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Abstract. Entity matching aims at identifying records in different data
sources that describe the same real-world entity. Entity matching is the
foundational technique for setting RDF links in the context of the Web of
Data. By applying active learning methods for training entity matchers,
it is possible to reduce the human labeling effort by selecting informative
record pairs for labeling. Although active learning has been extensively
studied for the two-data source matching case, it was only recently ap-
plied for the task of matching records in multi-source settings, such as
the Web of Data. A multi-source matching task has certain inherent
characteristics which do not apply for two-source matching tasks and
which can be exploited by the active learning query strategy to further
reduce the labeling effort. In this paper, we propose a set of profiling
dimensions which capture these inherent characteristics of multi-source
matching tasks and study their impact on the performance of different
active learning methods for training entity matchers. To enable our anal-
ysis, we develop ALMSERgen, a multi-source matching task generator
and curate a continuum of 252 matching tasks along the suggested profil-
ing dimensions. We use the generated as well as five benchmark tasks to
compare the performance of three query strategies: a committee-based
strategy, a graph-based strategy, and a strategy that exploits group-
ing signals. Our results show that graph signals are relevant for multi-
source matching tasks involving a large amount of records describing the
same-real world entities with heterogeneous attribute values while using
grouping signals is beneficial if there exists a small number of groups of
matching tasks sharing the same underlying patterns.

Keywords: Entity Resolution · Active Learning · Multi-Source Entity Matching
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1 Introduction

Entity matching (EM), also known as entity resolution, record linkage, and data
deduplication, is the task of identifying records in one or more sources that refer
to the same real-world entity [4, 5]. EM is often treated as a supervised binary
classification problem for which a labeled set of matching and non-matching
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record pairs is used for training [8, 6, 5]. Manually labeling training sets is ex-
pensive. Active learning is a supervised learning paradigm that aims at reducing
the labeling effort by including the human annotator into the learning loop and
iteratively selecting a small informative subset for labeling [29]. The informative
labeled subset is used for training a classification model, to which we will refer
to as learner in the rest of the paper.

Active learning has been extensively researched for matching records between
two sources [22, 26, 3] while it has been barely applied for the task of matching
records between multiple data sources [11, 25]. Multi-source matching scenarios
frequently appear in the context of link discovery [21] for the Web of Data [9].
Multi-source EM tasks have certain inherent characteristics which are different
from the two-source EM tasks and can be exploited as signals by active learning
methods to further reduce the labeling effort [25].

To demonstrate this, we use the example of Fig. 1. The example multi-source
EM task comprises four data sources which contain records describing mobile
phones (Fig. 1a). Combining pairwise the four data sources results in six two-
source EM tasks (Fig. 1b). Given the overlap of entities among the data sources,
the multi-source EM task can be viewed as a correspondence graph in which
edges denote matches (Fig. 1c). Exploiting graph signals, such as graph tran-
sitivity, has already been shown to improve the performance of active learning
methods by discovering potentially false negative and false positive record pairs
among the predictions of the learner [25]. For example, if the learner’s predictions
for the record pairs in Fig. 1c are A1-B1:match, A1-D1:match, and D1-B1:non-
match, considering graph transitivity and selecting the pair D1-B1 for annotation
leads to the discovery of the pair D1-B1 as a false negative prediction.

Given the different attribute values of the phone records, different groups of
two-source EM tasks with similar matching patterns arise (Fig. 1d). We consider
a matching pattern as a disjunction of conjunctions of similarity-based features
and threshold values. Exploiting the grouping signals during active learning can
lead to the selection of more informative record pairs for labeling by, for example,
annotating only representative pairs from each group.

However, the degree of graph and grouping signals may vary across different
multi-source tasks and is highly dependent on the profile of the data sources to
be matched. In our work, we explore the impact of the profiling characteristics
of multi-source EM tasks on the performance of active learning methods which
exploit different signals for selecting informative record pairs for labeling. To
do so, we first propose a set of profiling dimensions for describing multi-source
EM tasks. To enable our analysis, we develop ALMSERgen, a multi-source EM
task generator, and generate a continuum of 252 multi-source EM tasks along
the suggested dimensions. We evaluate the following three active learning query
strategies on the generated tasks: 1.HeALER: a state-of-the-art committee-based
query strategy [3], 2. ALMSER: a graph-based query strategy [25], and 3. ALM-
SERgroup: a newly introduced variation of the ALMSER query strategy which
exploits grouping signals. By analyzing our evaluation results, we identify the
best performing active learning query strategies for groups of multi-source EM
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(a) Data sources (b) Two-source tasks

(c) Correspondence graph

(d) Groups of tasks

Fig. 1: Example of a multi-source EM task.

tasks sharing the same characteristics. Finally, we confirm the findings of our
experimental analysis using five benchmark tasks from the related work.

The remainder of the paper is organized as follows: Section 2 discusses related
work on active learning for two-source and multi-source matching, as well as on
matching task generators. Section 3 introduces the set of dimensions for profiling
multi-source matching tasks. Section 4 presents the multi-source task generator
ALMSERgen which we use for generating a continuum of multi-source matching
tasks. In Section 5, we present the experimental setup and results of our analysis
on both the generated and the benchmark tasks. Finally, Section 6 concludes our
paper and summarizes our findings.

2 Related Work

Entity matching (EM) is a central prerequisite for integrating data from multi-
ple sources [4, 5, 23] as well as for setting RDF links in the context of the Web
of Data [9, 21]. There exists a large body of research on supervised and unsu-
pervised multi-source EM [30, 2, 27], while active learning has been hardly used
in this context [11, 25]. Profiling EM tasks [24] and comparing the performance
of different matchers in passive [15, 17, 1, 5] and active learning settings [18] has
been thoroughly studied for the two-source matching scenario. To allow a fair
comparison, a large number of either benchmark [24, 18, 17] or generated EM
tasks [12, 28, 33] are used for evaluation. However, to the best of our knowledge,
there exists no work on studying the impact of the profile of multi-source EM
tasks on the performance of different active learning methods.
Data Generators for EM. There exist several data generators for curating EM
tasks for Linked Data [12, 28, 28, 7] and which have been used for evaluating link
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discovery frameworks [1]. Such data generators produce EM tasks with varying
degrees of difficulty considering a set of pre-defined dimensions. Hildebrandt et
al. [10] develop a data pollution framework for modifying large-scale two-source
EM tasks. All of the above frameworks inject value errors, such as token or
word modification and deletion as part of the generation or pollution pipeline.
However, existing data generators do not consider multi-source EM task-related
desiderata which we cover in our work.
Active Learning for EM. There is a large body of research on active learning
for two-source EM [3, 13, 16, 14], with recent work turning the focus to deep learn-
ing [14, 20]. Active deep learning-based methods rely on transfer learning [14] or
large randomly sampled sets [20] for model initialization and assume a pre-
labeled development set for hyperparameter optimization [14, 20]. Contrary to
these methods, we evaluate and compare the performance of active learning
methods that rely on symbolic features and traditional classification models,
involve less annotation effort, and do not rely on a pre-labeled set for model
initialization and optimization.

Meduri et al. [18] compare various symbolic active learning methods for the
two-source EM task and show that random forest classifiers with committee-
and margin-based query strategies achieve fast convergence and close to passive
learning results. However, using a margin-based query strategy is shown to sig-
nificantly underperform the committee-based strategy HeALER [3] in the case
of multi-source EM tasks [25]. In our recent work [25], we proposed ALMSER,
an active learning method for multi-source EM which exploits graph signals for
boosting the query strategy and training the learner [25]. The evaluation re-
sults on five multi-source EM tasks showed that combining both graph-boosted
components of ALMSER outperforms HeALER while exploiting the graph sig-
nals only as part of the query strategy does not perform better than HeALER
for all tasks. In our current work, we analyze how the profiling characteristics
of a multi-source EM task affect the performance of different query strategies,
including the strategies used by HeALER and ALMSER.

3 Profiling Dimensions for Multi-Source EM Tasks

In this section, we define three dimensions for profiling multi-source EM tasks:
entity overlap, value heterogeneity, and value pattern overlap. Below, we present
how each dimension is calculated and discuss its relevance to active learning.
Entity Overlap. The dimension of entity overlap (EO) refers to the ratio of
real-world entities that appear in more than two sources over the entities of the
multi-source task that appear in exactly two or more sources. Transforming the
multi-source task into a correspondence graph with the edges denoting matches

between the nodes-records, the dimension of EO is calculated as |CCsize>2|
|CCsize≥2| , where

CC are the connected components of the correspondence graph. An EO of 0 indi-
cates that all entities are represented by records appearing in a maximum of two
of the data sources while an EO of 1 indicates that all entities are represented by
records in at least three data sources. In the multi-source task of Fig. 1 the EO
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is 1, as both entities appear in all four data sources. We expect a multi-source
task with an EO level of 0 to offer low-quality graph signals. Given that the
maximum size of connected components in that case is two nodes, i.e. records,
no additional information can be extracted from the correspondence graph con-
sidering different graph signals such as graph transitivity [25]. In such settings,
non-graph-based query strategies are expected to overperform graph-based ones.

Value Heterogeneity. The dimension of value heterogeneity (VH) captures
how heterogeneous the identifying attribute values of the records that appear
in different data sources and describe the same real-world entity are. As iden-
tifying attributes, we define the combination of attributes that are useful for
distinguishing real-world entities of a specific domain. The heterogeneity of val-
ues may derive from different surface forms, e.g. iphone 4s phone vs. 4s iphone
as well as spelling errors, e.g. apple vs. applle. We compute VH as the ratio of
entities that are represented by records with dissimilar values in at least one of
their identifying attributes to all entities. In the example of Fig. 1, the VH is
1, as both entities are represented by records with different values either in the
name or in the brand attributes. We expect that multi-source EM tasks with a
low level of VH are easy to solve. Considering that for such tasks the matching
and non-matching pairs are almost perfectly separable, the learner can reach a
high prediction accuracy even with a small number of labeled record pairs. In
contrast, given a task with high VH, we expect that a small number of labeled
record pairs can lead to the overfitting of the learner. In that case, exploiting
the correspondence graph for directing the query strategy to pick record pairs
that are likely falsely predicted by the overfitted learner, can be helpful.

Value Pattern Overlap. The dimension of value pattern overlap (VPO) refers
to the amount of groups of data sources adhering to the same attribute value
patterns. The overlap of value patterns results from similar lexical patterns or
types of spelling errors within the record values of the data sources. For example,
within the e-commerce phone product domain, different e-shops may share one of
the following lexical patterns for representing the names of smartphones: [model]
[model generation] e.g. i-phone 4s or [model] [model generation] [product type],
e.g. i-phone 4s smartphone. Pairs of data sources with overlapping value patterns
can form groups of matching tasks sharing the same matching patterns. We
illustrate this observation with the example of Fig. 1. The data sources A and B of
the multi-source EM task contain the same value pattern for the name attribute
[model] [model generation], while the brand value is in both sources misspelled.
The name attribute values of the data sources C and D adhere to the pattern:
[model] [model generation] [product type]. Consequently, we can consider that
in this example task there exist two groups of data sources adhering to the same
value patterns, i.e. [A,B] and [C,D]. Combining the data sources across the two
groups pairwise, i.e. A-C, A-D, B-C and B-D, results in two source-tasks with
the same matching pattern, while in total three matching patterns emerge for
covering all two-source tasks, as shown in Fig. 1d.

We calculate the value pattern overlap as 1
GV PO

, with GV PO indicating the
number of groups of data sources having the same value pattern. Following the
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example of Fig. 1 and considering that there exist two groups of data sources
with the same value pattern, the VPO level is computed to be 0.5. A VPO of 1
indicates that all data sources contain records with the same value pattern and
therefore construct pairwise matching tasks with the same underlying match-
ing patterns. On the other hand, a value pattern overlap of 0 indicates that
the records of each data source contain different value patterns and therefore
the pairwise matching tasks contain distinct underlying matching patterns. We
expect those query strategies that can identify groups of matching tasks that
share similar matching patterns and distribute the queries so that all groups are
covered, can outperform query strategies that ignore the grouping information.

It is worth noting that the calculation of the three profiling dimensions re-
quires knowledge of the actual labels of the record pairs. While this allows us
to analyze the impact of the profile of a multi-source task on the performance
of different active learning methods, it does not enable the upfront selection of
active learning methods, which is out of the scope of our work.

4 ALMSERgen: a Multi-Source EM Task Generator

In order to enable the systematic analysis and comparison of active learning
methods applied on multi-source EM tasks with different characteristics, we
develop ALMSERgen, a multi-source EM task generator. ALMSERgen takes
as input a set of records and generates a multi-source EM task by replicating
the input record set and injecting transformations along the three dimensions
explained in Section 3. In the following, we present each component of ALM-
SERgen along with Fig. 2 which provides an illustrated example of curating a
multi-source EM task given a pre-defined configuration.
Step 1: Complement Initial Set. Depending on the domain and the inte-
gration task at hand, different attributes might be relevant for matching. For
example, for the task of matching phone records, one might consider that the
combination of phone name and phone brand identifies a distinct phone, while
in more fine-grained matching tasks the phone colour might also be important.
We call the set of attributes that is useful for distinguishing real-world entities
of a specific domain, identifying attributes, and they are given as input to ALM-
SERgen. Considering that the input set of records may not contain enough ex-
amples for the identifying attributes to show, ALMSERgen artificially activates
the identifying attributes by replicating 20% of the input records and replacing
a subset of the identifying attribute values with random non-identical values of
the same attribute. The non-identifying attribute values are simply copied from
the original record to the replicated records. In the example of Fig. 2 the input
set contains three records. Given that the identifying attributes are configured
to be name and brand, ALMSERgen generates the additional records 2.iphone
4s - htc and 5.galaxy s21 - apple which represent phone entities different from
the ones that the records 1 and 4 represent.
Step 2: Distribute Records over Sources. Next, the entity overlap level
(EO) of the multi-source task is fixed. Given a pre-defined EO level value ∈ [0, 1],
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Fig. 2: Example of multi-source EM task curation with ALMSERgen.

we iterate over all initial entities (IE) produced in Step 1 and add a subset of
them, the amount of which equals to EO×|IE| to more than two data sources. In
order to decide in how many more than two sources the selected entities should
be added, we follow a power-law distribution, i.e. most entities are contained in
a few sources while a few entities are contained in all sources. Therefore, given
that an entity is selected to be added in more than 2 sources, the probability
that it is added in x data sources, is 1/x, with x > 2. In the illustrated example,
the EO level is set to 0.6, i.e. 60% of the five entities produced in Step 1, are
added to more than two sources: the entity with id 1 which is added in 4 sources
and the entities with ids 2 and 3 which are added in 3 sources.

Steps 3-4: Inject Groups of Patterns. In the next step, the levels of value
pattern overlap (VPO) and value heterogeneity (VH) are fixed. These two di-
mensions are interwoven, considering that VH defines how many records across
all data sources contain heterogeneous representations for the same real-world
entity and VPO controls the similarity of the value patterns of the records across
all data sources. Given the pre-defined VPO level, ALMSERgen creates groups
of data sources to which the same value pattern will be injected. The same value
pattern is injected in the records of the groups representing a subset of entities,
the amount of which is V H × |IE|, with IE being the initial entities generated
in Step 1 and VH being the value heterogeneity level in the range of [0,1].

A value pattern comprises of distinct combinations of attributes and value
transformations. ALMSERgen offers the following value transformations, similar
to existing data generators for entity matching [28, 12]: 1. Addition of random
characters, 2. Deletion of random characters, 3. Modification of random charac-
ters, 4. Shuffling and modification on word level, 5. Shuffling of words, 6. Addition
of random words, 7. Subtraction of (5/10/20)% of the value, and 8. Addition of
(5/10/20)% of the value. Transformations 1-6 are performed on string attributes,
while transformations 7-8 are applied only on numerical attributes. Finally, for
the transformations 1-4, a level of severity in the range of [0.1, 0.5] is randomly
picked, i.e. maximum of 50% of the characters can be modified or deleted, in
order to ensure that the identity of each entity is not completely altered and



8 A.Primpeli and C.Bizer

remains distinguishable. After this step, the curation of the data sources of the
multi-source setting is completed.

In the example of Fig. 2, the VPO level is set to 0.5 and the VH level is 0.6.
This further implies that the data sources are grouped into two groups of over-
lapping value patterns, G1: A-B and G2: C-D. For each group one combination
of attribute-value transformation is randomly chosen and injected in the records
describing 60% of the entities of Step 1, i.e. the entities with ids 1,3, and 5. The
value pattern injected in the records of G1 is addition of random words. The
value pattern for G2 is deletion of random characters with severity 0.2.

Step 5: Derive Matching and Non-Matching Pairs. In the final step,
ALMSERgen derives the complete set of matching pairs considering all pairwise
combinations of replicated records referring to the same real-world entity, e.g.
A1-B1. For deriving hard non-matching pairs, we extract all combinations of
records and their corresponding negative examples injected in Step 1, e.g. A1-
C2. Additionally, we randomly pick easy non-matching record pairs, e.g. A1-C3,
until the ratio of matching to non-matching pairs is 1/3.

5 Experimental Setup and Analysis

In this section, we present the details of our experimental setup, including the
ALMSERgen configuration as well as the active learning setup and query strate-
gies used in our analysis. Next, we present the active learning results on the
generated tasks and discuss our main findings on the performance of different
active learning methods with respect to the profiling characteristics of the tasks.
Finally, we verify our findings using five benchmark tasks from the related work.
The code and tasks used for all experiments are publicly available.1

5.1 Experimental Setup

ALMSERgen Configuration. We provide a set of 1000 deduplicated song
records as input to ALMSERgen. The input data set is a subset of the last.fm
song data set.2 Each song record is described with the following four attributes:
title, release, artist, and country. We configure all of the four attributes as iden-
tifying ones and set the number of curated data sources for each generated
multi-source EM task to 6. We iterate in steps of 0.2 in the range [0.0, 1.0] for
the dimensions of entity overlap (EO) and value pattern overlap (VPO) and in
steps of 0.1 in the range [0.2, 0.8] for the value heterogeneity (VH) dimension.
The defined ranges and steps result in the curation of 252 multi-source match-
ing tasks. Generating a single task with ALMSERgen takes approximately 50
seconds. Generating the continuum of 252 multi-source tasks requires 3.5 hours
on a Linux server with Intel Xeon 2.2 GHz processor.

1 https://github.com/wbsg-uni-mannheim/ALMSER-GEN
2 http://millionsongdataset.com/lastfm/
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Active Learning Setup. We consider a pool-based active learning setting and
similarity-based features for representing the record pairs, similar to many re-
lated works [25, 18, 3, 13]. In such a setting, a pool of unlabeled record pairs is
available to the active learning query strategy which assesses the informativeness
considering a set of criteria. The most informative record pair is selected, anno-
tated as matching or non-matching and added to the labeled set. The labeled
set is used for training the learner, i.e. a classification model.

We initialize the pool with 70% of the matching and non-matching record
pairs resulting from the final step of ALMSERgen and remove all labels. The
remaining 30% of the record pairs are used as a test set. We allow 200 iterations
for each active learning experiment. The average size of the pool across the 252
multi-source tasks is 11,290 pairs. In each iteration, one record pair of the pool
is selected for annotation, i.e. 200 record pairs (< 2% of the complete pool on
average) have been labeled in total by the end of each experimental run. If the
query strategy assigns the maximum informativeness score to more than one
record pair of the pool, one of them is randomly selected for annotation. We use
a random forest classifier as learner and measure the F1 score of its predictions
on the test set after each iteration. We conduct three runs for each multi-source
task and each active learning method. Finally, we report the area under the
mean F1 curve for iterations 50 to 200 on the test set, which we abbreviate with
F1-AUC. F1-AUC is calculated as the definite integral between two points, e.g.
iteration 50 to 200, and is typically used for measuring the overall performance
of an active learning method across multiple iterations [19, 31]. A larger area
under the mean F1 curve signifies overall better results in terms of F1 score.

Active Learning Query Strategies. In our experiments, we compare the
performance of three active learning methods which only differ with respect to
the query strategy. In the following, we present the three active learning query
strategies which we compare in our analysis.

HeALER is a committee-based active learning method developed by Chen et
al. [3]. The query strategy of HeALER uses a committee of five heterogeneous
classification models to evaluate the informativeness of all pool record pairs.
In every active learning iteration, each classification model in the committee is
trained on the current labeled set. Next, it is applied on the record pairs of the
pool and votes its predictions, i.e. every record pair in the pool receives five
votes. The record pairs with the maximum disagreement calculated with vote
entropy, are considered to be the most informative.

ALMSER is a graph-based active learning method introduced in our previous
work [25] that is tailored to the multi-source EM task. The query strategy of
ALMSER exploits the correspondence graph of the multi-source matching set-
ting in order to select record pairs that are likely falsely predicted by the learner.
In each active learning iteration, the learner is trained on the current labeled set
and predicts matching or non-matching pseudo-labels for all record pairs in the
pool. The pseudo-labels together with the labeled set are used to construct a
correspondence graph, with the edges of the graph denoting matching relations
between the nodes-records. A sequence of cleansing steps is applied in order to re-



10 A.Primpeli and C.Bizer

move likely false matching edges. Finally, considering graph transitivity the pool
record pairs are assigned graph-inferred labels. The query strategy of ALMSER
assigns binary informativeness scores to the pool record pairs: 1 if there is a
conflict between the learner and the graph-inferred prediction, otherwise 0.

While committee-based query strategies like HeALER, aim to select instances
for which the committee of models produces non-confident predictions, the query
strategy of ALMSER uses the correspondence graph to pick instances that are
most likely predicted wrong by the learner. These disagreements between the
graph-inferred labels and the learner pseudo-labels can hint towards matching
patterns that are not covered yet by the learner.

ALMSERgroup A multi-source matching task can contain groups of two-
source matching tasks sharing the same underlying matching patterns, as ex-
plained in Section 3. We hypothesize that exploiting such grouping information
can direct the active learning strategy to select record pairs covering all un-
derlying matching patterns of the complete multi-source task with a smaller
amount of annotations. We illustrate our hypothesis with the example of Fig. 1.
The pairwise combinations of the four data sources result in six matching tasks
which given the underlying matching patterns can be grouped into three groups,
as shown in Fig. 1d. In such a setting, the active learning query strategy should
distribute the queries for labeling over the tasks A-B, C-D and any of the {A-C,
A-D, B-C, B-D}, as the latter have all the same underlying matching pattern.
However, to the best of our knowledge, none of the existing active learning query
strategies for entity matching exploits such grouping information.

In order to investigate whether the labeling effort can be further reduced
by exploiting such grouping signals, we develop ALMSERgroup, a variation of
the ALMSER query strategy. ALMSERgroup filters the pool to only include
record pairs belonging to matching tasks that are representative of a cluster of
similar matching tasks. We explain below how representative tasks are selected.
In this way, ALMSERgroup avoids picking record pairs for annotation from
similar tasks. During active learning, the ALMSER query strategy is applied
using the reduced pool. In the case of no disagreements between the learner
predictions and the graph-inferred labels among the record pairs of the reduced
pool, HeALER is used as a fallback query strategy.

In order to identify two-source tasks with similar matching patterns in an
unsupervised way, we first compute the task relatedness (TR) between all pairs
of two-source tasks, a metric introduced by Thirumuruganathan et al. [32]. TR
calculates how similar two tasks are by training a logistic regression classifier to
predict the task from which each record pair originates. A high prediction quality
signifies that the two tasks are dissimilar, while a low prediction quality signifies
that the tasks are similar and are expected to have the same underlying matching
patterns. We measure the prediction quality of the classifier using the Matthews
correlation coefficient (MCC) and calculate the TR score as 1 −MCC, similar
to [32]. Given the TR scores of each pairwise combination of two-source tasks,
we cluster them such that the overall mean TR score of all clusters is maximized.
We determine the optimal number of clusters by penalizing the overall mean TR
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(a) Overall results (b) Results of specific settings

Fig. 3: Outperforming AL methods per task. The size of the markers indicates
the F1-AUC difference to the runner-up method.

score with a penalty factor α multiplied by the number of clusters. In this way,
we prefer smaller amounts of clusters over larger ones which results in a smaller
pool of representative record pairs for the query strategy to choose from. Finally,
we identify the most representative two-source tasks of each cluster, considering
their TR to all other tasks of the same cluster, and select only the record pairs
of the representative tasks for initializing the unlabeled pool.

5.2 Analysis of Experimental Results of Generated Tasks

We compare the results of three active learning methods using the HeALER,
ALMSER, and ALMSERgroup query strategies on the 252 generated tasks and
identify which signals are relevant for query selection given the profiling char-
acteristics of the tasks. Throughout our analysis, we use the 2D and 3D scatter
plots of Fig. 3 which indicate the winning active learning method for each gener-
ated task with different colours and markers. The size of the markers shows the
difference of the winning method to the second-best method in terms of F1-AUC
for iterations 50 to 200, i.e. large dots signify clear winners while smaller dots
indicate winning methods that are only slightly better than the runners-up.

Fig. 3a shows the overall comparison results of the three active learning meth-
ods on the continuum of the 252 multi-source tasks along the three dimensions
described in Section 3: value heterogeneity (VH), value pattern overlap (VPO),
and entity overlap (EO). In 41.6% of the tasks, HeALER is the winning active
learning query strategy in terms of F1-AUC, while ALMSER and ALMSER-
group outperform for 25.4% and 33% of the tasks respectively. Looking at the
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3D plot of Fig. 3a, we can observe four main patterns which we indicate with
the dotted circled areas. In the following, we discuss the characteristics of each
pattern. We report the best performing active learning methods for the tasks
of every pattern by relating their results to the runner-up active learning meth-
ods. Additionally, we compare them to the upper bound F1 scores achieved in
a passive learning setting with a random forest classifier being trained on the
complete pool of records pairs, which we will refer to as passive F1.

P1 - No clear winner for easy tasks. For all tasks with an entity and
value pattern overlap larger than 0.6 as well as a low value heterogeneity of 0.3
or less, HeALER and ALMSERgroup outperform ALMSER, as shown in the
P1-circled multi-source tasks of Fig. 3a. The average F1-AUC over all tasks of
this pattern is 140.28 for HeALER and 140.70 for ALMSERgroup. However,
the mean F1-AUC difference to the runner-ups is only 0.35 for the settings in
which HeALER outperforms and 0.68 for the settings in which ALMSERgroup
outperforms. This indicates that the best performing methods are not clear
winners as they outperform only marginally the second best method. The mean
passive F1 score for all tasks adhering to this pattern is 0.983 while the mean
F1 of the best performing active learning methods at the final 200th iteration is
0.961. We consider such tasks rather easy to solve as the high overlap of mostly
homogeneous entity records eases the discovery of the few distinct matching
patterns, i.e. selecting one matching record pair for annotation can help the
classifier to learn the underlying pattern of many other record pairs at once.

P2 - Graph signals are helpful for tasks with high value heterogeneity.
In 71.6% of the tasks with a value heterogeneity level larger than 0.5, ALMSER
overperforms with a mean F1-AUC difference of 2.95, given that the value pat-
tern overlap level is 0.6 or below. The mean passive F1 score for all tasks of this
pattern is 0.888 while the mean F1 of the best performing active learning meth-
ods at the final 200th iteration is 0.828. Such tasks are harder to solve as they
contain heterogeneous value representations for a large number of entities, while
the low value pattern overlap level signifies that there exist many different under-
lying matching patterns. Exploiting the signals from the correspondence graph
leads to the faster discovery of all underlying matching patterns in comparison
to committee-based query strategies. However, this observation only holds when
there exists a minimum entity overlap, i.e. EO > 0.0. For multi-source tasks
with EO=0, i.e. all entities are represented by one record in maximum of two
data sources, the correspondence graph does not have a rich structure as the
maximum component size is 2. Therefore exploiting graph signals cannot lead to
the selection of informative query candidates. This causes the ALMSER query
strategy to underperform in 88% of the generated tasks with EO=0.

P3: Grouping signals are helpful for tasks with low value heterogeneity
and high value pattern overlap. In 55.5% of the tasks with a value hetero-
geneity lower than 0.5 and a value pattern overlap larger than 0.5, ALMSER-
group is the winning active learning strategy with a mean F1-AUC difference to
the runner-up method of 1.52. However, ALMSERgroup does not deliver better
results over HeALER for multi-source tasks with low value pattern overlap.
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We illustrate and further analyze this observation with Fig. 3b depicting
the winning strategies for tasks with a value heterogeneity level of 0.5 or lower
and three different value pattern overlap levels: 0.0, 0.4, and 0.8. We can see
that, for the multi-source matching tasks where the value pattern overlap is
0, i.e. different underlying matching patterns exist in each two-source task of
the setting, HeALER outperforms ALMSERgroup in 66% of the settings. The
mean F1-AUC difference to the runner-up method is 3.30 while for the tasks
where ALMSERgroup outperforms the mean F1-AUC difference to the runner-
up method is 1.30. With the increase of the value pattern overlap level, we
can observe that the grouping signal starts contributing to the query selection
strategy. For VPO=0.4, HeALER outperforms in 54% of the tasks with a mean
F1-AUC difference to the runner-up method of 1.93, while the mean F1-AUC
difference for the settings where ALMSERgroup is the best performing query
strategy is 2.31. Finally, ALMSERgroup performs the best in 58.3% of the tasks
when the value pattern overlap level is 0.8 with a mean F1-AUC difference to
the second-best method of 2.26, while HeALER outperforms in 37% of the tasks
with a marginal F1-AUC difference of 0.98.

P4: Graph and grouping signals are not needed for tasks with low
value heterogeneity and low pattern overlap. In 89.5% of the tasks with
a value heterogeneity of 0.5 or lower, the HeALER and ALMSERgroup query
strategies outperform ALMSER independently from the other two dimensions.
This indicates that graph signals do not contribute in the case of multi-source
tasks with a low value heterogeneity. The F1-AUC difference to the runner-up
methods is 2.26 and 1.71 for HeALER and ALMSERgroup, respectively. In terms
of F1 scores, the tasks of this pattern lie between the results of the tasks in P1
and P2. The mean passive F1 is 0.941 and the mean F1 of the best performing
active learning methods at the 200th iteration, is 0.91.

As already introduced in the analysis of P3, the contribution of grouping sig-
nals is positively related to the value pattern overlap level, i.e. grouping signals
contribute less for tasks with a low value pattern overlap level. More concretely,
we observe that in 67% of the tasks with a value heterogeneity and a value
pattern overlap of 0.5 or lower, ALMSERgroup underperforms the other two
methods. In order to investigate the reasons that grouping signals do not con-
tribute to tasks with a low value pattern overlap, we perform a two-step analysis:
First, we evaluate how representative the metric of task relatedness is for find-
ing groups of two-source matching tasks with similar patterns, and second, we
evaluate to which extent ALMSERgroup selects representative two-source tasks
covering all distinct matching patterns of each multi-source task.

For the first part of our analysis, we calculate the cosine similarity of the
naive transfer learning (NTL) and the task relatedness (RLTD) scores for each
combination of two-source matching tasks of all multi-source tasks. A high naive
transfer learning score between a pair of two-source tasks, e.g. A-B and C-D,
indicates they have the same underlying matching patterns, as a model trained
on the record pairs of task A-B, performs well when applied on task C-D. A high
similarity between the NTL scores and the RLTD scores implies that the second
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is a good unsupervised approximation of the first and can therefore lead to the
discovery of groups of similar matching tasks. We find that higher VPO levels
lead to the higher similarity of NTL and RLTD scores: for tasks with VPO=1.0
the similarity of the NTL and RLTD scores is 0.81, while it drops to 0.75 and
0.69, for tasks with VPO=0.6 and VPO=0.2, respectively. Therefore, we can
conclude that task relatedness can more efficiently lead to finding and grouping
similar two-source tasks in the case of multi-source EM tasks with high VPO.

For the second part of our analysis, we evaluate in how many of the multi-
source tasks ALMSERgroup selects a sufficient subset of two-source tasks to
query from, i.e. a sufficient subset contains at least one two-source task per
group of tasks with similar matching patterns. Similar to the previous finding,
we observe that ALMSERgroup better identifies sufficient subsets of two-source
tasks to query from for higher VPO levels: ALMSERgroup selects a sufficient
subset of two-source tasks in 100% and 88% of multi-source tasks with VPO=1.0
and VPO=0.8, respectively. Additionally, we observe that for high VPO levels
ALMSERgroup achieves a large candidate reduction: for VPO 1.0, ALMSER-
group only selects candidates from a maximum of 4 out of the 15 two-source tasks
in 90% of the multi-source tasks. This further explains why ALMSERgroup gen-
erally outperforms HeALER and ALMSER for tasks with high pattern overlap.
In contrast, with the decrease of the VPO level, it is harder for ALMSERgroup
to identify all relevant two-source tasks to query from. For example, ALMSER-
group only identifies a sufficient subset of two-source tasks for 28% and 14% of
the multi-source tasks with VPO=0.4 and VPO=0.2, respectively.

5.3 Analysis of Experimental Results of Benchmark Tasks

In this section, we verify our findings concerning the impact of the profile of
multi-source EM tasks on the performance of the three active learning methods
using the HeALER, ALMSER and ALMSERgroup strategies, on five benchmark
tasks. The benchmark tasks cover the domains music, products, and restaurants
and have been previously been used in the related work [27, 25]. The tasks are
described in detail in [25].

Table 1 contains profiling information for the benchmark tasks along the
three profiling dimensions. We compute the value heterogeneity and the entity
overlap as described in Section 3. For estimating the value pattern overlap level,
we use the naive transfer learning scores of a random forest classifier for all pairs
of two-source tasks of each benchmark multi-source task and extract the smallest
subset of two-source tasks that best generalizes over all two-source tasks.

We present the active learning results for the five benchmark multi-source
tasks in Table 1 and report the F1-AUC for iterations 50-200, the F1-AUC dif-
ference of the outperforming to the runner-up method as well as the mean F1
scores of three experimental runs for specific active learning snapshots at the
85th, 150th and final 200th iteration. We observe that ALMSER and ALMSER-
group outperform HeALER for the computers and computers mut tasks. The
profiling dimensions of these tasks lie between patterns P2 and P3: graph sig-
nals contribute due to the rather high value heterogeneity (see column VH in
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Table 1: Profile and active learning results of benchmark multi-source EM tasks.
Task VH EO VPO Method F1-AUC F1-AUC diff. F1@85 F1@150 F1@200

computers 0.40 0.44 1.0
HeALER 135.62

1.32
0.893 0.912 0.918

ALMSER 138.96 0.921 0.932 0.937
ALMSERgroup 137.64 0.904 0.931 0.931

computers mut 0.43 0.44 0.8
HeALER 127.66

1.24
0.841 0.850 0.866

ALMSER 128.95 0.824 0.879 0.883
ALMSERgroup 130.19 0.864 0.877 0.883

MusicBrainz 0.19 0.50 0.6
HeALER 140.07

1.70
0.931 0.941 0.945

ALMSER 138.37 0.913 0.930 0.934
ALMSERgroup 137.02 0.888 0.926 0.918

MusicBrainz mut 0.14 0.50 0.4
HeALER 132.43

1.05
0.857 0.895 0.908

ALMSER 131.38 0.868 0.889 0.896
ALMSERgroup 127.19 0.820 0.879 0.888

restaurants 0.14 0.35 0.8
HeALER 138.51

0.30
0.921 0.927 0.937

ALMSER 138.21 0.918 0.923 0.926
ALMSERgroup 137.48 0.913 0.920 0.921

Table 1) while grouping signals contribute due to the high value pattern overlap
(column VPO) level.

In comparison to HeALER, we observe that graph and grouping signals con-
tribute until the 200th iteration while the differences in F1 score of ALMSER
and ALMSERgroup appear only during the earlier iterations. After the 150th
iteration both ALMSER and ALMSERgroup converge to similar results. The
Musicbrainz and MusicBrainz mut tasks verify the pattern P4 of our analysis.
Given the low value heterogeneity and value pattern overlap levels of the tasks,
graph and grouping signals are not helpful for improving the active learning
results over HeALER. Finally, pattern P1 of our analysis is confirmed by the re-
sults of the restaurants task which has a low value heterogeneity and a high value
pattern overlap. Although HeALER outperforms the other two methods for this
task in terms of F1-AUC, the F1-AUC difference to the runner-up method is
only 0.30, indicating that there is no clear winner for the task.

6 Conclusion

This paper explored the impact of the characteristics of multi-source EM tasks
on the performance of three active learning methods which utilize different types
of signals for selecting record pairs for labeling. We based our analysis on a con-
tinuum of 252 generated multi-source matching tasks and additionally verified
our findings using five benchmark tasks. Our findings showed that all methods
perform equally well for easy multi-source EM tasks, characterized by a high
entity overlap and homogeneous attribute values. With the increase of the value
heterogeneity of records describing the same entity, group signals were shown
to improve the active learning performance, given that there exist a few groups
of two-source matching tasks sharing the same underlying matching patterns.
Finally, exploiting graph signals as part of the query strategy was shown to
improve the active learning performance for tasks containing large amounts of
matching records with heterogeneous attribute values.
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17. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. VLDB Endowment 3(1-2), 484–493 (2010)

18. Meduri, V., Popa, L., et al.: A Comprehensive Benchmark Framework for Active
Learning Methods in Entity Matching. In: Proc. of SIGMOD. pp. 1133–1147 (2020)

19. Mozafari, B., Sarkar, P., Franklin, M., Jordan, M., Madden, S.: Scaling up crowd-
sourcing to very large datasets: A case for active learning. VLDB Endowment 8(2),
125–136 (2014)

20. Nafa, Y., Chen, Q., Chen, Z., Lu, X., He, H., Duan, T., Li, Z.: Active deep learn-
ing on entity resolution by risk sampling. Knowledge-Based Systems 236, 107729
(2022)

21. Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of current
link discovery frameworks. Semantic Web 8(3), 419–436 (2017)



Impact of the Characteristics of Multi-Source EM Tasks on Active Learning 17

22. Ngomo, A.C.N., Lyko, K.: Eagle: Efficient active learning of link specifications
using genetic programming. In: Proc. of ESWC. pp. 149–163 (2012)

23. Papadakis, G., Ioannou, E., Thanos, E., Palpanas, T.: The Four Generations of
Entity Resolution. Synthesis Lectures on Data Management 16(2), 1–170 (2021)

24. Primpeli, A., Bizer, C.: Profiling entity matching benchmark tasks. In: Proc. of
CIKM. pp. 3101–3108 (2020)

25. Primpeli, A., Bizer, C.: Graph-boosted active learning for multi-source entity res-
olution. In: Proc. of ISWC. pp. 182–199 (2021)

26. Qian, K., Popa, L., Sen, P.: Active learning for large-scale entity resolution. In:
Proc. of CIKM. pp. 1379—-1388 (2017)

27. Saeedi, A., Peukert, E., Rahm, E.: Comparative evaluation of distributed clustering
schemes for multi-source entity resolution. In: Proc. of ADBIS. pp. 278–293 (2017)

28. Saveta, T., Daskalaki, E., et al.: Lance: Piercing to the heart of instance matching
tools. In: Proc. of ISWC. pp. 375–391 (2015)

29. Settles, B.: Active learning: Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Publishers (2012)

30. Shen, W., DeRose, P., Vu, L., et al.: Source-aware entity matching: A compositional
approach. In: Proc. of ICDE. pp. 196–205 (2007)

31. Sherif, M.A., Dreßler, K., Ngomo, A.C.N.: LIGON-link discovery with noisy ora-
cles. In: Proc. of Ontology Matching Workshop (ISWC). pp. 48–59 (2020)

32. Thirumuruganathan, S., Parambath, S.A.P., et al.: Reuse and adaptation for entity
resolution through transfer learning. arXiv preprint arXiv:1809.11084 (2018)

33. Ye, Y., Talburt, J.: Generating synthetic data to support entity resolution educa-
tion and research. Journal of Computing Sciences in Colleges 34(7), 12–19 (2019)


