBLP IMDb
Dataset2 Rest.2 Buy Google Pr. ACM TMDb TVDB TVDB Amazon Scholar DBpedia
|𝑉1 | 339 1,076 1,354 2,616 5,118 5,118 6,056 2,554 2,516 27,615
|𝑉2 | 2,256 1,076 3,039 2,294 6,056 7,810 7,810 22,074 61,353 23,182
NVP1 1,130 2,568 5,302 10,464 21,294 21,294 23,761 14,143 10,064 1.6·105
NVP2 7,519 2,308 9,110 9,162 23,761 20,902 20,902 1.14·105 1.98·105 8.2·105
|𝐴1 | 7 3 4 4 13 13 30 6 4 4
|𝐴2 | 7 3 4 4 30 9 9 6 4 7
|𝑝1 | 3.33 2.39 3.92 4.00 4.16 4.16 3.92 5.54 4.00 5.63
|𝑝2 | 3.33 2.14 3.00 3.99 3.92 2.68 2.68 5.18 3.24 35.20
|𝐷 (𝑉1∩𝑉2) | 89 1,076 1,104 2,224 1,968 1,072 1,095 853 2,308 22,863
| |𝑉1 ×𝑉2 | | 7.65·105 1.16·106 4.11·106 6.00·106 3.10·107 4.00·107 4.73·107 5.64·107 1.54·108 6.40·108

Evaluation Measures. In order to assess the relative perfor-
mance of the above graph matching algorithms, we evaluate both
their effectiveness and their time efficiency (and scalability). We
measure their effectiveness, with respect to a ground truth of known
matches, in terms of three measures:
• Precision denotes the portion of output partitions that involve

two matching entities.
• Recall denotes that portion of partitions with two matching

entities that are included in the output.
• F-Measure (𝐹1) is the harmonic mean of Precision and Recall.

All are defined in [0, 1]. Higher values show higher effectiveness.
For time efficiency, we measure the average run-time of an al-

gorithm for each setting, i.e., the time that intervenes between
receiving the weighted similarity graph as input and returning the
partitions as output, over 10 repeated executions.

Generation Process. To generate a large variety of input simi-
larity graphs, we apply every similarity function described in Sec-
tion 4 to all datasets in Table 2. We actually apply all combinations
of representation models and similarity measures, thus yielding 60
schema-agnostic syntactic similarity graphs per dataset, 16 schema-
based similarity graphs per attribute in each dataset, and 12 seman-
tic similarity graphs per dataset. Note that we did not apply any
fine-tuning to ALBERT, as our goal is not optimize ER performance,
but rather to produce diverse inputs.

To estimate the algorithms’ performance, we first apply min-max
normalization to the edgeweights of all similarity graphs, regardless
of the similarity function that produced them, to ensure that they
are restricted to [0, 1]. Next, we apply every algorithm to every
input similarity graph by varying its similarity threshold from 0.05
to 1.0 with a step of 0.05 (preliminary experiments showed that there
is no significant difference in the experimental results when using a
smaller step size like 0.01. Thus, we set it to 0.05 to reduce the effort
for the experiments, due to the large number of algorithms, inputs
and datasets they involve). The largest threshold that achieves the
highest F-Measure is selected as the optimal one, determining the
performance of the algorithm for the particular input.

Special care was taken to clean the experimental results from
noise. We removed all similarity graphs where all matching entities
had a zero edge weight. We also removed all noisy graphs, where
all algorithms achieve an F-Measure lower than 0.25. Finally, we
cleaned our data from duplicate inputs, i.e., similarity graphs that

Table 3: The number of similarity graphs |𝐺 | as well as their
size, in terms of the average number of edges |𝐸 |, per dataset.
In parenthesis, the ratio of |𝐸 | to | |𝑉1 ×𝑉2 | | (cf. Table 2).

Syntactic Similarities Semantic Similarities
Schema-based Schema-ag. Schema-based Schema-ag.

|G | |Ē | ·106 |G | |Ē | ·106 |G | |Ē | ·106 |G | |Ē | ·106

𝐷1 20 0.16 (21.2%) 46 0.72 (93.5%) 8 0.26 (34.3%) 2 0.76 (100%)
𝐷2 12 1.05 (90.5%) 47 0.64 (55.1%) 2 1.16 (100%) 2 1.16 (100%)
𝐷3 14 2.89 (70.5%) 53 2.65 (64.5%) 2 4.11 (100%) 2 4.11 (100%)
𝐷4 27 4.49 (74.8%) 24 3.84 (64.0%) 12 5.99 (99.8%) 4 6.00 (100%)
𝐷5 24 5.81 (18.7%) 48 11.92 (38.5%) 12 8.22 (26.7%) 2 30.64 (98.8%)
𝐷6 25 8.39 (21.0%) 45 10.99 (27.5%) 12 12.31 (30.8%) 2 39.81 (99.6%)
𝐷7 26 2.80 (05.9%) 42 12.21 (25.8%) 12 36.44 (07.8%) 5 46.99 (99.3%)
𝐷8 26 28.10 (49.8%) 47 37.31 (66.2%) 2 37.70 (67.0%) - -
𝐷9 20 119.18 (77.2%) 46 77.56 (50.2%) 6 154.26 (100%) 2 154.36 (100%)
𝐷10 13 250.73 (39.2%) 43 317.17 (49.5%) 2 378.51 (59.0%) - -
Σ 207 - 441 - 70 - 21 -

emanate from the same dataset but different similarity functions
and have the same number of edges, while at least two different
algorithms achieve their best performance with the same similarity
threshold, exhibiting almost identical effectiveness, i.e., the differ-
ence in F-Measure and precision or recall is less than 0.2%.

The characteristics of the retained similarity graphs appear in
Table 3. Overall, there are 739 different similarity graphs, most
of which rely on syntactic similarity functions and the schema-
agnostic settings, in particular. The reason is that the semantic
similarities assign relatively high similarity scores to most pairs of
entities, thus resulting in poor performance for all considered algo-
rithms – especially in the schema-agnostic settings. Every dataset
is represented by at least 58 similarity graphs, in total, while the
average number of edges ranges from 160K to 379M. This large set
of real-world similarity graphs allows for a rigorous testing of the
graph matching algorithms under diverse conditions.

6 EXPERIMENTAL ANALYSIS
Effectiveness Measures. The most important performance aspect
of clustering algorithms is their ability to effectively distinguish the
matching from the non-matching pairs. In this section, we examine
this aspect, addressing the following questions:
QE(1): What is the trade-off between precision and recall that is

achieved by each algorithm?
QE(2): Which algorithm is the most/least effective?
QE(3): How does the type of input affect the effectiveness of the

evaluated algorithms?

Bipartite Graph Matching Algorithms for Clean-Clean ER

Table 4: Macro-average performance across all similarity graphs.

Precision Recall F-Measure
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

𝐶𝑁𝐶 0.801 0.185 0.403 0.257 0.490 0.237
𝑅𝑆𝑅 0.615 0.228 0.455 0.239 0.499 0.216
𝑅𝐶𝐴 0.590 0.224 0.502 0.238 0.518 0.211
𝐵𝐴𝐻 0.548 0.236 0.383 0.282 0.408 0.246
𝐵𝑀𝐶 0.631 0.212 0.582 0.221 0.586 0.196
𝐸𝑋𝐶 0.735 0.197 0.544 0.242 0.591 0.199
𝐾𝑅𝐶 0.696 0.200 0.597 0.223 0.619 0.187
𝑈𝑀𝐶 0.645 0.212 0.628 0.212 0.618 0.193

QE(4): Which other factors affect their effectiveness?
To answer QE(1) and QE(2), we consider the macro-average per-

formance (𝜇) of all algorithms across all input similarity graphs,
which is reported in Table 4. We observe that all algorithms em-
phasize on precision at the cost of lower recall. The most balanced
algorithm is UMC, as it yields the smallest difference between the
two measures (just 0.017). In contrast, CNC constitutes the most
imbalanced algorithm, as its precision is almost double its recall.
The former achieves the second best F-Measure, being very close
to the top performer KRC, while the latter achieves the second
worst F-Measure, surpassing only BAH. Note that BAH is the least
robust with respect to all measures, as indicated by their standard
deviation (𝜎), due to its stochastic functionality, while CNC, UMC
and KRC are the most robust with respect to precision, recall and
F-Measure, respectively. Among the other algorithms, EXC and
BMC are closer to KRC and UMC, with the former achieving the
third highest F1, while RSR and RCA lie closer to CNC, with RSR
exhibiting the third lowest F1.

To assess the statistical significance of these patterns, we per-
form an analysis [20] based on their F-Measure over the 739 paired
samples. In more detail, we first perform the non-parametric Fried-
man test [7] and reject the null hypothesis (with 𝛼 = 0.05) that the
differences between the evaluated methods are statistically insignif-
icant. Then, we perform a post-hoc Nemenyi test [37] to identify
the critical distance (CD = 0.37) between the methods. The Nemenyi
diagram based on F-Measure, which appears in Figure 2, shows
that there are no significant differences among the methods with
the worst ranks with respect to F-Measure (CNC, RCA, BAH, and
RSR). All other differences are significant, with KRC, UMC, EXC,
and BMC, ranking first (in that order).

We have also performed the same analysis for Precision and for
Recall [40] (the same CD of 0.37 applies). The Precision-based rank-
ing (reporting Mean Rank, MR) of the methods is: CNC (MR=1.28),
EXC (MR=2.5), KRC (MR=3.7), UMC (MR=4.81), BMC (MR=5.3),
RSR (MR=5.66), BAH (MR=6.12), and RCA (MR=6.64), so there is no
significant difference between BMC and RSR, while all other differ-
ences are significant. The Recall-based ranking of the methods is:
UMC (MR=1.77), KRC (MR=2.44), BMC (MR=3.15), EXC (MR=4.34),
RCA (MR=5.46), RSR (MR=5.92), BAH (MR=5.93), and CNC (MR=7),
so there is no significant difference between RSR and BAH, while
all other differences are significant.

An interesting observation drawn from these patterns is that EXC
consistently achieves higher precision and lower recall than BMC.

Figure 2: Nemenyi diagram based on F-Measure.

This should be expected, given that EXC requires an additional
reciprocity check before declaring that two entities match. We
notice, however, that the gain in precision is greater than the loss
in recall and, thus, EXC yields a higher F-Measure than BMC, on
average. Note also that in the vast majority of cases, BMC works
best when choosing the smallest entity collection as the basis for
creating clusters.

To answer QE(3), Figure 3 presents the distribution of precision,
recall and F-Measure of all algorithms across the four types of
similarity graphs’ origin. For the schema-based syntactic weights,
we observe in Figure 3(a) that the average precision of all algorithms
increases significantly in comparison to the one in Table 4 - from
4.0% (CNC) to 16.8% (BMC). For CNC and RSR, this is accompanied
by an increase in average recall (by 7.7% and 5.1%, respectively),
while for all other algorithms, the average recall drops between 4.8%
(EXC) and 7.5% (KRC). This means that the schema-based syntactic
similarities reinforce the imbalance between precision and recall in
Table 4 in favor of the former for all algorithms except CNC and
RSR. The average F-Measure drops only for KRC (by 0.2%), which is
now outperformed by UMC. Similarly, BMC exceeds EXC in terms
of average F1 (0.603 vs 0.599), because the increase in its mean
precision is much higher than the decrease in its mean recall. Finally,
it is worth noting that this type of input increases significantly the
robustness of all algorithms, as the standard deviation of F1 drops
by more than 12% for all algorithms, but the stochastic BAH.

The opposite patterns are observed for schema-agnostic syntactic
weights in Figure 3(b): the imbalance between precision and recall
is reduced, as on average, the former drops from 1.9% (EXC) to 5.3%
(BAH), while the latter raises from 2.4% (RSR) to 7.6% (RCA). The
imbalance is actually reversed for BMC and UMC, whose average
recall (0.613 and 0.664, resp.) exceeds their average precision (0.606
and 0.622, resp.). The only exception is CNC, which increases both
its average and average precision. Overall, there are minor, positive
changes in the average F-Measure of most algorithms, with KRC
and EXC retaining a minor edge over UMC and BMC, respectively.

Regarding the semantic similarity weights, we observe in Fig-
ure 3(c) similar patterns with the schema-based syntactic ones:
average precision increases for all algorithms except CNC and RSR,
while average recall drops in all cases. In this case, though, the
latter change is stronger than the former, leading to lower average
F-Measures than those in Table 4. In the case of schema-agnostic
semantic weights, all measures in Figure 3(d) drop to a significant
extend (>15% in most cases) when compared to Table 4. It is also
remarkable that the standard deviation of all measures increases
to a significant extent for both schema-based and schema-agnostic
weights in relation to their syntactic counterparts, despite the fewer
similarity graphs. As a result, the robustness of all algorithms over
semantic weights is limited. Nevertheless, KRC and EXC maintain
a clear lead over UMC andMBC, respectively.

Papadakis, Efthymiou, Thanos, Hassanzadeh

Figure 3: Precision (left), recall (center) and F-Measure (right) of all algorithms over similarity graphs with (a) schema-based
syntactic, (b) schema-agnostic syntactic, (c) schema-based semantic, and (d) schema-agnostic semantic edge weights.

To answer QE(4), we distinguish the similarity graphs into three
categories according to the portion of duplicates in their ground
truth with respect to the size of |𝑉1 | and |𝑉2 |:

(i) Balanced (BLC) are the entity collections where the vast ma-
jority of entities in𝑉𝑖 are matched with an entity in𝑉𝑗 (i=1 ∧ j=2 or
i=2 ∧ j=1). This category includes all similarity graphs generated
from 𝐷2, 𝐷4 and 𝐷10.

(ii) One-sided (OSD) are the entity collections, where only the
vast majority of entities in 𝑉1 are matched with an entity from 𝑉2,
or vice versa. OSD includes all graphs stemming from 𝐷3 and 𝐷9.

(iii) Scarce (SCR) are the entity collections, where a small portion
of entities in𝑉𝑖 are matched with an entity in𝑉𝑗 (i=1 ∧ j=2 or i=2 ∧
j=1). This category includes all graphs generated from 𝐷1, 𝐷5-𝐷8.

We apply this categorization to the four main types of similarity
graphs defined in Section 4 and for each subcategory, we consider
three new effectiveness measures:

(i) #𝑇𝑜𝑝1 denotes the number of times an algorithm achieves
the maximum F-Measure for a particular category of similarity
graphs,

Bipartite Graph Matching Algorithms for Clean-Clean ER

Table 5: The number of times each algorithm achieves the highest and second highest F1 for a particular similarity graph,
#𝑇𝑜𝑝1 and #𝑇𝑜𝑝2, resp., as well as the average difference Δ (%) with the second highest F1 across all types of edge weights
for balanced (BLC), one-sided (OSD) and scarce (SCR) entity collections. OVL stands for the overall sums or averages across all
similarity graphs per category. Note that there are ties for both#𝑇𝑜𝑝1 and#𝑇𝑜𝑝2: 16 and 40, resp., over schema-based syntactic
weights, 17 and 11, resp., over schema-agnostic syntactic weights, 9 and 2, resp., over schema-based semantic weights.

Syntactic Similarities Semantic Similarities
Schema-based Schema-agnostic Schema-based Schema-agnostic

BLC OSD SCR OVL BLC OSD SCR OVL BLC OSD SCR OVL BLC OSD SCR OVL

𝐶𝑁𝐶
#𝑇𝑜𝑝1 - - 18 18 - - 48 48 - - 1 1 - - - -
Δ (%) - - 0.41 0.41 - - 7.59 7.59 - - 0.33 0.33 - - - -
#𝑇𝑜𝑝2 - - 8 8 - - 8 8 - - 4 4 - - - -

𝑅𝑆𝑅
#𝑇𝑜𝑝1 - - 4 4 - - 1 1 - - 1 1 - - - -
Δ (%) - - 1.90 1.90 - - 0.51 0.51 - - 0.33 0.33 - - - -
#𝑇𝑜𝑝2 - - 7 7 - - 5 5 - - 1 1 - - 1 1

𝑅𝐶𝐴
#𝑇𝑜𝑝1 - - - - - - - - - - - - - - - -
Δ (%) - - - - - - - - - - - - - - - -
#𝑇𝑜𝑝2 - - - - - - 1 1 - - - - - - - -

𝐵𝐴𝐻
#𝑇𝑜𝑝1 8 - 1 9 40 - 2 42 2 - 1 3 2 - 1 3
Δ (%) 3.69 - 1.90 3.49 5.55 - 0.46 5.31 12.72 - 0.67 8.70 13.96 - 0.52 9.48
#𝑇𝑜𝑝2 8 - 3 11 7 5 6 18 - - 2 2 - - - -

𝐵𝑀𝐶
#𝑇𝑜𝑝1 - - 6 6 - - 7 7 - - 2 2 - - - -
Δ (%) - - 0.57 0.57 - - 1.41 1.41 - - 0.21 0.21 - - - -
#𝑇𝑜𝑝2 2 2 27 31 12 5 18 35 - - 2 2 - - - -

𝐸𝑋𝐶
#𝑇𝑜𝑝1 - 4 35 39 - 11 79 90 - 3 14 17 - - 5 5
Δ (%) - 0.53 0.87 0.84 - 0.18 1.18 1.67 - 1.62 2.54 2.38 - - 4.18 4.18
#𝑇𝑜𝑝2 - 10 31 41 - 19 72 91 - 3 19 22 - 2 2 4

𝐾𝑅𝐶
#𝑇𝑜𝑝1 22 15 43 80 16 47 79 142 11 5 30 46 3 4 4 11
Δ (%) 1.36 1.60 0.35 0.87 4.15 2.54 4.05 3.56 2.92 1.47 4.92 4.07 4.06 10.32 5.01 6.68
#𝑇𝑜𝑝2 12 17 57 86 39 40 87 166 3 3 11 17 1 - 5 6

𝑈𝑀𝐶
#𝑇𝑜𝑝1 22 15 30 67 58 41 29 128 3 - 6 9 1 - 1 2
Δ (%) 4.99 1.75 1.19 2.56 4.51 3.21 2.51 3.64 2.11 - 0.34 0.93 0.22 - 1.00 0.61
#𝑇𝑜𝑝2 30 5 28 63 56 30 42 128 13 2 9 24 5 2 3 10

(ii) Δ (%) stands for the average difference (expressed as a per-
centage) between the highest and the second highest F1 across all
similarity graphs of the same category, and

(iii)#𝑇𝑜𝑝2 denotes the number of times an algorithm scores the
second highest F1 for a particular category of similarity graphs.

Note that in case of ties, we increment #𝑇𝑜𝑝1 and #𝑇𝑜𝑝2 for
all involved algorithms. Note also that these three effectiveness
measures also allow for answering QE(2) in more detail.

The results for these measures are reported in Table 5. For
schema-based syntactic weights, there is a strong competition be-
tween KRC and UMC for the highest effectiveness. Both algorithms
achieve the maximum F1 for the same number of similarity graphs
in the case of balanced and one-sided entity collections. For the for-
mer inputs, though, UMC exhibits consistently high performance,
as it ranks second in almost all cases that it is not the top performer,
unlike KRC, which comes second in 1/3 of these cases. Addition-
ally, UMC achieves significantly higher Δ than KRC. For one-sided
entity collections, KRC takes a minor lead over UMC: even though
its Δ is slightly lower, it comes second three times more often than
UMC. For scarce entity collections, KRC takes a clear lead over
UMC, outperforming it with respect to both#𝑇𝑜𝑝1 and#𝑇𝑜𝑝2 to
a large extent. UMC excels only with respect to Δ.

Among the remaining algorithms, CNC, RSR, BMC and EXC
seem suitable only for scarce entity collections. RSR actually
achieves the highest Δ, while EXC achieves the second highest
#𝑇𝑜𝑝1 and #𝑇𝑜𝑝2, outperforming UMC. Regarding BAH, we ob-
serve that for balanced entity collections, it outperforms all algo-
rithms for 15% of the similarity graphs, achieving the highest Δ
and comes second for an equal number of inputs. This is in con-
trast to the poor average performance reported in Table 4, but is
explained by its stochastic nature, which gives rise to an unstable
performance, as indicated by the significantly higher 𝜎 than all
other algorithms for all effectiveness measures.

In the case of schema-agnostic syntactic edge weights, UMC
verifies its superiority over KRC for balanced entity collections
with respect to all measures. KRC is actually outperformed by BAH,
which achieves the top F1 2.5 times more often, while exhibiting the
highest Δ among all algorithms. For one-sided entity collections,
KRC excels with respect to#𝑇𝑜𝑝1 and#𝑇𝑜𝑝2, but UMC achieves
significantly higher Δ, while EXC constitutes the third best algo-
rithm overall, as for the schema-based syntactic edge weights. In
the case of scarce entity collections, the two competing algorithms
are KRC and EXC, as they share the highest#𝑇𝑜𝑝1. Yet, the former
achieves three times higher Δ and slightly higher#𝑇𝑜𝑝2. Supris-
ingly, CNC ranks second in terms of#𝑇𝑜𝑝1, while achieving the

Papadakis, Efthymiou, Thanos, Hassanzadeh

highest Δ by far, among all algorithms. As a result, UMC is left at
the fourth place, followed by BMC.

For the semantic edge weights, we observe the following pat-
terns: for the balanced entity collections, only KRC, BAH and UMC
exhibit the highest performance for both schema-based and schema-
agnostic weights. They excel in#𝑇𝑜𝑝1, Δ and#𝑇𝑜𝑝2, respectively.
For one-sided entity collections, KRC is the dominant algorithm,
especially in the case of schema-agnostic weights. For the schema-
based ones, EXC consistently achieves very high performance, too.
For scarce entity collections, there is a strong competition between
KRC and EXC; the former consistently outperforms the latter with
respect to Δ, while EXC excels in #𝑇𝑜𝑝1 for schema-agnostic
weights and in#𝑇𝑜𝑝2 for schema-based ones.

We examined other patterns with respect to additional charac-
teristics of the entity collections, such as the distribution of positive
and negative weights (i.e., between matching and non-matching
entities, respectively) and the domain (e-commerce for 𝐷2, 𝐷3 and
𝐷8, bibliographic data for 𝐷4 and 𝐷9 as well as movies for 𝐷5-𝐷8

and 𝐷10). Yet, no clear patterns emerged in these cases.
Time Efficiency. The (relative) run-time of the evaluated al-

gorithms is a crucial aspect for the task of Entity Resolution, due
to the very large similarity graphs, which comprise thousands of
entities/nodes and (hundreds of) millions of edges/entity pairs, as
reported in Table 3. Below, we study this aspect along with the scal-
ability of the considered algorithms over the 739 different similarity
graphs. More specifically, we examine the following questions:

QT(1): Which algorithm is the fastest one?
QT(2): Which factors affect the run-time of the algorithms?
QT(3): How scalable are the algorithms to large input sizes?
QT(4): Which algorithms offer the best trade-off between F-

Measure and run-time?

The average run-times over 10 executions of the evaluated algo-
rithms per dataset and type of edge weights are reported in Table 6.

Regarding QT(1), we observe that all algorithms are quite fast,
as they are all able to process even the largest similarity graphs (i.e.,
those of 𝐷9 and 𝐷10) within minutes or even seconds. CNC is the
fastest one almost in all cases, due to the simplicity of its approach.
It is followed in close distance by BMC and RSR, with the former
consistently outperforming the latter. EXC is also very efficient, but
as expected, it is usually slower than BMC, due to the additional
reciprocity check it involves. On the other extreme lies BAH, which
constitutes by far the slowest method, yielding in many cases 2
or even 3 orders of magnitude longer run-times. The reason is the
large number (10,000) of search steps we allow per dataset. For the
largest datasets, its maximum run-time actually equals the run-time
limit of 2 minutes, except for 𝐷9, where the very large number of
entities in 𝑉2 delays the activation of the time-out. The rest of the
algorithms lie between these two extremes: KRC is the slowest one,
on average, while UMC and RCA exhibit significantly lower run-
times. Among the most effective algorithms, EXC is significantly
faster than UMC, which is significantly faster than KRC.

Regarding QT(2), there are two main factors that affect the re-
ported run-times: (i) the time complexity of the algorithms, and
(ii) the similarity threshold used for pruning the search space. Re-
garding the first factor, we observe that the run-times in Table 6
verify the time complexities described in Section 3. With 𝑂 (𝑚),

Table 6: Mean run-time per algorithm, dataset and type of
input. Milliseconds are reported, except for BAH, 𝐷10 and
cases followed by s, which are measured in seconds.

CNC RSR RCA BAH (sec) BMC EXC KRC UMC
D1 3±1 8±5 8±4 1.9±.0 4±5 4±3 14±9 4±3
D2 8±1 15±4 20±2 1.1±.0 13±5 59±73 66±19 39±50
D3 21±13 36±16 57±15 2.2±.1 24±16 34±37 200±91 61±64
D4 32±18 57±23 136±20 2.0±.0 43±25 69±164 384±381 254±601
D5 44±41 56±38 662±66 3.6±.8 49±49 43±35 286±254 53±45
D6 52±60 86±79 706±97 3.0±.2 63±75 58±64 422±508 79±93
D7 41±95 43±17 980±251 3.1±.3 28±16 27±13 204±138 50±81
D8 196±168 209±167 557±136 123.5±.6 282±402 182±153 1.2s±1.0s 213±194
D9 946±421 994±408 1.8s±.3s 147.5±2.7 1.1s±1.4s 18s±36s 17s±29s 1.1s±.5s
D10 1.6±1.1 2.8±1.4 21.9±1.2 127±2 1.9±1.2 1.6±1.1 164±243 7.9±18.4

(a) Schema-based, syntactic inputs
D1 11±8 19±27 10±2 1.9±.1 9±5 22±34 52±0.2 25±47
D2 6±3 18±8 18±4 1.1±.0 10±10 14±16 51±40 74±166
D3 21±13 39±21 57±13 2.3±.4 34±48 81±177 582±686 599±1.2s
D4 31±19 56±22 130±17 2.2±.3 40±26 44±74 334±705 125±356
D5 93±58 206±393 616±55 2.9±.4 172±201 203±404 858±821 672±2.0s
D6 86±83 124±84 676±70 3.3±.4 99±92 151±216 635±578 116±107
D7 102±109 129±127 912±91 3.5±.4 104±96 112±168 637±713 232±716
D8 280±121 319±132 581±91 122.8±.4 245±103 443±1,264 1.8s±747 360±155
D9 611±492 728±515 1.5s±340 144.8±2 627±499 1.7s±6.5s 5.3s±9.7s 2.1s±8.8s
D10 2.5±2.1s 8.4±14.3 24.6±2.8 128.4±2.1 4.1±6.0 21.1±86.4 205±354 157±600

(b) Schema-agnostic, syntactic inputs
D1 11±18 32±43 9±5 1.9±.0 9±7 16±19 33±26 20±29
D2 7±0 91±51 23±3 1.0±.0 15±2 30±26 118±42 79±48
D3 28±4 136±124 88±16 2.2±.0 282±11 602±612 2.4s±.2 5.6s±.0s
D4 210±388 392±514 152±14 2.1±.1 217±366 295±569 1.5s±1.4s 1.6±3.6s
D5 384±869 883±1.7s 629±49 2.8±.2 373±947 445±1s 1.4s±2.8s 2.3s±6.3
D6 550±1.3s 1.4s±2.8s 730±70 3.0±.2 250±482 754±2s 2.1s±4.4s 4s±12s
D7 181±372 264±415 917±77 3.0±.1 124±247 168±301 547±741 882±2.2s
D8 216±0 381±78 654±31 123.6±.3 245±2 4.8s±6.4s 1.8s±.0s 364±10
D9 1s±317 1.8s±1.1s 2.2s±.3s 147.8±2.7 1.1s±.1s 1.2s±.2s 8.2s±.6s 1.7s±.5s
D10 2.3±.1 5.2±2.4 24.9±1.3 128.8±1.2 39.4±51.6 4.8±2.4 365±463 137±191

(c) Schema-based, semantic inputs
D1 8±3 31±28 14±6 1.9±.1 9±3 9±2 72±50 11±5
D2 9±0 58±22 23±1 1.1±.0 70±30 80±30 215±89 521±561
D3 30±2 43±9 92±3 2.1±.0 39±0 320±255 2.5s±.0s 4.5s±1.5s
D4 40±1 65±13 147±16 2.0±.0 65±14 54±7 2.2s±1.4s 250±194
D5 199±5 280±16 700±22 2.8±.0 230±19 517±401 1.8s±.8s 441±180
D6 486±336 372±12 816±54 3.2±.2 660±412 1.1s±1.1s 3.6s±2.5s 3.9s±4.9s
D7 2.1s±4.1s 1.1s±1.3s 1.2s±.1s 3.3±.2 2.8s±5.6 3.0s±5.6s 7.0s±10.9s 15s±33s
D8 - - - - - - - -
D9 1.1s±.1 1.3s±.1s 2.0s±.3s 148.6±3.3 1.4s±.1 24s±11s 46s±18s 4.8s±1.8s
D10 - - - - - - - -

(d) Schema-agnostic, semantic inputs

CNC and BMC are the fastest ones, followed by RSR and EXC with
𝑂 (𝑛 𝑚), RCA with 𝑂 (|𝑉1 | |𝑉2 |), UMC with 𝑂 (𝑚 log𝑚) and KRC
with𝑂 (𝑛 +𝑚 log𝑚). BAH’s run-time is determined by the number
of search steps and the run-time limit.

Equally important is the effect of the similarity thresholds: the
higher their optimal value (i.e., the one maximizing F1) is, the fewer
edges are retained in the similarity graph and the faster is its pro-
cessing. The optimal similarity threshold depends on the type of
edge weights and the size of the similarity graph, as we explain in
the threshold analysis in [40]. This means that the relative time ef-
ficiency of algorithms with the same theoretical complexity should
be attributed to their different similarity threshold. For example,
the average optimal thresholds for CNC and BMC over all schema-
based syntactic weights are 0.755 and 0.669, respectively, while
over schema-agnostic syntactic weights they are 0.409 and 0.327,
respectively. These large differences account for the significantly
lower run-time of CNC in almost all datasets for both cases. The
larger the difference in the similarity threshold, the larger is the
difference in the run-times.

Note that the similarity threshold typically accounts for the rel-
ative run-times that conflict with the relative time complexities,
too: in case an algorithm runs faster than another one with lower
time complexity, this is typically caused by the higher similarity
threshold it employs. For example, KRC exhibits a lower average

Bipartite Graph Matching Algorithms for Clean-Clean ER

Figure 4: Scalability analysis of all algorithms over all similarity graphs with (i) schema-based syntactic, (ii) schema-agnostic
syntactic, (iii) schema-based semantic and (iv) schema-agnostic semantic edge weights. The horizontal axis corresponds to the
number of edges in the similarity graphs and the vertical one to the run-time in milliseconds (maximum value=16.7 min).

run-time than EXC over 𝐷9 for schema-based syntactic weights, be-
cause their mean optimal similarity thresholds amount to 0.550 and
0.490, respectively. Similarly, UMC runs much faster than EXC over
𝐷8 with schema-agnostic syntactic weights, because their mean op-
timal similarity thresholds amount to 0.427 and 0.387, respectively.

Finally, the similarity threshold accounts for the relative run-
times between the same algorithm over different types of edge
weights. For example, EXC is 13 times slower over the schema-
agnostic syntactic weights of 𝐷10 than their schema-based counter-
parts, even though the former involve just 25% more edges than the

Papadakis, Efthymiou, Thanos, Hassanzadeh

Figure 5: F1-runtime diagram for all algorithms, but BAH over𝐷1.

latter, as reported in Table 3. This significant difference should be at-
tributed to the large deviation in the mean optimal thresholds: 0.153
for the former weights and 0.535 for the latter ones. The same ap-
plies to UMC, whose average run-time increases by 20 times when
comparing the schema-based with the schema-agnostic weights,
because its average optimal threshold drops from 0.481 to 0.110.

To answer QT(3), Figure 4 presents the scalability analysis of
every algorithm over all similarity graphs for each type of edge
weights. In each diagram, every point corresponds to the run-time
of a different similarity graph. We observe that for all algorithms,
the run-time increases linearly with the size of the similarity graphs:
as the number of edges increases by four orders of magnitude, from
104 to 108, the run-times increase to a similar extent in most cases.
For all algorithms, though, there are outlier points that deviate from
the “central” curve. The larger the number of outliers is, the less
robust is the time efficiency of the corresponding algorithm, due to
its sensitivity to the size of the graph and the similarity threshold. In
this respect, the least robust algorithms are RSR over schema-based
syntactic weights along with UMC and EXC over schema-agnostic
syntactic weights. These patterns seem to apply to the semantic
weights, too, despite the limited number of the similarity graphs,
especially in the case of schema-agnostic settings.

Note that there are two exceptions to these patterns, namely
RCA and BAH. The diagrams of the former algorithm seem to
involve a much lower number of points, as its time complexity
depends exclusively on the number of entities in the input entity
collections, i.e.,𝑂 (|𝑉1 | |𝑉2 |). As a result, different similarity graphs
from the same dataset yield similar run-times that coincide in the
diagrams of Figure 4. Regarding BAH, it exhibits a step-resembling
scalability graph, because its processing terminates after a pre-
defined timeout or a fixed number of iterations (whichever comes
first), independently of the size of the similarity graph.

Finally, to answer QT(4), Figure 5 depicts the trade-off between
macro-averaged F1 and run-time (RT) per algorithm and type of
edge weights in 𝐷1. Note that every type corresponds to a different
shape: circle stands for the schema-agnostic syntactic weights, tri-
angle for the schema-based syntactic ones, rhombus for the schema-
agnostic semantic ones and rectangle for the schema-based seman-
tic ones. We observe that the schema-based syntactic similarity
graphs dominate the other types of input, as they exhibit very high
F1 in combination with the lowest run-times. The former should be
attributed to the relatively clean values of names and phones for
the duplicate entities and the latter to the lack of attribute values

Table 7: Comparison to state-of-the-art matching methods.
ZeroER DITTO UMC (schema-agnostic TF-IDF weights, cosine sim.)

𝐷2 0.52 0.89 0.95 (character bi-grams, 𝑡 = 0.35)
𝐷3 0.48 0.76 0.60 (token bi-grams, 𝑡 = 0.05)
𝐷4 0.96 0.99 0.99 (token uni-grams, 𝑡 = 0.40)
𝐷5 0.86 0.96 0.94 (character four-grams, 𝑡 = 0.35)

for most non-matching entities. As a result, the average size of
these graphs is significantly lower than the other types of graphs,
especially the schema-agnostic ones, as shown in Table 3. Among
the schema-based syntactic inputs, the differences in F1 are lower
than 4%, with UMC achieving the best trade-off between the two
measures (average F1=0.781 for average run-time=4 msec). This
combination practically dominates all others. Only CNC is signif-
icantly faster (RT=3 msec), but its F1 (0.756) is also significantly
lower. For the patterns pertaining to rest of the datasets, please
refer to the extended version of the paper [40].

Comparisonwith the bestmatchingmethods.Wenow com-
pare the performance achieved by bipartite graph matching al-
gorithms with the recent state-of-the-art matching methods: Ze-
roER [54], which leverages unsupervised learning, and DITTO [28],
which is based on deep learning. We consider the four common
datasets, namely 𝐷2-𝐷5 (𝐷1 is a larger and noisier version of FZ in
[28, 54], and thus not directly comparable). Table 7 reports the rela-
tive performance in terms of maximum F-Measure for ZeroER and
DITTO, as it was reported reported in [54] and [28], respectively.

Bipartite matching is represented by UMC in combination with
cosine similarity over schema-agnostic vector models with TF-IDF
weights; the best representation model and the corresponding simi-
larity threshold depend on the dataset. These settings do not neces-
sarily correspond to the highest F-Measure across all algorithms
and similarity graphs we have considered, but demonstrate the ca-
pabilities of bipartite matching when varying just two configuration
parameters. The results appear in Table 7.

Compared to ZeroER, we observe that UMC consistently
achieves higher performance: its F1 is higher by 3%, 9%, 25% and 83%
over 𝐷4, 𝐷5, 𝐷3 and 𝐷2, respectively. Compared to DITTO, UMC
achieves identical performance over 𝐷4 and 2% lower F1 over 𝐷5.
The difference is much larger over 𝐷3, where UMC underperforms
by 21%, due to the contextual evidence captured by the training set
and the RoBERTa languagemodel [30] that lies at the core of DITTO.
Note, though, that the difference is reduced to 12%, when consid-
ering the best schema-based configuration of UMC (the Overlap
Coefficient of the tokens of the “Title” attribute with a similarity
threshold of 0.3). For 𝐷2, UMC outperforms DITTO by 7%.

Overall, we can conclude that bipartite graphmatching underper-
forms the best (deep learning-based) performance in the literature
in just one out of four benchmark datasets.

7 CONCLUSIONS
We draw the following important patterns from our experiments:

(i) The best performing algorithm for a particular similarity
graph mainly depends on the type of edge weights and the portion
of duplicates with respect to the total number of nodes/entities.

(ii) CNC constitutes the fastest algorithm, due to its simplicity
and the high similarity thresholds it employs, achieving the highest
precision at the cost of low recall. It frequently outperforms all other
algorithms with respect to F1 in the case of scarce entity collections
with syntactic weights, especially the schema-agnostic ones.

Bipartite Graph Matching Algorithms for Clean-Clean ER

(iii) RSR is a fast algorithm that rarely achieves high effectiveness,
in the case of scarce entity collections.

(iv) RCA is an efficient method that never excels in effectiveness.
(v) BAH constitutes a slow, stochastic approach that is capable

of the best and the worst. It frequently achieves, by far, the highest
F1 over balanced entity collections (and rarely over scarce ones),
but in most cases, it yields the lowest scores with respect to all
effectiveness measures.

(vi) BMC is the second fastest algorithm that tries to balance
precision and recall, being particularly effective in the case of scarce
entity collections, especially in combination with syntactic weights.

(vii) EXC improves BMC by boosting precision at the cost of
lower recall and higher run-time. It consistently achieves (close
to) the maximum F1 over scarce and one-sided entity collections,
losing only to KRC and (rarely) to UMC. Given, though, that it
outperforms both algorithms to a significant extent with respect to
run-time, it constitutes the best choice for applications requiring
both high effectiveness and efficiency/scalability.

(viii) KRC achieves very high or the highest effectiveness in most
cases, especially over one-sided and scarce entity collections. This
comes, though, at the cost of higher (yet stable) run-times than its
top-performing counterparts.

(ix) UMC is the best choice for balanced entity collections, es-
pecially when coupled with syntactic weights, exhibiting a much
more robust performance than BAH. It achieves very high (and
frequently the highest) effectiveness in the rest of the cases, too.
Its run-time, though, is rather unstable, depending largely on the
optimal similarity threshold.

ACKNOWLEDGMENTS
This project has received funding from the Hellenic Foundation
for Research and Innovation (HFRI) and the General Secretariat for
Research and Technology (GSRT), under grant agreement No 969.

REFERENCES
[1] Ali Assi, HamidMcheick, andWajdi Dhifli. 2019. BIGMAT: A Distributed Affinity-

Preserving Random Walk Strategy for Instance Matching on Knowledge Graphs.
In IEEE Big Data. 1028–1033.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. 2017.
Enriching Word Vectors with Subword Information. Trans. Assoc. Comput. Lin-
guistics 5 (2017), 135–146.

[3] Ursin Brunner and Kurt Stockinger. 2020. Entity Matching with Transformer
Architectures - A Step Forward in Data Integration. In EDBT. 463–473.

[4] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer.

[5] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2021. An Overview of End-to-End Entity Resolution for
Big Data. ACM Comput. Surv. 53, 6 (2021), 127:1–127:42.

[6] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. 2008. Algo-
rithms. McGraw-Hill.

[7] Janez Demsar. 2006. Statistical Comparisons of Classifiers over Multiple Data
Sets. J. Mach. Learn. Res. 7 (2006), 1–30.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[9] Xin Luna Dong and Divesh Srivastava. 2015. Big Data Integration. Morgan &
Claypool Publishers.

[10] Vasilis Efthymiou, George Papadakis, Kostas Stefanidis, and Vassilis
Christophides. 2019. MinoanER: Schema-Agnostic, Non-Iterative, Mas-
sively Parallel Resolution of Web Entities. In EDBT. OpenProceedings.org,
373–384.

[11] I. P. Fellegi and A. B. Sunter. 1969. A Theory for Record Linkage. J. Amer. Statist.
Assoc. 64, 328 (1969), 1183–1210.

[12] Michael L. Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their
uses in improved network optimization algorithms. J. ACM 34, 3 (1987), 596–615.

[13] D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage.
Am. Math. Mon. 69, 1 (1962), 9–15.

[14] Jim Gemmell, Benjamin I. P. Rubinstein, and Ashok K. Chandra. 2011. Improving
Entity Resolution with Global Constraints. CoRR abs/1108.6016 (2011).

[15] George Giannakopoulos, Vangelis Karkaletsis, George A. Vouros, and Panagiotis
Stamatopoulos. 2008. Summarization system evaluation revisited: N-gram graphs.
ACM Trans. Speech Lang. Process. 5, 3 (2008), 5:1–5:39.

[16] George Giannakopoulos and Themis Palpanas. 2010. Content and type as orthog-
onal modeling features: a study on user interest awareness in entity subscription
services. International Journal of Advances on Networks and Services 3, 2 (2010).

[17] Osamu Gotoh. 1982. An improved algorithm for matching biological sequences.
Journal of molecular biology 162, 3 (1982), 705–708.

[18] Claudio Gutierrez and Juan F. Sequeda. 2020. Knowledge Graphs: A Tutorial on the
History of Knowledge Graph’s Main Ideas. Association for Computing Machinery,
3509–3510. https://doi.org/10.1145/3340531.3412176

[19] Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. 2009. Frame-
work for Evaluating Clustering Algorithms in Duplicate Detection. Proc. VLDB
Endow. 2, 1 (2009), 1282–1293.

[20] Steffen Herbold. 2020. Autorank: A Python package for automated ranking of
classifiers. Journal of Open Source Software 5, 48 (2020), 2173.

[21] Zoltán Király. 2013. Linear Time Local Approximation Algorithm for Maximum
Stable Marriage. Algorithms 6, 3 (2013), 471–484.

[22] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeffrey F. Naughton,
Shishir Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. 2016.
Magellan: Toward Building Entity Matching Management Systems. Proc. VLDB
Endow. 9, 12 (2016), 1197–1208.

[23] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. Proc. VLDB Endow. 3, 1
(2010), 484–493.

[24] Nils M. Kriege, Pierre-Louis Giscard, Franka Bause, and Richard C. Wilson. 2019.
Computing Optimal Assignments in Linear Time for Approximate Graph Match-
ing. In ICDM. 349–358.

[25] H. W. Kuhn and Bryn Yaw. 1955. The Hungarian method for the assignment
problem. Naval Res. Logist. Quart (1955), 83–97.

[26] Jerome M Kurtzberg. 1962. On approximation methods for the assignment
problem. Journal of the ACM (JACM) 9, 4 (1962), 419–439.

[27] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In ICLR.

[28] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50–60.

[29] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, Jin Wang, Wataru Hirota, and Wang-
Chiew Tan. 2021. Deep Entity Matching: Challenges and Opportunities. ACM J.
Data Inf. Qual. 13, 1 (2021), 1:1–1:17.

[30] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

[31] L. Lovasz and M. D. Plummer. [n.d.]. Matching theory.
[32] Fragkiskos D. Malliaros, Polykarpos Meladianos, and Michalis Vazirgiannis. 2018.

Graph-based Text Representations: Boosting Text Mining, NLP and Information
Retrieval with Graphs. In WWW Tutorials.

[33] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to information retrieval. Cambridge University Press.

[34] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity Flood-
ing: A Versatile Graph Matching Algorithm and Its Application to Schema Match-
ing. In ICDE. 117–128.

[35] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NIPS. 3111–3119.

[36] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In SIGMOD.
19–34.

[37] P. Nemenyi. 1963. Distribution-free Multiple Comparisons. Princeton University.
[38] Daniel Obraczka, Jonathan Schuchart, and Erhard Rahm. 2021. EA-

GER: Embedding-Assisted Entity Resolution for Knowledge Graphs. CoRR
abs/2101.06126 (2021).

[39] Boris Otto and Andreas Reichert. 2010. Organizing Master Data Management:
Findings from an Expert Survey. In Proceedings of the 2010 ACM Symposium on
Applied Computing (SAC). 106–110. https://doi.org/10.1145/1774088.1774111

[40] George Papadakis, Vasilis Efthymiou, Emanouil Thanos, and Oktie Hassanzadeh.
2021. Bipartite Graph Matching Algorithms for Entity Resolution: An Empirical
Evaluation. arXiv:2112.14030 https://arxiv.org/abs/2112.14030

[41] George Papadakis, George Giannakopoulos, and Georgios Paliouras. 2016. Graph
vs. bag representation models for the topic classification of web documents.World
Wide Web 19, 5 (2016), 887–920.

https://doi.org/10.1145/3340531.3412176
https://doi.org/10.1145/1774088.1774111
https://arxiv.org/abs/2112.14030
https://arxiv.org/abs/2112.14030

Papadakis, Efthymiou, Thanos, Hassanzadeh

[42] George Papadakis, Georgios M. Mandilaras, Luca Gagliardelli, Giovanni Simonini,
Emmanouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Pal-
panas, and Manolis Koubarakis. 2020. Three-dimensional Entity Resolution with
JedAI. Inf. Syst. 93 (2020), 101565.

[43] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM
Comput. Surv. 53, 2 (2020), 31:1–31:42. https://doi.org/10.1145/3377455

[44] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In EMNLP. 1532–1543.

[45] François Rousseau and Michalis Vazirgiannis. 2013. Graph-of-word and TW-IDF:
new approach to ad hoc IR. In CIKM. 59–68.

[46] Alieh Saeedi, Markus Nentwig, Eric Peukert, and Erhard Rahm. 2018. Scalable
Matching and Clustering of Entities with FAMER. Complex Syst. Informatics
Model. Q. 16 (2018), 61–83.

[47] Alieh Saeedi, Eric Peukert, and Erhard Rahm. 2018. Using Link Features for
Entity Clustering in Knowledge Graphs. In ESWC (Lecture Notes in Computer
Science), Vol. 10843. Springer, 576–592.

[48] Justus Schwartz, Angelika Steger, and Andreas Weißl. 2005. Fast Algorithms
for Weighted Bipartite Matching. In WEA (Lecture Notes in Computer Science),

Vol. 3503. 476–487.
[49] Yansheng Wang, Yongxin Tong, Cheng Long, Pan Xu, Ke Xu, and Weifeng Lv.

2019. Adaptive Dynamic Bipartite Graph Matching: A Reinforcement Learning
Approach. In ICDE. 1478–1489.

[50] Zhengyang Wang, Bunyamin Sisman, Hao Wei, Xin Luna Dong, and Shuiwang
Ji. 2020. CorDEL: A Contrastive Deep Learning Approach for Entity Linkage. In
ICDM.

[51] Christopher J. C. H. Watkins and Peter Dayan. 1992. Technical Note Q-Learning.
Mach. Learn. 8 (1992), 279–292.

[52] Derry Tanti Wijaya and Stéphane Bressan. 2009. Ricochet: A family of uncon-
strained algorithms for graph clustering. In International Conference on Database
Systems for Advanced Applications. Springer, 153–167.

[53] W. E. Winkler. 2006. Overview of Record Linkage and Current Research Directions.
Technical Report. Bureau of the Census.

[54] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. ZeroER: Entity Resolution using Zero Labeled Examples. In
SIGMOD. 1149–1164.

https://doi.org/10.1145/3377455

Bipartite Graph Matching Algorithms for Clean-Clean ER

Algorithm 1: Ricochet SR Clustering (RSR)
Input: Similarity Graph𝐺 = (𝑉1,𝑉2, 𝐸) , similarity threshold 𝑡
Output: A set of Partitions𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 }

1 𝐶 ← ∅
2 𝐶𝑒𝑛𝑡𝑒𝑟 ← ∅
3 foreach 𝑣 ∈ (𝑉1 ∪𝑉2) do // Initialization
4 𝑠𝑖𝑚𝑊𝑖𝑡ℎ𝐶𝑒𝑛𝑡𝑒𝑟 (𝑣) ← 0

5 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣) ← ∅
6 𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓 (𝑣) ← 𝑣

7 𝑄 ← 𝐺.𝑛𝑜𝑑𝑒𝑠𝐼𝑛𝐷𝑒𝑐𝑊𝑒𝑖𝑔ℎ𝑡 (𝑣, 𝑤 (𝑣))
// 𝑤 (𝑣) = ∑

𝑒∈𝑎𝑑 𝑗 (𝑣) 𝑒.𝑠𝑖𝑚/ |𝑎𝑑 𝑗 (𝑣) |
8 while𝑄 ≠ ∅ do
9 𝑣𝑖 ← 𝑄.𝑝𝑜𝑝 () // the vertex with highest weight

10 𝑇𝑜𝑅𝑒𝑎𝑠𝑠𝑖𝑔𝑛 ← ∅
11 foreach 𝑒 = (𝑣𝑖 , 𝑣𝑗 , 𝑠𝑖𝑚) ∈ 𝐸 : 𝑠𝑖𝑚 > 𝑡 do // for 𝑣𝑖’s

adjacent edges
12 if 𝑣𝑗 ∈ 𝐶𝑒𝑛𝑡𝑒𝑟 then
13 continue

14 if 𝑒.𝑠𝑖𝑚 > 𝑠𝑖𝑚𝑊𝑖𝑡ℎ𝐶𝑒𝑛𝑡𝑒𝑟 (𝑣𝑗) then
15 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓 (𝑣𝑗)) .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑣𝑗) // remove

𝑣𝑗 from its previous partition

16 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣𝑖) ← 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣𝑖) ∪ 𝑣𝑗
17 𝑇𝑜𝑅𝑒𝑎𝑠𝑠𝑖𝑔𝑛 ← 𝑇𝑜𝑅𝑒𝑎𝑠𝑠𝑖𝑔𝑛 ∪ 𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓 (𝑣𝑗) // it

is now a singleton

18 𝑠𝑖𝑚𝑊𝑖𝑡ℎ𝐶𝑒𝑛𝑡𝑒𝑟 (𝑣𝑗) ← 𝑒.𝑠𝑖𝑚

19 𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓 (𝑣𝑗) ← 𝑣𝑖

20 break

21 if |𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣𝑖) | > 0 then
22 if 𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓 (𝑣𝑖) ≠ 𝑣𝑖 then // if 𝑣𝑖 was previously

in another partition

23

24 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓 (𝑣𝑖)) .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑣𝑖)
25 𝑇𝑜𝑅𝑒𝑎𝑠𝑠𝑖𝑔𝑛 ← 𝑇𝑜𝑅𝑒𝑎𝑠𝑠𝑖𝑔𝑛 ∪ 𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓 (𝑣𝑖)
26 𝐶𝑒𝑛𝑡𝑒𝑟 ← 𝐶𝑒𝑛𝑡𝑒𝑟 ∪ 𝑣𝑖
27 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣𝑖) ← 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣𝑖) ∪ 𝑣𝑖 // put 𝑣𝑖 in its

partition

28 𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓 (𝑣𝑖) ← 𝑣𝑖

29 𝑠𝑖𝑚𝑊𝑖𝑡ℎ𝐶𝑒𝑛𝑡𝑒𝑟 (𝑣𝑖) ← 1

30 foreach 𝑣𝑘 ∈ 𝑇𝑜𝑅𝑒𝑎𝑠𝑠𝑖𝑔𝑛 do
31 𝑚𝑎𝑥𝑆𝑖𝑚 ← 0

32 𝑐𝑀𝑎𝑥 ← 𝑣𝑘

33 foreach 𝑒 = (𝑣𝑘 , 𝑣ℓ , 𝑠𝑖𝑚) ∈ 𝐸 : 𝑠𝑖𝑚 > 𝑡 do // find
singleton with the highest similarity with 𝑣𝑘
to reassign it

34 if 𝑒.𝑠𝑖𝑚 >𝑚𝑎𝑥𝑆𝑖𝑚 and |𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣ℓ) | < 2 then
35 𝑐𝑀𝑎𝑥 ← 𝑣ℓ

36 𝑚𝑎𝑥𝑆𝑖𝑚 ← 𝑒.𝑠𝑖𝑚

37 if𝑚𝑎𝑥𝑆𝑖𝑚 > 0 then
38 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣𝑘) ← ∅
39 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑐𝑀𝑎𝑥) ← 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑐𝑀𝑎𝑥) ∪ 𝑣𝑘

40 foreach 𝑣𝑖 ∈ (𝑉1 ∪𝑉2) do
41 if |𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣𝑖) | > 0 then
42 𝐶 ← 𝐶 ∪ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑣𝑖)

43 return𝐶

Algorithm 2: Connected Components (CNC)
Input: Similarity Graph𝐺 = (𝑉1,𝑉2, 𝐸) , similarity threshold 𝑡
Output: A set of clusters𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 }

1 foreach 𝑒 = (𝑣𝑖 , 𝑣𝑗 , 𝑠𝑖𝑚) ∈ 𝐸 do
2 if 𝑠𝑖𝑚 < 𝑡 then
3 𝐸 ← 𝐸 − (𝑒)

4 𝐶1 ← 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑙𝑜𝑠𝑢𝑟𝑒 (𝐺)
5 𝐶 ← ∅
6 foreach 𝑐𝑖 ∈ 𝐶1 do
7 if |𝑐𝑖 | == 2 ∧ 𝑐𝑖 ∩𝑉 1 ≠ ∅ ∧ 𝑐𝑖 ∩𝑉 2 ≠ ∅ then
8 𝐶 ← 𝐶 ∪ {𝑐𝑖 }

9 return𝐶

APPENDIX
A ALGORITHMS

Ricochet Sequential Rippling Clustering (RSR). This algo-
rithm, outlined in Algorithm 1, is an adaptation of the homonymous
method for Dirty ER in [19] such that it exclusively considers par-
titions with just one entity from each input dataset. Initially, RSR
sorts all nodes from both input datasets in descending order of
the average weight of their adjacent edges (Line 7). Whenever a
new seed is chosen from the sorted list, we consider all its adjacent
edges with a weight higher than 𝑡 (Lines 8-11). The first adjacent
vertex that is currently unassigned or is closer to the new seed
than it is to the seed of its current partition is re-assigned to the
new partition (Lines 14-16). If a partition is reduced to a singleton
after a re-assignment, either because the chosen vertex (Line 17)
or the seed (Line 24) was previously in it, it is placed in its nearest
single-node partition (Lines 30-39).

The algorithm stops when all nodes have been considered. In
the worst case the algorithm has to iterate through 𝑛 vertices and
each time reassign 𝑛 vertices to their most similar adjacent vertex,
therefore its time complexity is 𝑂 (𝑛 𝑚) [52].
Connected Components (CNC). This is the simplest algorithm
for bipartite graph matching and is outlined in Algorithm 2. First,
it discards all edges with a weight lower than the given similarity
threshold (Lines 1-3). Then, it computes the transitive closure of the
pruned similarity graph (Line 4). In the output, it solely retains the
partitions that contain two entities – one from each input dataset
(Lines 6-8). Using a simple depth-first approach, its time complexity
is 𝑂 (𝑛 +𝑚) ∼ 𝑂 (𝑚), given that𝑚 ≫ 𝑛 [6].

Row Column Assignment Clustering (RCA). This approach,
outlined in Algorithm 3, is based on the Row-Column Scan ap-
proximation method in [26] that solves the assignment problem. It
requires two passes of the similarity graph, with each pass generat-
ing a candidate solution. In the first pass, each entity from the source
dataset creates a new partition, to which the most similar, currently
unassigned entity from the target dataset is assigned (Lines 7-17).
Note that, in principle, any pair of entities can be assigned to the
same partition at this step even if their similarity is lower than 𝑡 ,
since the assignment problem assumes that each vertex from 𝑉 1
is connected to all vertices from 𝑉 2 (any "job" can be performed

Papadakis, Efthymiou, Thanos, Hassanzadeh

Algorithm 3: Row Column Clustering (RCA)
Input: Similarity Graph𝐺 = (𝑉1,𝑉2, 𝐸) , similarity threshold 𝑡
Output: A set of partitions𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 }

1 𝐶1 ← ∅
2 𝐶2 ← ∅
3 𝑀1 ← ∅ // matched nodes from 𝑉1
4 𝑀2 ← ∅ // matched nodes from 𝑉2
5 𝐷1 ← 0 // assignment value of 𝐶1

6 𝐷2 ← 0 // assignment value of 𝐶2

7 foreach 𝑣𝑖 ∈ 𝑉1 do
8 𝑐𝑖 ← {𝑣𝑖 } // create a new partition containing 𝑣𝑖

9 𝑄𝑖 ← 𝑉2 (𝑠𝑖𝑚 (𝑣𝑖)) // a priority queue of 𝑉2’s nodes

in decreasing sim with 𝑣𝑖

10 while𝑄𝑖 ≠ ∅ do
11 𝑣2 ← 𝑄𝑖 .𝑝𝑜𝑝 ()
12 if 𝑣2 ∉ 𝑀2 then // if 𝑣2 is not yet matched
13 𝑐𝑖 ← 𝑐𝑖 ∪ {𝑣2 } // add 𝑣2 to partition 𝑐𝑖
14 𝑀2 ← 𝑀2 ∪ {𝑣2 }
15 𝐷1 ← 𝐷1 + {𝑠𝑖𝑚 (𝑣1, 𝑣2) }
16 break

17 𝐶1 ← 𝐶1 ∪ {𝑐𝑖 }
18 foreach 𝑣𝑗 ∈ 𝑉2 do
19 𝑐 𝑗 ← {𝑣𝑗 } // create a new partition containing 𝑣𝑗

20 𝑄 𝑗 ← 𝑉1 (𝑠𝑖𝑚 (𝑣𝑗)) // a priority queue of 𝑉1’s nodes

in decreasing sim with 𝑣𝑗

21 while𝑄 𝑗 ≠ ∅ do
22 𝑣1 ← 𝑄 𝑗 .𝑝𝑜𝑝 ()
23 if 𝑣1 ∉ 𝑀1 then // if 𝑣1 is not yet matched
24 𝑐 𝑗 ← 𝑐 𝑗 ∪ {𝑣1 } // add 𝑣1 to partition 𝑐 𝑗
25 𝑀1 ← 𝑀1 ∪ {𝑣1 }
26 𝐷2 ← 𝐷2 + {𝑠𝑖𝑚 (𝑣1, 𝑣2) }
27 break

28 𝐶2 ← 𝐶2 ∪ {𝑐 𝑗 }
29 if 𝐷1 > 𝐷2 then // get maximal assignment
30 𝐶 = 𝐶1

31 else
32 𝐶 = 𝐶2

33 foreach 𝑐 = {𝑣𝑖 , 𝑣𝑗 } ∈ 𝐶 do
34 if 𝑠𝑖𝑚 (𝑣𝑖 , 𝑣𝑗) < 𝑡 then // check similarities
35 𝐶 = 𝐶 \ 𝑐 // remove partition pairs with

similarity less than 𝑡

36 return𝐶

by all "men"). In the second pass, the same procedure is applied to
the entities/nodes of the target dataset (Lines 18-28). The value of
each solution is the sum of the edge weights between the nodes
assigned to the same (2-node) partition (Lines 17,28). The solution
with the highest value is returned as output, after discarding the
pairs with similarity less than 𝑡 (Lines 29-36).

At each pass the algorithm iterates over all nodes/entities of
one of the entity collection searching for the node/entity with
maximum similarity from the other entity collection. Therefore, its
time complexity is 𝑂 (|𝑉 1| |𝑉 2|).
Best Assignment Heuristic (BAH). This algorithm applies a sim-
ple swap-based random-search algorithm to heuristically solve the

Maximum Weight Bipartite Matching problem and uses the re-
sulting solution to create the output partitions. Its functionality is
outlined in Algorithm 4. Initially, each entity from the smaller input
dataset is connected to an entity from the larger input dataset (Line
9). In each iteration of the search process (Line 10), two entities
from the larger dataset are randomly selected (Lines 12-13) in order
to swap their current connections. If the sum of the edge weights
of the new pairs is higher than the previous pairs (Line 15-19),
the swap is accepted (Lines 20-24). The algorithm stops when a
maximum number of search steps is reached or when a maximum
run-time has been exceeded. In our case, the run-time has been set
to 2 minutes.

Algorithm 4: Best Assignment Heuristic (BAH)
Input: Similarity Graph𝐺 = (𝑉1,𝑉2, 𝐸) : |𝑉1 | > |𝑉2 |, similarity

threshold 𝑡 , max number of moves𝑚𝑎𝑥𝑁𝑢𝑚𝑀𝑜𝑣𝑒𝑠
Output: A set of partitions𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 }

1 𝐶 ← ∅
2 𝑛𝑢𝑚𝑀𝑜𝑣𝑒𝑠 ← 0

3 foreach (𝑣1
𝑖
, 𝑣2

𝑗
) ∈ (𝑉1 ×𝑉2) do

4 𝑑 (𝑣1
𝑖
, 𝑣2

𝑗
) ← 0 // initialize pair contributions

5 foreach 𝑒 = (𝑣1
𝑖
, 𝑣2

𝑗
, 𝑠𝑖𝑚) ∈ 𝐸, with 𝑒.𝑠𝑖𝑚 > 𝑡 do

6 𝑑 (𝑣1
𝑖
, 𝑣2

𝑗
) ← 𝑠𝑖𝑚 // initialize pair contributions

7 foreach 𝑣1
𝑖
∈ 𝑉1, 𝑣2𝑖 ∈ 𝑉2 : 𝑖 ≤ |𝑉2 | do

8 𝑐𝑖 ← {𝑣1𝑖 , 𝑣2𝑖 } // initialize partitions

9 𝑝 (𝑣1
𝑖
) = 𝑣2

𝑖

10 while 𝑛𝑢𝑚𝑀𝑜𝑣𝑒𝑠 <𝑚𝑎𝑥𝑁𝑢𝑚𝑀𝑜𝑣𝑒𝑠 do
11 𝑛𝑢𝑚𝑀𝑜𝑣𝑒𝑠 ← 𝑛𝑢𝑚𝑀𝑜𝑣𝑒𝑠 + 1
12 𝑖 = 𝑛𝑒𝑥𝑡𝑅𝑎𝑛𝑑 (|𝑉1 |)
13 𝑗 = 𝑛𝑒𝑥𝑡𝑅𝑎𝑛𝑑 (|𝑉1 |) : 𝑗 ≠ 𝑖
14 𝐷 ← 0

15 if 𝑝 (𝑣1
𝑖
) ≠ 𝑛𝑢𝑙𝑙 then // check swaps

16 𝐷 ← 𝑑 (𝑣1
𝑗
, 𝑝 (𝑣1

𝑖
)) − 𝑑 (𝑣1

𝑖
, 𝑝 (𝑣1

𝑖
))

17 if 𝑝 (𝑣1
𝑗
) ≠ 𝑛𝑢𝑙𝑙 then // check swaps

18 𝐷 ← 𝐷 + 𝑑 (𝑣1
𝑖
, 𝑝 (𝑣1

𝑗
)) − 𝑑 (𝑣1

𝑗
, 𝑝 (𝑣1

𝑗
))

19 if 𝐷 ≥ 0 then // if swaps increase assignment value
20 𝑡𝑒𝑚𝑝 ← 𝑝 (𝑣1

𝑗
) // perform swaps

21 𝑝 (𝑣1
𝑗
) ← 𝑝 (𝑣1

𝑖
)

22 𝑝 (𝑣1
𝑖
) ← 𝑡𝑒𝑚𝑝

23 𝑐𝑖 ← {𝑣1𝑖 , 𝑝 (𝑣1𝑖) }
24 𝑐 𝑗 ← {𝑣1𝑗 , 𝑝 (𝑣1𝑗) }

25 return𝐶

Best Match Clustering (BMC). This algorithm is inspired from
the Best Match strategy of [34], which solves the Stable Marriage
problem [13], as simplified in BigMat [1]. Its functionality is out-
lined in Algorithm 5. For each entity of the one dataset, this algo-
rithm creates a new partition (Lines 4-5), in which the most similar,
not-yet-clustered entity from the other dataset is also placed - pro-
vided that the corresponding edge weight is higher than 𝑡 (Lines
6-12). Note that the greedy heuristic for BMC introduced in [34] is
the same, in principle, to Unique Mapping Clustering (see below).
Note also that BMC is the only algorithm with an additional con-
figuration parameter, apart from the similarity threshold: the input

Bipartite Graph Matching Algorithms for Clean-Clean ER

dataset that is used as the basis for creating partitions can be set to
the source or the target dataset. In our experiments, we examine
both options and retain the best one.

The algorithm iterates over the nodes of one of the datasets
searching for its adjacent vertex withmaximum similarity, therefore
its time complexity is 𝑂 (𝑚).

Algorithm 5: Best Match Clustering (BMC)
Input: Similarity Graph𝐺 = (𝑉1,𝑉2, 𝐸) , similarity threshold 𝑡
Output: A set of clusters𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 }

1 𝐶 ← ∅
2 𝑀2 ← ∅ // matched nodes from 𝑉2
3 foreach 𝑣𝑖 ∈ 𝑉1 do
4 𝑐𝑖 ← {𝑣𝑖 } // create a new cluster containing 𝑣𝑖

5 𝑄𝑖 ← 𝑣𝑖 .𝑒𝑑𝑔𝑒𝑠𝐷𝑒𝑐𝑂𝑟𝑑𝑒𝑟 (𝑡) // edges in desc. sim > 𝑡

6 while𝑄𝑖 ≠ ∅ do
7 𝑒 ← 𝑄𝑖 .𝑝𝑜𝑝 ()
8 if 𝑒.𝑣2 ∉ 𝑀2 then // if 𝑣2 is not yet matched
9 𝑐𝑖 ← 𝑐𝑖 ∪ {𝑒.𝑣2 } // add 𝑣2 to cluster 𝑐𝑖

10 𝑀2 ← 𝑀2 ∪ {𝑒.𝑣2 }
11 break

12 𝐶 ← 𝐶 ∪ {𝑐𝑖 }
13 return𝐶

Exact Clustering (EXC). This algorithm is inspired from the Exact
strategy of [34]. Its functionality is outlined in Algorithm 6. Initially,
it creates an empty priority queue for every vertex (Lines 2-5).
Then, it populates the queue of every vertex 𝑣𝑖 with all its adjacent
edges that exceed the given similarity threshold 𝑡 , sorting them
in decreasing weight (Lines 6-8). Subsequently, EXC places two
entities in the same partition (Lines 9-16) only if they are mutually
the best matches, i.e., the most similar candidates of each other (Line
14). This approach is basically a stricter, symmetric version of BMC
and could also be conceived as a strict version of the reciprocity
filter that was employed in [10].

Its time complexity is 𝑂 (𝑛 𝑚), since the algorithm iterates over
each vertex of one dataset searching for its adjacent vertex with
maximum similarity and then performs the same search for the
latter vertex.

Unique Mapping Clustering (UMC). This algorithm is outlined
in Algorithm 8. Initially, it iteraters over all edges and those with
a weight higher than 𝑡 are placed in a priority queue that sorts
them in decreasing weight/similarity (Lines 5-7). Subsequently, it
iteratively forms a partition (Line 11) for the top-weighted pair
(Line 9), as long as none of its entities has already been matched to
some other (Line 10). This approach relies on the unique mapping
constraint of CCER, i.e., the restriction that each entity from the
one input dataset matches at most one entity from the other. Note
that the CLIP Clustering algorithm, introduced for the multi-source
ER problem in [47], is equivalent to UMC when there are only two
input datasets (i.e., in the CCER case that we study).

Its time complexity is𝑂 (𝑚 𝑙𝑜𝑔𝑚), due to the cost that is required
for sorting all edges.

Király’s Clustering (KRC). This algorithm is an adaptation of
the linear time 3/2 approximation to the Maximum Stable Marriage

problem, called “New Algorithm” in [21]. Intuitively, the entities of
the source dataset (“men” [21]) propose to the entities (Line 16) from
the target dataset with an edge weight higher than 𝑡 (“women” [21])
to form a partition (“get engaged” [21]). Its functionality is outlined
in Algorithm 7. The entities of the target dataset accept a pro-
posal under certain conditions (e.g., if it’s the first proposal they
receive - Line 17), and the partitions and preferences are updated
accordingly (Lines 18, 22, 24). Entities from the source dataset get a
second chance to make proposals (Lines 5, 27-30) and the algorithm
terminates when all entities of the first dataset are in a partition
(Line 13), or no more proposal chances are left (Line 27). We omit
some of the details (e.g., the rare case of “uncertain man”), due to
space restrictions, and refer the reader to [21] for more information
(e.g., the acceptance criteria for proposals). Its time complexity is
𝑂 (𝑛 +𝑚 𝑙𝑜𝑔𝑚) [21].

Algorithm 6: Exact Clustering (EXC)
Input: Similarity Graph𝐺 = (𝑉1,𝑉2, 𝐸) , similarity threshold 𝑡
Output: A set of clusters𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 }

1 𝐶 ← ∅
2 foreach 𝑣𝑖 ∈ |𝑉1 | do
3 𝑄1𝑖 ← ∅ // initialize a PQ in desc. sim

4 foreach 𝑣𝑗 ∈ |𝑉2 | do
5 𝑄2𝑗 ← ∅ // initialize a PQ in desc. sim

6 foreach 𝑒 = (𝑣𝑖 , 𝑣𝑗 , 𝑠𝑖𝑚) ∈ 𝐸, with 𝑒.𝑠𝑖𝑚 > 𝑡 do
7 𝑄1𝑖 .𝑝𝑢𝑠ℎ (𝑒)
8 𝑄2𝑗 .𝑝𝑢𝑠ℎ (𝑒)
9 foreach 𝑣𝑖 ∈ 𝑉1 do
10 𝑐𝑖 ← {𝑣𝑖 } // create a new cluster containing 𝑣𝑖

11 𝑒 ← 𝑄1𝑖 .𝑝𝑜𝑝 () // the best edge for 𝑣𝑖

12 𝑣𝑗 ← 𝑒.𝑣𝑗 // the best match for 𝑣𝑖 is 𝑣𝑗

13 𝑒2 ← 𝑄2𝑗 .𝑝𝑜𝑝 () // the best edge for 𝑣𝑗

14 if 𝑒2 .𝑣𝑖 = 𝑣𝑖 then // if the best match for 𝑣𝑗 is 𝑣𝑖

15 𝑐𝑖 ← 𝑐𝑖 ∪ {𝑣𝑗 } // add 𝑣𝑗 to cluster 𝑐𝑖
16 𝐶 ← 𝐶 ∪ {𝑐𝑖 }

17 return𝐶

B SIMILARITY FUNCTIONS
In this section, we provide more details about the similarity mea-
sures mentioned in Figure 6.

(1) For the schema-based syntactic representations, which in-
volve short textual values, we considered 16 established sim-
ilarity measures: Cosine Similarity, Block Distance, Leven-
shtein Distance, Damerau-Levenshtein Distance, Euclidean
Distance, Jaccard Similarity, Generalized Jaccard Similarity,
Dice Similarity, Overlap Coefficient, Jaro Similarity, Longest
Common Subsequence, Longest Common Substring, Monge-
Elkan Similarity, Needleman-Wunch, q-grams Distance, and
Simon White Similarity.

(2) For the n-gram vectors, we used six similarity measures: Co-
sine and Generalized Jaccard Similarity with both TF and TF-
IDF weights, Enhanced Jaccard Similarity with TF weights
and ARCS Similarity with TF-IDF weights.

Papadakis, Efthymiou, Thanos, Hassanzadeh

Algorithm 8: Unique Mapping Clustering
Input: Similarity Graph𝐺 = (𝑉1,𝑉2, 𝐸) , similarity threshold 𝑡
Output: A set of clusters𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 }

1 𝐶 ← ∅
2 𝑀1 ← ∅ // matched nodes from 𝑉1
3 𝑀2 ← ∅ // matched nodes from 𝑉2
4 𝑄 ← ∅
5 foreach 𝑒 = (𝑣𝑖 , 𝑣𝑗 , 𝑠𝑖𝑚) ∈ 𝐸 do
6 if e.sim > t then
7 𝑄.𝑝𝑢𝑡 (𝑒) // a PQ of edges in desc. sim > 𝑡

8 while𝑄 ≠ ∅ do
9 𝑒 ← 𝑄.𝑝𝑜𝑝 () // the entity pair with highest sim

10 if 𝑒.𝑣𝑖 ∉ 𝑀1 and 𝑒.𝑣𝑗 ∉ 𝑀2 then // 𝑣𝑖, 𝑣𝑗 not matched
11 𝐶 ← 𝐶 ∪ {{𝑒.𝑣𝑖 , 𝑒 .𝑣𝑗 }}
12 𝑀1 ← 𝑀1 ∪ {𝑒.𝑣𝑖 }
13 𝑀2 ← 𝑀2 ∪ {𝑒.𝑣𝑗 }

14 return𝐶

Algorithm 7: Király’s Clustering
Input: Similarity Graph𝐺 = (𝑉1,𝑉2, 𝐸) , similarity threshold 𝑡
Output: A set of clusters𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 }

1 𝐶 ← ∅
2 𝑓 𝑟𝑒𝑒𝑀 ← ∅ // an initially empty linked list

3 foreach 𝑣𝑖 ∈ 𝑉1 do // 𝑉1 corresponds to men in [21]
4 𝑄1𝑖 ← ∅ // 𝑣𝑖’s edges in desc. sim > 𝑡

5 𝑙𝑎𝑠𝑡𝐶ℎ𝑎𝑛𝑐𝑒 [𝑖] ← 𝑓 𝑎𝑙𝑠𝑒

6 𝑓 𝑟𝑒𝑒𝑀.𝑎𝑑𝑑𝐿𝑎𝑠𝑡 (𝑣𝑖) // keeps insertion order

7 foreach 𝑣𝑗 ∈ 𝑉2 do // 𝑉2 corresponds to women in [21]
8 𝑄2𝑗 ← ∅ // 𝑣𝑗’s edges in desc. sim > 𝑡

9 𝑓 𝑖𝑎𝑛𝑐𝑒 [𝑗] ← 𝑛𝑢𝑙𝑙

10 foreach 𝑒 = (𝑣𝑖 , 𝑣𝑗 , 𝑠𝑖𝑚) ∈ 𝐸, with 𝑒.𝑠𝑖𝑚 > 𝑡 do
11 𝑄1𝑖 .𝑝𝑢𝑠ℎ (𝑒)
12 𝑄2𝑗 .𝑝𝑢𝑠ℎ (𝑒)
13 while 𝑓 𝑟𝑒𝑒𝑀 ≠ ∅ do
14 𝑣𝑖 ← 𝑓 𝑟𝑒𝑒𝑀.𝑟𝑒𝑚𝑜𝑣𝑒𝐹𝑖𝑟𝑠𝑡 () // in insertion order

15 if 𝑄1𝑖 ≠ ∅ then
16 𝑣𝑗 ← 𝑄1𝑖 .𝑝𝑜𝑝 () // 𝑣𝑖’s preference is 𝑣𝑗

17 if 𝑓 𝑖𝑎𝑛𝑐𝑒 [𝑗] = 𝑛𝑢𝑙𝑙 then // 𝑣𝑗 is free
18 𝐶 ← 𝐶 ∪ {{𝑣𝑖 , 𝑣𝑗 }} // match 𝑣𝑖 to 𝑣𝑗

19 else
20 𝑣′

𝑖
← 𝑓 𝑖𝑎𝑛𝑐𝑒 [𝑗] // 𝑣𝑗 was engaged to 𝑣′

𝑖

21 if acceptsProposal(𝑣𝑗 , 𝑣𝑖) then // refer to [21]
22 𝐶 ← 𝐶 \ {{𝑣′

𝑖
, 𝑣𝑗 }} // 𝑣′

𝑖
and 𝑣𝑗 break up

23 𝑓 𝑟𝑒𝑒𝑀.𝑎𝑑𝑑𝐿𝑎𝑠𝑡 (𝑣′
𝑖
) // 𝑣′

𝑖
is free again

24 𝐶 ← 𝐶 ∪ {{𝑣𝑖 , 𝑣𝑗 }} // match 𝑣𝑖 to 𝑣𝑗

25 𝑓 𝑖𝑎𝑛𝑐𝑒 [𝑗] ← 𝑣𝑖 // 𝑣𝑗 gets engaged to 𝑣𝑖

26 else
27 if 𝑙𝑎𝑠𝑡𝐶ℎ𝑎𝑛𝑐𝑒 (𝑣𝑖) = 𝑓 𝑎𝑙𝑠𝑒 then
28 𝑙𝑎𝑠𝑡𝐶ℎ𝑎𝑛𝑐𝑒 [𝑖] ← 𝑡𝑟𝑢𝑒 // 2𝑛𝑑 chance for 𝑣𝑖

29 𝑄1𝑖 ← 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑄𝑢𝑒𝑢𝑒 (𝑣𝑖)
30 𝑓 𝑟𝑒𝑒𝑀.𝑎𝑑𝑑𝐿𝑎𝑠𝑡 (𝑣𝑖)

31 return𝐶

(3) For the n-gram graphs, we used four graph similarity mea-
sures: Containment, Value, Normalized Value and Overall
Similarity (i.e., the average of the three measures) [15].

(4) For the semantic models, we consider Cosine Similarity, Eu-
clidean Similarity (=1/(1+Euclidean distance)) and World
Mover’s Similarity (=1/(1+World Mover’s Distance)).

Each category of similarity functions is described in more detail
in the following.

B.1 Schema-based syntactic functions
For this category, we use the following similarity and distance
measures, as defined and implemented in Simmetrics.

B.1.1 Character-level measures. The following similarity measures
are applied to two strings 𝑠1 and 𝑠2 at character level.

Levenshtein Distance: Counts the (minimum) number of insert,
delete and substitute operations required to transform one string
into the other.

Damerau-Levenshtein Distance: Demerau-Levenshtein Distance
only differs to Levenshtein Distance by including transpositions
among the operations allowed.

Jaro Similarity: The Jaro Similarity of two strings 𝑠1 and 𝑠2 is
given by the formula:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑠1, 𝑠2) =
{
0 , if𝑚 = 0
1
3

(
𝑚
|𝑠1 | +

𝑚
|𝑠2 | +

𝑚−𝑡
𝑚

)
, else,

where𝑚 is the number of common characters, and 𝑡 is the number
of transpositions.

Needleman-Wunch: This similarity measure is the result of ap-
plying an algorithm that assigns three scores (seen as parameters)
to two sequences of characters 𝑠1 and 𝑠2, depending on whether
aligned characters are a match, a mismatch, or a gap. A match
occurs when the two aligned characters are the same, a mismatch
when they are not the same, and a gap when for the aligned we
need an insert or delete operation. The match, mismatch, gap scores
used in this study, as in Simmetrics, are 0, -1, and -2, respectively.

q-grams Distance: It applies a Block Distance (see below) similar-
ity metric over all tri-grams in a string.

Longest Common Substring Similarity: As the name suggests,
this measure counts the size of the longest common substring
(𝑙𝑐𝑠𝑠𝑡𝑟) between two strings, divided by the size of the longest
string: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑠1, 𝑠2) = |𝑙𝑐𝑠𝑠𝑡𝑟 (𝑠1, 𝑠2) |/𝑚𝑎𝑥 (|𝑠1 |, |𝑠2 |).

Longest Common Subsequence Similarity: The difference between
this measure and the previous is that a subsequence does not
need to consist of consecutive characters: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑠1, 𝑠2) =

|𝑙𝑐𝑠𝑠𝑒𝑞 (𝑠1, 𝑠2) |/𝑚𝑎𝑥 (|𝑠1 |, |𝑠2 |).

B.1.2 Word-level measures. The following similarity measures are
applied to two strings 𝑎 and 𝑏 that are treated as sets or multisets
(bags) of words.

Cosine Similarity: The similarity is defined as the cosine of the
angle between the multisets (bags) of words 𝑎 and 𝑏 expressed as
sparse vectors. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏) = 𝑎 · 𝑏/(| |𝑎 | | | |𝑏 | |).

Euclidean Distance: Compares the frequency of occurrence of
each word 𝑤 in two strings 𝑎 and 𝑏 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) = | |𝑎 − 𝑏 | | =√︁∑

𝑤 (𝑓 𝑟𝑒𝑞𝐴(𝑤) − 𝑓 𝑟𝑒𝑞𝐵(𝑤))2
Block Distance: Also known as L1 Distance, City Block Distance

and Manhattan Distance between two multisets (bags) of words 𝑎

Bipartite Graph Matching Algorithms for Clean-Clean ER

Scope
Schema-agnostic Schema-based

Representation model Similarity Measure Representation model Similarity Measure

Form

Syntactic
Similarity

character n-grams (n=2,3,4)
and

token n-grams (n=1,2,3)

1) Arcs Similarity

Character-level

1) Damerau-Levenshtein
2) Cosine Similarity with TF Weights 2) Levenshtein Distance
3) Cosine Similarity with TF-IDF Weights 3) q-grams Distance
4) Jaccard Similarity 4) Jaro Similarity
5) Generalized Jaccard Similarity with TF Weights 5) Needleman Wunch
6) Generalized Jaccard Similarity with TF-IDF Weights 6)Longest Common Subsequence

7) Longest Common Substring

character n-gram graphs
(n=2,3,4)

and
token n-gram graphs

(n=1,2,3)

Token-level

1) Cosine Similarity
2) Monge-Elkan

1) Containment Similarity 3) Block Distance
2) Value Similarity 4) Dice Similarity
3) Normalized Value Similarity 5) Overlap Coefficient
4) Overall Similarity 6) Euclidean Distance

7) Jaccard Similarity
8) Generalized Jaccard Similarity
9) Euclidean Distance

Semantic
Similarity

fastText
and

ALBERT

1) Cosine Similarity fastText
and

ALBERT

1) Cosine Similarity
2) Euclidean Similarity 2) Euclidean Similarity
3) World Mover's Similarity 3) World Mover's Similarity

Figure 6: Taxonomy of the similarity functions we used to generate the similarity graphs. We use 𝑛 ∈ {2, 3, 4} for character
and 𝑛 ∈ {1, 2, 3} for token n-grams for both vector and graph models, as in [41]. The graph similarities are defined in [15].

and 𝑏 is the sum of the absolute differences of the frequency of each
word in 𝑎 vs in 𝑏: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) = | |𝑎 − 𝑏 | |1.

Overlap Coefficient: The size of the intersection divided by the
smaller of the size of the two sets of words: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏) =

|𝑎 ∩ 𝑏 |/𝑚𝑖𝑛(|𝑎 |, |𝑏 |).
Dice Similarity: The Dice Similarity is defined as twice the shared

information (intersection) divided by sum of cardinalities of the
two sets of words: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏) = 2|𝑎 ∩ 𝑏 |/(|𝑎 | + |𝑏 |).

Simon White Similarity: This similarity is the same as Dice Sim-
ilarity, with the only difference being that it considers 𝑎 and 𝑏 as
multisets (bags) of words.

Jaccard Similarity: Computes the size of the intersection divided
by the size of the union for two sets of words 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏) =
|𝑎 ∩ 𝑏 |/|𝑎 ∪ 𝑏 |.

Generalized Jaccard Similarity: Same as the Jaccard Similarity,
except that the Generalized Jaccard Similarity considers multisets
(bags) of words, instead of sets.

Monge-Elkan Similarity: This similarity is the average similarity
of the most similar words between two sets of words 𝑎 and 𝑏:
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏) = 1

|𝑎 |
∑
𝑤𝑖 ∈𝑎𝑚𝑎𝑥𝑤𝑗 ∈𝑏

(
𝑠𝑖𝑚(𝑤𝑖 ,𝑤 𝑗)

)
, where 𝑠𝑖𝑚 is

the optimized Smith-Waterman algorithm [17] that operates as the
secondary character-level similarity to compute the similarity of
individual words.

B.2 Schema-agnostic syntactic functions
For this category, we use the following similarity functions, as
defined and implemented in JedAI.

B.2.1 Bag Models [33]. There are two types of n-grams, the charac-
ter and the token ones. These give rise to two types of bag models:
the character n-grams model and the token n-grams model. Col-
lectively, they are called bag or vector space models, because they
model an entity 𝑒𝑖 as a vector with one dimension for every distinct

n-gram in an entity collection 𝐸: 𝐵𝑀 (𝑒𝑖) = (𝑤𝑖1, . . . ,𝑤𝑖𝑚), where
𝑚 stands for the dimensionality of 𝐸 (i.e., the number of distinct
n-grams in it), while 𝑤𝑖 𝑗 is the weight of the 𝑗𝑡ℎ dimension that
quantifies the importance of the corresponding n-gram for 𝑒𝑖 .

The most common weighting schemes are:
(i) Term Frequency (TF) sets weights in proportion to the number

of times the corresponding n-grams appear in the values of entity
𝑒𝑖 . More formally, 𝑇𝐹 (𝑡 𝑗 , 𝑒𝑖)=𝑓𝑗/𝑁𝑒𝑖 , where 𝑓𝑗 stands for the occur-
rence frequency of 𝑡 𝑗 in 𝑒𝑖 , while 𝑁𝑒𝑖 is the number of n-grams in
𝑒𝑖 , normalizing TF so as to mitigate the effect of different lengths
on the weights.

(ii) Term Frequency-Inverse Document Frequency (TF-IDF) dis-
counts the TF weight for the most common tokens in the en-
tire entity collection 𝐸, as they typically correspond to noise
(i.e., stop words). Formally, 𝑇𝐹 -𝐼𝐷𝐹 (𝑡 𝑗 , 𝑒𝑖) = 𝑇𝐹 (𝑡 𝑗 , 𝑒𝑖) · 𝐼𝐷𝐹 (𝑡 𝑗),
where 𝐼𝐷𝐹 (𝑡 𝑗) is the inverse document frequency of the n-gram 𝑡 𝑗 ,
i.e., 𝐼𝐷𝐹 (𝑡 𝑗) = log |𝐸 |/(|{𝑒𝑘 ∈ 𝐸 : 𝑡 𝑗 ∈ 𝑒𝑘 }| + 1). In this way, high
weights are given to n-grams with high frequency in 𝑒𝑖 , but low
frequency in 𝐸.

To construct the bag model for a specific entity, we aggregate
the vectors corresponding to each one of its attribute values. The
end result is a weighted vector (𝑎𝑖 (𝑤1),, 𝑎(𝑤𝑚)), where 𝑎𝑖 (𝑤 𝑗)
is the sum of weights, i.e., 𝑎𝑖 (𝑤 𝑗) =

∑
𝑎𝑘 ∈𝐴𝑖

𝑤𝑖 𝑗 , where 𝑎𝑘 stands
for an individual attribute value in the set of values 𝐴𝑖 of entity 𝑒𝑖 .

To compare two bag models, 𝐵𝑀 (𝑒𝑖) and 𝐵𝑀 (𝑒 𝑗), one of the
following similarity measures is typically used:

(i) ARCS Similarity (ARCS) sums the inverse Document Fre-
quency of the common n-grams in two bag models. That
is, the rarer the common n-grams are, the higher gets
the overall similarity. Formally: 𝐴𝑅𝐶𝑆 (𝐵𝑀 (𝑒𝑖), 𝐵𝑀 (𝑒 𝑗)) =∑
𝑘∈𝐵𝑀 (𝑒𝑖)∩𝐵𝑀 (𝑒 𝑗) log 2/log(𝐷𝐹1 (𝑘) · 𝐷𝐹2 (𝑘)).
(ii) Cosine Similarity (CS) measures the cosine of the angle of the

weighted vectors. Formally, it is equal to their dot product similarity,

Papadakis, Efthymiou, Thanos, Hassanzadeh

Figure 7: Nemenyi diagram based on Precision.

Figure 8: Nemenyi diagram based on Recall.
normalized by the product of their magnitudes:
𝐶𝑆 (𝐵𝑀 (𝑒𝑖), 𝐵𝑀 (𝑒 𝑗)) =

∑𝑚
𝑘=1

𝑤𝑖𝑘𝑤 𝑗𝑘/| |𝐵𝑀 (𝑒𝑖) | |/| |𝐵𝑀 (𝑒 𝑗) | |.
(iii) Jaccard Similarity (JS) treats the document vectors as sets,

with weights higher than (equal to) 0 indicating the presence (ab-
sence) of the corresponding n-gram. On this basis, it defines as
similarity the ratio between the sizes of set intersection and union:
𝐽𝑆 (𝐵𝑀 (𝑒𝑖), 𝐵𝑀 (𝑒 𝑗))=|𝐵𝑀 (𝑒𝑖)∩𝐵𝑀 (𝑒 𝑗) |/|𝐵𝑀 (𝑒𝑖)∪𝐵𝑀 (𝑒 𝑗) |.

(iv) Generalized Jaccard Similarity (GJS) extends JS so that it
takes into account the weights associated with every n-gram:
𝐺𝐽 𝑆 (𝐵𝑀 (𝑒𝑖), 𝐵𝑀 (𝑒 𝑗))=

∑𝑚
𝑘=1𝑚𝑖𝑛 (𝑤𝑖𝑘 , 𝑤𝑗𝑘)/

∑𝑚
𝑘=1𝑚𝑎𝑥 (𝑤𝑖𝑘 , 𝑤𝑗𝑘) .

Both CS and GJS apply seamlessly to both TF and TF-IDFweights.

B.2.2 Graph Models [15, 45]. Recent works suggest that graph
models outperform the bag ones in various tasks [32], from Infor-
mation Retrieval [45] to Document Classification [41]. There are
two graph models, one for each type of n-grams, i.e., token n-gram
graphs [45] and character n-gram graphs [15]. Both models repre-
sent each entity 𝑒𝑖 as an undirected graph 𝐺𝑖 that contains one
vertex for each n-gram in the attribute values of 𝑒𝑖 . An edge con-
nects every pair of vertices/n-grams that co-occur within a window
of size 𝑛 in the values of 𝑒𝑖 . Every edge is weighted according to the
co-occurrence frequency of the corresponding n-grams. Thus, the
graphs incorporate contextual information in the form of n-grams’
closeness.

To construct the model for an entity, we merge the graphs of
its attribute values using the update operator, which is described
in [15, 16]. To compare graph models, we can use the following
graph similarity measures [15]:

(i) Containment Similarity (CoS) estimates the number of edges
shared by two graph models, 𝐺𝑖 and 𝐺 𝑗 , regardless of the corre-
sponding weights (i.e., it merely estimates the portion of common
n-grams in the original texts). Formally:
𝐶𝑜𝑆 (𝐺𝑖 ,𝐺 𝑗) =

∑
𝑒∈𝐺𝑖

𝜇 (𝑒,𝐺 𝑗)/𝑚𝑖𝑛(|𝐺𝑖 |, |𝐺 𝑗 |), where |𝐺 | is the size
of graph G, and 𝜇 (𝑒,𝐺) = 1 if 𝑒 ∈ 𝐺 , or 0 otherwise.

(ii) Value Similarity (VS) extends CoS by considering the weights
of common edges. Formally, using𝑤𝑘𝑒 for the weight of edge 𝑒 in
𝐺𝑘 : 𝑉𝑆 (𝐺𝑖 ,𝐺 𝑗) =

∑
𝑒∈(𝐺𝑖∩𝐺 𝑗)

𝑚𝑖𝑛 (𝑤𝑖
𝑒 ,𝑤

𝑗
𝑒)

𝑚𝑎𝑥 (𝑤𝑖
𝑒 ,𝑤

𝑗
𝑒) ·𝑚𝑎𝑥 (|𝐺𝑖 |,|𝐺 𝑗 |)

.

(iii) Normalized Value Similarity (NS) extends VS by mitigating
the impact of imbalanced graphs, i.e., the cases where the com-
parison between a large graph with a much smaller one yields

similarities close to 0. Formally:
𝑁𝑆 (𝐺𝑖 ,𝐺 𝑗)=

∑
𝑒∈(𝐺𝑖∩𝐺 𝑗)𝑚𝑖𝑛 (𝑤

𝑖
𝑒 , 𝑤

𝑗
𝑒)/𝑚𝑎𝑥 (𝑤𝑖

𝑒 , 𝑤
𝑗
𝑒)/𝑚𝑖𝑛 (|𝐺𝑖 |, |𝐺 𝑗 |) .

(iv) Overall Similarity (OS) constitutes the average of the above
graph similarity measures, which are all defined [0, 1]. Formally:
𝑂𝑆 (𝐺𝑖 ,𝐺 𝑗)=(𝐶𝑜𝑆 (𝐺𝑖 ,𝐺 𝑗) +𝑉𝑆 (𝐺𝑖 ,𝐺 𝑗) + 𝑁𝑆 (𝐺𝑖 ,𝐺 𝑗))/3.

3 ADDITIONAL EXPERIMENTS
3.1 Critical Difference Analysis
In addition to F-Measure, which is examined in Section 6 and Figure
2, we performed a post-hoc Nemenyi test to identify the critical
difference of the eight algorithms with respect to Precision and
Recall. The corresponding Nemenyi diagrams appear in Figures 7
and 8, respectively. In both cases, the critical distance is the same
as that of F-Measure, namely 0.37. We observe that for Precision,
only the difference between RSR and BMC is insignificant, while
for Recall, the only insignificant difference pertains to BAH and
RSR. The best performing algorithm in terms of Precision is CNC,
followed by EXC, KRC and UMC, while the best recall is achieved
by UMC, with KRC in the second place. These results verify the
patterns in Section 6 (Table 4 and Figure 3 in particular), which
highlight the excellent balance between Precision and Recall that
is achieved by UMC and KRC.

3.2 Threshold Analysis
As explained in Section 6, the similarity threshold constitutes the
most important configuration parameter for the effectiveness and
time efficiency of all bipartite graph matching algorithms. It is
crucial, therefore, to understand how easily this parameter can
be fine-tuned a-priori, examining the main factors that determine
its optimal value. To this end, Table 8 presents the descriptive
statistics of similarity threshold per algorithm and type of edge
weights. These statistics include the average value along with the
corresponding standard deviation as well as the minimum and max-
imum values together with the first, second and third quartile (𝑄1,
𝑄2 and 𝑄3, respectively). We also report the Pearson correlation of
similarity thresholds with the normalized size of similarity graphs,
i.e., the number of their edges divided by the Cartesian product.

We observe different patterns for each type of edge weights.
More specifically, the schema-agnostic syntactic inputs yield rela-
tively high thresholds: the average values of all algorithms fluctuate
between 0.61 and 0.76, while the median (𝑄2) is slightly higher, be-
tween 0.65 and 0.8. Yet, the variance is also high, as indicated by
the standard deviation, which is consistently higher than 0.16. The
reason is that the similarity thresholds of all algorithms cover the
entire space in [0.05, 0.95], as suggested by the minimum and max-
imum values. For most algorithms, though, the first (𝑄1) and third
(𝑄3) quartiles significantly restrict the optimal values to the range
0.4/0.5-0.8 or 0.65-0.90. The slightly negative correlation with the
normalized graph size suggests that in datasets where the portion
of edges is high, the optimal threshold should be slightly lower.
The reason is that the schema-based syntactic weights provide
higher confidence in datasets with relatively small graphs (e.g., 𝐷1),
while large graphs indicate non-zero similarities with too many
non-matching entities. These conditions occur in datasets with
lower confidence in the similarity values, such as the bibliographic

Bipartite Graph Matching Algorithms for Clean-Clean ER

Table 8: The distribution of similarity thresholds per algo-
rithm and type of input.

mean±std min. Q1 Q2 Q3 max. 𝜌 (t, |E|
| |V1×V2 | |)

CNC 0.76±0.16 0.30 0.65 0.80 0.90 0.95 -0.09
RSR 0.76±0.16 0.20 0.65 0.80 0.90 0.95 -0.14
RCA 0.66±0.21 0.05 0.50 0.70 0.80 0.95 -0.22
BAH 0.66±0.25 0.05 0.50 0.70 0.85 0.95 -0.31
BMC 0.67±0.20 0.20 0.53 0.70 0.80 0.95 -0.16
EXC 0.63±0.23 0.05 0.45 0.65 0.80 0.95 -0.19
KRC 0.61±0.25 0.05 0.40 0.65 0.80 0.95 -0.17
UMC 0.63±0.23 0.05 0.45 0.65 0.80 0.95 -0.16

(a) Schema-based syntactic inputs
CNC 0.41±0.23 0.05 0.20 0.40 0.60 0.95 0.43
RSR 0.41±0.24 0.05 0.20 0.40 0.60 0.95 0.39
RCA 0.31±0.24 0.05 0.10 0.25 0.50 0.95 0.35
BAH 0.30±0.24 0.05 0.05 0.25 0.45 0.95 0.35
BMC 0.33±0.24 0.05 0.10 0.30 0.50 0.95 0.37
EXC 0.29±0.23 0.05 0.10 0.25 0.45 0.90 0.38
KRC 0.27±0.24 0.05 0.05 0.20 0.45 0.90 0.31
UMC 0.30±0.25 0.05 0.05 0.20 0.50 0.95 0.33

(b) Schema-agnostic syntactic inputs
CNC 0.69±0.36 0.00 0.48 0.95 0.95 0.95 -0.13
RSR 0.80±0.24 0.15 0.70 0.95 0.95 0.95 -0.29
RCA 0.77±0.27 0.10 0.55 0.95 0.95 0.95 -0.32
BAH 0.66±0.30 0.05 0.41 0.80 0.95 0.95 -0.25
BMC 0.78±0.27 0.10 0.56 0.95 0.95 0.95 -0.26
EXC 0.77±0.26 0.10 0.56 0.95 0.95 0.95 -0.24
KRC 0.75±0.29 0.05 0.51 0.95 0.95 0.95 -0.25
UMC 0.76±0.28 0.10 0.51 0.93 0.95 0.95 -0.22

(c) Schema-based semantic inputs
CNC 0.68±0.29 0.00 0.55 0.75 0.95 0.95 -0.31
RSR 0.74±0.24 0.10 0.55 0.85 0.95 0.95 -0.27
RCA 0.66±0.28 0.05 0.45 0.80 0.85 0.95 -0.34
BAH 0.60±0.33 0.05 0.30 0.75 0.85 0.95 -0.37
BMC 0.71±0.26 0.10 0.50 0.85 0.95 0.95 -0.30
EXC 0.67±0.27 0.05 0.45 0.80 0.90 0.95 -0.28
KRC 0.64±0.25 0.05 0.45 0.68 0.84 0.95 -0.31
UMC 0.67±0.27 0.05 0.46 0.80 0.85 0.95 -0.33

(d) Schema-agnostic semantic inputs

ones 𝐷4 and 𝐷9, which convey a limited vocabulary. In the former
cases, high thresholds suffice for achieving high performance, but
in the latter ones, slightly lower thresholds are required in order to
restricting the impact on recall.

Regarding the schema-agnostic syntactic weights, we observe
that the standard deviation is higher than the schema-based coun-
terparts, even though the average and median values are much
lower, even by 50%. The reason is that the similarity thresholds
still cover the entire space in [0.05, 0.95], with the interquartile
range (𝑄3 - 𝑄1) increasing from 0.25 or 0.3 to 0.4 for practically all
algorithms. This means that this type of weights yields a larger di-
versity of graphs, which hinders the configuration of the similarity
thresholds. Note that the correlation with the normalized graph
size is significantly positive for all algorithms. The reason is that
large graphs emanate from similarity functions that associate many
non-matching entities, albeit with low weights. These settings call
for higher thresholds in order to prune the non-matching edges
and increase precision. In other words, smaller thresholds should
be used in smaller graphs in order to maintain a high recall.

Among the semantic inputs, the schema-based ones share similar
patterns with their syntactic counterparts, as the average thresholds

are high for all algorithms. Compared to syntactic weights, though,
the median and the third quartile get higher, but the first one gets
lower, thus increasing the interquartile range and the standard
deviation. This means that threshold fine-tuning gets harder. Yet,
the normalized graph size provide stronger indications for the best
thresholds, as suggested by the significantly higher negative cor-
relations. Similar patterns apply to the schema-agnostic semantic
inputs, albeit with slightly lower thresholds.

Note that the relative order of the algorithms with respect to
the average thresholds remains the same in both types of syntac-
tic weights: CNC and RSR exhibit the highest thresholds, with
KRC lying at the other extreme. followed in close distance by EXC
and UMC. These patterns do not hold in the case of semantic in-
puts, except for RSR, which consistently yields the highest average
threshold. In fact, CNC uses lower thresholds than KRC, EXC and
UMC for schema-based weights.

These patterns can be verified at a finer granularity through Table
9, which provides the average threshold per dataset for each algo-
rithm and type of edge weights. Another pattern that emerges from
this table is that every algorithm exhibits highly similar thresholds
for every row (i.e., dataset). This means that knowing the optimal
threshold for a particular algorithm over a specific dataset provides
strong indications for fine-tuning the rest of the algorithms over
the same dataset. The high correlation between the optimal thresh-
olds of the eight algorithms is verified by the diagrams in Figure 9,
which present the Pearson correlations for each pair across the four
types of edge weights. We observe that this correlation is highly
positive, taking values well above 0.8 in the vast majority of cases,
especially for the syntactic weights. The only exceptions are BAH
and CNC for semantic weights, which fluctuate from 0.2 to 0.8.

Overall, the similarity thresholds used by bipartite graph match-
ing algorithms depend on the type of edge weights and the normal-
ized graph size. With the exception of schema-agnostic syntactic
weights, relatively high thresholds are used on average. Their op-
timal value is more stable in the case of schema-based syntactic
weights, with the interquartile range limited to 0.3 over even 0.25
for most algorithms. Most importantly, the optimal threshold for a
particular similarity graph is relatively stable across different algo-
rithms. In other words, it depends more on the characteristics of
the input, than the functionality of the graph matching algorithm.

3.3 Trade-off between F-Measure and Run-time
In this section, we examine the best trade-off that is achieved on
average by all combinations of algorithms and types of edge weights
across the datasets 𝐷2-𝐷10. To this end, Figure 10 contains one
diagram per dataset, excluding the combinations including BAH, as
their average performance consistently underperforms with respect
to both F-Measure and run-time.

Starting with 𝐷2, we observe the best performance clearly cor-
responds to UMC coupled with schema-agnostic syntactic weights,
which achieves the highest macro-averaged F-Measure (0.738). The
next best combinations reduce the average F-Measure by 10% for a
similar run-time. Note in Table 9 the average similarity threshold
of UMC is just 0.11, due to the very small size of the input graph,
as shown in Table 3.

Papadakis, Efthymiou, Thanos, Hassanzadeh

Figure 9: Pearson correlation between the similarity thresholds of every algorithm for schema-based syntactic, schema-
agnostic syntactic inputs, schema-based semantic and schema-agnostic semantic inputs, from left to right.

Table 9: The average similarity threshold and its standard
deviation per algorithm, dataset and type of edge weights.

CNC RSR RCA BAH BMC EXC KRC UMC
D1 .81±.15 .85±.12 .75±.14 .83±.13 .76±.14 .69±.21 .72±.17 .71±.17
D2 .63±.15 .60±.14 .42±.20 .16±.17 .48±.20 .34±.23 .39±.22 .38±.20
D3 .61±.14 .60±.15 .45±.17 .43±.19 .50±.17 .40±.20 .37±.25 .41±.21
D4 .73±.12 .71±.13 .49±.22 .49±.23 .54±.17 .53±.22 .40±.23 .43±.21
D5 .86±.10 .86±.10 .80±.09 .82±.10 .79±.12 .75±.13 .73±.12 .73±.14
D6 .86±.07 .88±.07 .84±.08 .85±.11 .83±.09 .82±.09 .82±.09 .85±.10
D7 .77±.19 .76±.21 .72±.21 .77±.19 .70±.22 .69±.22 .68±.23 .69±.23
D8 .75±.16 .77±.15 .73±.16 .72±.17 .73±.16 .71±.18 .72±.18 .72±.17
D9 .71±.15 .72±.15 .59±.18 .61±.18 .59±.18 .49±.23 .55±.22 .58±.19
D10 .64±.13 .63±.12 .56±.13 .55±.12 .55±.12 .53±.16 .38±.23 .48±.13

(a) Schema-based, syntactic inputs
D1 .60±.24 .67±.20 .64±.21 .62±.23 .64±.21 .58±.21 .60±.21 .63±.22
D2 .33±.15 .28±.14 .14±.10 .07±.04 .19±.11 .13±.10 .12±.10 .11±.09
D3 .34±.22 .28±.19 .15±.12 .14±.13 .18±.14 .17±.14 .10±.08 .45±.08
D4 .47±.21 .43±.22 .25±.18 .31±.20 .31±.19 .34±.20 .24±.17 .28±.17
D5 .42±.19 .39±.19 .29±.18 .26±.19 .29±.20 .25±.20 .23±.18 .24±.18
D6 .33±.17 .32±.18 .29±.18 .26±.17 .29±.18 .24±.17 .24±.16 .27±.17
D7 .55±.28 .64±.31 .51±.29 .50±.27 .57±.30 .50±.31 .53±.32 .55±.31
D8 .48±.17 .51±.17 .43±.16 .43±.17 .43±.16 .39±.16 .41±.15 .43±.16
D9 .38±.18 .39±.18 .26±.16 .30±.16 .27±.17 .22±.15 .22±.15 .26±.16
D10 .24±.15 .19±.14 .12±.10 .13±.12 .15±.11 .15±.12 .07±.03 .11±.09

(b) Schema-agnostic, syntactic inputs
D1 .70±.33 .79±.23 .79±.23 .69±.34 .77±.25 .71±.25 .74±.25 .77±.26
D2 .72±.25 .62±.32 .60±.28 .17±.04 .65±.28 .60±.28 .57±.25 .57±.25
D3 .65±.28 .62±.32 .27±.18 .17±.11 .27±.18 .45±.28 .27±.18 .30±.21
D4 .60±.41 .73±.33 .72±.33 .61±.30 .72±.33 .72±.33 .66±.37 .70±.33
D5 .72±.38 .87±.17 .83±.20 .70±.30 .86±.19 .85±.20 .79±.29 .78±.28
D6 .75±.38 .89±.15 .87±.19 .73±.26 .87±.17 .87±.18 .87±.18 .86±.17
D7 .71±.40 .85±.23 .86±.23 .79±.24 .86±.23 .86±.24 .86±.23 .86±.23
D8 .75±.28 .72±.32 .67±.32 .65±.35 .72±.25 .62±.39 .70±.28 .72±.25
D9 .72±.35 .73±.33 .69±.36 .74±.27 .69±.36 .67±.36 .69±.36 .69±.36
D10 .70±.21 .65±.28 .57±.25 .42±.46 .45±.42 .57±.25 .32±.39 .37±.39

(c) Schema-based, semantic inputs
D1 .80±.21 .87±.11 .80±.21 .87±.11 .80±.21 .80±.21 .80±.21 .80±.21
D2 .72±.25 .72±.18 .52±.39 .25±.00 .62±.25 .62±.25 .62±.25 .60±.28
D3 .80±.21 .80±.21 .60±.28 .12±.11 .80±.21 .70±.28 .52±.18 .60±.28
D4 .71±.29 .67±.30 .62±.29 .64±.31 .69±.29 .66±.33 .55±.25 .64±.32
D5 .67±.25 .70±.21 .65±.28 .67±.25 .65±.28 .62±.32 .60±.28 .65±.28
D6 .62±.32 .65±.28 .60±.35 .57±.39 .60±.35 .60±.35 .60±.35 .60±.35
D7 .55±.47 .76±.37 .75±.39 .73±.39 .76±.37 .68±.38 .73±.38 .75±.39
D8 - - - - - - - -
D9 .72±.25 .72±.25 .67±.25 .65±.28 .67±.25 .62±.25 .62±.25 .67±.25
D10 - - - - - - - -

(d) Schema-agnostic, semantic inputs

In 𝐷3, the best F-Measure is achieved by schema-based weights,
with the syntactic ones outperforming the semantic ones in terms

of run-time, due to the lower normalized graph size and the higher
similarity thresholds, on average. Among the algorithms, UMC is
again the best option, dominating the second-best approach, KRC,
with respect to both effectiveness and time efficiency. BMC and
EXC reduce the run-time almost by 50%, though at the cost of much
lower F-Measure (<10%).
𝐷4 is dominated by schema-agnostic syntactic inputs, due to

the noise in the form of misplaced attribute values (e.g., the author
of a publication is added in its title). This type of error cannot be
addressed by schema-based weights, thus reducing significantly
their effectiveness. In contrast, schema-agnostic weights consider
address this noise inherently, as they take into account the entire
textual information per entity profile. Among the algorithms, UMC
and KRC exhibit the highest average F-Measure (0.98) at the cost
of high run-time, due to the low similarity thresholds they employ.
The best trade-off is achieved byBMC, which significantly increases
the similarity threshold, reducing the run-time by at least 2/3 for a
negligible reduction to F-Measure (1%).
𝐷5 constitutes a highly noisy dataset, with many missing val-

ues in all attributes. As a result, the effectiveness of both types
of schema-based semantic weights is rather low. Yet, the schema-
agnostic ones consider all attribute values per entity, with the se-
mantic weights leveraging the contextual knowledge offered by
fastText and Albert pre-trained embeddings. As a result, the schema-
agnostic semantic weights achieve the highest F-Measure, followed
in close distance by their syntactic counterparts. Note that the dif-
ference in the run-time between the two types of edges is in favor of
the semantic ones in most cases, despite the much larger similarity
graphs they provide as input. This should be attributed to the much
higher similarity thresholds they employ, on average. Among the
algorithms, KRC is the top performing one in terms of effectiveness
(F1=0.68), but UMC and EXC offer a better trade-off: F1 drops to
0.66, but the run-time is reduced by 2/3.
𝐷6 and 𝐷7 share similar levels and forms of noise with 𝐷5. How-

ever, the performance of schema-agnostic weights, especially the
semantic ones, is much lower in both cases, probably due to the
TVDB entities that are included in both datasets, but not in 𝐷5. As
a result, in 𝐷6 the schema-based syntactic weights dominate all
others, with the F-Measure of all algorithms (except RCA) confined
in 0.508 and 0.521. The best trade-off is thus achieved by the fastest
ones, namely CNC (F1=0.508, run-time=52ms) and EXC (F1=0.517,
run-time=58ms). Note that the very low run-time should be at-
tribute to the very small graph sizes (see Table 3) and the very high
similarity thresholds (see Table 9).

Similarly, the schema-based syntactic weights achieve rela-
tively high F-Measure (∼0.6) for very low run-time (≪100 ms),

Bipartite Graph Matching Algorithms for Clean-Clean ER

Figure 10: Scatter plots of the average F-measure (on the horizontal axis) and the average run-time (on the vertical axis) per
algorithm and type of input across 𝐷2-𝐷10. Every algorithm corresponds to a different color (see the legend) and every type of
input to a different shape: circle stands for the schema-agnostic syntactic inputs, triangle for the schema-based syntactic ones,
rhombus for the schema-agnostic semantic ones and rectangle for the schema-based semantic ones. Note that logarithmic
scale is used in all datasets and that 𝐷10 reports seconds instead of milliseconds, as in all other cases.

due to very small input graphs and the relatively high similarity
thresholds. However, the schema-agnostic syntactic weights offer
slightly higher F-Measure (∼0.62) for significantly higher run-time
(∼100ms), due to the significantly larger graphs and the smaller
similarity thresholds. The optimal choice is actually EXC, which
achieves the highest macro-average F-Measure among all combina-
tions (F1=0.623) for an acceptable run-time (112ms).
𝐷8 constitutes a highly noisy dataset, which restricts the F-

Measure of all combinations below 0.5. The two types of syntactic
weights are competing for the best performance. The schema-based
ones trade slightly lower effectiveness for significantly lower run-
times and vice versa for the schema-agnostic ones. Among the
former, UMC offers the best balance (F1=0.480, run-time=213ms),
while the latter are dominated by EXC (F1=0.492, run-time=443ms).
The final choice depends on the requirements of the application at
hand.
𝐷9 is another bibliographic dataset with noise in the form of

misplaced values, similar to 𝐷4. As a result, the best performance
is achieved by schema-agnostic syntactic weights, with BMC dom-
inating all other combinations. Its F-Measure is 1.5% lower than

the maximum one (0.894 vs 0.909 for KRC), while achieving the
second lowest run-time (627 vs 611 for CNC). This is because the
schema-agnostic syntactic graphs are by far the smallest ones (see
Table 3), while BMC uses the highest average similarity threshold
among all top-performing algorithms.

Finally, 𝐷10 constitutes a rather noisy dataset with the highest
portion of missing values. The F-Measure remains below 0.6 in all
cases, with the top performance corresponding to two algorithms,
KRC and UMC, in combination with any type of edges. This should
be attributed to the relatively balanced number of entities in the two
constituent entity collections. Among the two algorithms, UMC
clearly outperforms KRC in terms of run-time. The best trade-off is
actually achieved by its combination with schema-based syntactic
weights (F1=0.57, run-time=8sec).

Overall, the best combination of bipartite graph matching algo-
rithms and type of edge weights depends on the datasets at hand
and the type of noise it incorporates. On average, though, UMC in
combination with syntactic similarities (mostly schema-agnostic
ones) is consistently close to the best trade-off between F-Measure
and run-time, if not the best one.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithms
	4 Similarity Graphs
	5 Experimental Setup
	6 Experimental Analysis
	7 Conclusions
	Acknowledgments
	References
	A Algorithms
	B Similarity Functions
	B.1 Schema-based syntactic functions
	B.2 Schema-agnostic syntactic functions

	3 Additional Experiments
	3.1 Critical Difference Analysis
	3.2 Threshold Analysis
	3.3 Trade-off between F-Measure and Run-time

