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ABSTRACT
Relational HTML tables on the Web contain data describ-
ing a multitude of entities and covering a wide range of
topics. Thus, web tables are very useful for filling missing
values in cross-domain knowledge bases such as DBpedia,
YAGO, or the Google Knowledge Graph. Before web ta-
ble data can be used to fill missing values, the tables need
to be matched to the knowledge base in question. This
involves three matching tasks: table-to-class matching, row-
to-instance matching, and attribute-to-property matching.
Various matching approaches have been proposed for each
of these tasks. Unfortunately, the existing approaches are
evaluated using different web table corpora. Each individual
approach also only exploits a subset of the web table and
knowledge base features that are potentially helpful for the
matching tasks. These two shortcomings make it difficult to
compare the different matching approaches and to judge the
impact of each feature on the overall matching results.
This paper contributes to improve the understanding of the
utility of different features for web table to knowledge base
matching by reimplementing different matching techniques as
well as similarity score aggregation methods from literature
within a single matching framework and evaluating different
combinations of these techniques against a single gold stan-
dard. The gold standard consists of class-, instance-, and
property correspondences between the DBpedia knowledge
base and web tables from the Web Data Commons web table
corpus.

1. INTRODUCTION
Cross-domain knowledge bases such as DBpedia [18], YAGO

[17], or the Google Knowledge Graph [36] are used as back-
ground knowledge within an increasing range of applications
including web search, natural language understanding, data
integration, and data mining. In order to realize their full
potential within these applications, cross-domain knowledge
bases need to be as complete, correct, and up-to-date as
possible. One way to complement and keep a knowledge base
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up to date is to continuously integrate new knowledge from
external sources into the knowledge base [10].

Relational HTML tables from the Web (also called web
tables) are a useful source of external data for complementing
and updating knowledge bases [31, 10, 40] as they cover a
wide range of topics and contain a plethora of information.
Before web table data can be used to fill missing values (”‘slot
filling”’) or verify and update existing ones, the tables need
to be matched to the knowledge base. This matching task
can be divided into three subtasks: table-to-class matching,
row-to-instance matching, and attribute-to-property match-
ing. Beside the use case of complementing and updating
knowledge bases, the matching of web tables is also neces-
sary within other applications such as data search [40, 1] or
table extension [41, 8, 21].

Matching web tables to knowledge bases is tricky as web
tables are usually rather small with respect to their number
of rows and attributes [19] and as for understanding the se-
mantics of a table, it is often necessary to partly understand
the content of the web page surrounding the table [41, 20].
Since everybody can put HTML tables on the Web, any kind
of heterogeneity occurs within tables as well as on the web
pages surrounding them. In order to deal with these issues,
matching systems exploit different aspects of web tables (fea-
tures) and also leverage the page content around the tables
(context) [42, 41, 19].

There exists a decent body of research on web table to
knowledge base matching [3, 22, 25, 39, 42, 16, 32]. Unfortu-
nately, the existing methods often only consider a subset of
the three matching subtasks and rely on a certain selection
of web table and knowledge base features. In addition, it is
quite difficult to compare evaluation results as the systems
are tested using different web table corpora and different
knowledge bases, which in some cases are also not publicly
available. What is missing is an transparent experimental
survey of the utility of the proposed matching features using
a single public gold standard covering all three matching
subtasks.

Whenever different features are used for matching, a method
is required to combine the resulting similarity scores. While
certain similarity aggregation methods work well for some
tables, they might deliver bad results for other tables. Thus
in addition to comparing different features and respective
similarity functions, we also compare different similarity ag-
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gregation methods. We focus the comparison on matrix
prediction methods [33, 5] which are a specific type of sim-
ilarity aggregation methods that predict the reliability of
different features for each individual table and adapt the
weights of the different features accordingly.

The contributions of this paper are twofold:

• We provide an overview and categorization of the web
table and knowledge base features (together with re-
spective similarity and similarity aggregation methods)
that are used in state-of-the-art web table matching
systems.

• We analyze the utility of the different matching fea-
tures using a single, public gold standard that covers
all three subtasks of the overall matching task. The
gold standard consists of class-, instance-, and prop-
erty correspondences between the DBpedia knowledge
base [18] and web tables from the Web Data Commons
table corpus [19].

The paper is organized as follows: Section 2 gives an
overview of the overall matching process. Section 3 describes
and categorizes the web table and knowledge base features.
Section 4 discusses how the features can be used within the
three matching tasks and describes the matchers that are
employed to exploit the features within the experiments. The
aggregation of similarity scores using matrix predictors is
discussed in Section 5. Section 6 describes the gold standard
that is used for the experiments. Section 7 compares the
results of the different matrix prediction methods. Section 8
presents the matching results, compares them with existing
results from the literature, and analyzes the utility of each
feature for the matching tasks. Conclusions are drawn in
Section 9.

2. OVERALL MATCHING PROCESS
We use the model and terminology introduced by Gal and

Sagi in [15] to describe the overall process of matching a
set of web tables and a knowledge base. Figure 1 shows
an exemplary matching process. As input, two sources are
required while as output, the process generates correspon-
dences between manifestations of the sources. We consider
everything within the sources a manifestation, e.g. manifes-
tations are rows and columns of a table as well as instances,
properties, and classes within a knowledge base. The internal
components of a process are called first line matchers (1LM)
and second line matchers (2LM).

A first line matcher (1LM) takes one feature of the man-
ifestations as input and applies a similarity measure. As
an example, a first line matcher gets the labels of the dif-
ferent attributes (columns) of a web table and the labels
of the properties of a specific class within the knowledge
base as feature, tokenizes both labels, removes stop words,
and compares the resulting sets using the Jaccard similarity.
The resulting similarity scores are stored as elements in a
similarity matrix. In most cases, only considering a single
feature is not sufficient for matching two sources. Thus, an
ensemble of first line matchers is applied, ideally covering
a wide variety of features exploiting different aspects of the
web tables and the knowledge base.

Second line matchers (2LM) transform one or more sim-
ilarity matrices into a resulting similarity matrix. Gal [14]
distinguishes decisive and non-decisive second line matchers.
Non-decisive matchers do not take any decision about the
resulting correspondences, e.g. they only aggregate matri-
ces. Typical aggregation strategies of non-decisive second
line matchers are to take the maximal elements that can
be found among the matrices or to weight each matrix and
calculate a weighted sum. In the example depicted in Figure
1, the aggregation is performed by summing up the elements
of both matrices. Non-decisive second line matchers are also
referred to as combination methods [9] or matcher composi-
tion [11].

In contrast to non-decisive matchers, decisive second line
matchers create correspondences between manifestations.
For instance, a second-line matcher that applies a threshold
is decisive because it excludes all pairs of manifestations
having a similarity score below this threshold. It is often
desirable that a single manifestation within a web table is
only matched to a single manifestation in the knowledge base.
To ensure this, so called 1 : 1 decisive second line matchers
are used. In our example, the 1 : 1 matcher decides for the
highest element within each matrix row and sets them to 1,
all other elements are set to 0.

3. FEATURES
Features are different aspects of web tables and the knowl-

edge base that serve as input for first line matchers. We
perceive web tables as simple entity-attribute tables, mean-
ing that each table describes a set of entities (rows in web
tables) having a set of attributes (columns). For each entity-
attribute pair, we can find the according value in a cell. We
require every table to have an attribute that contains natural

Figure 1: The matching process
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language labels of the entities (called entity label attribute),
e.g. the entity label of the city Mannheim is “Mannheim”.
All other attributes are either of data type string, numeric
or date. We currently do not consider any other data types
like geographical coordinates as for instance taken into ac-
count by Cruz et al. [6] or tables with compound entity label
attributes [20]. Further, each attribute is assumed to have a
header (attribute label) which is some surface form of the at-
tribute’s semantic intention. In order to distinguish between
web tables and the knowledge base, we use the terms entity
and attribute when talking about web tables and instance
and property when talking about the knowledge base.

We use the categorization schema shown in Figure 2 for
categorizing web tables features. In general, a feature can
either be found in the table itself (Table T ) or outside the ta-
ble (Context C). As context features, we consider everything
that is not directly contained in the table, e.g. the words
surrounding the table. Context features can either be page
attributes (CPA) like the page title or free text (CFT ). We
further divide table features into single features (TS), e.g. a
label of an entity, and multiple features (TM), e.g. the set of
all attribute labels occurring in a table. Single features refer
to a value in a single cell while multiple features combine
values coming from more than one cell.

Figure 2: Web table feature categories

Table 1 gives an overview of all features that we consider
and classifies them by category. As single table features we
use the entity label, the attribute label, as well as the values
that can be found in the cells. Multiple features are the
entities as a whole, the set of attribute labels, and the table
as text. We represent multiple features as bag-of-words. For
example, the set of attribute labels can be characteristic for
a table, e.g. the attribute labels “population” and “currency”
give an important hint that the table describes different
countries.

As context features, we use the page attributes title and
URL and as free text feature the words surrounding the
table. Often, the URL as well as the title of the web page
contains information about the content of the table, e.g. the

URL http://airportcodes.me/us-airport-codes indicates that
a table found on this page might describe a set of airports.
Context features are often not directly related to a specific
table which makes it tricky to exploit them for matching.
Nevertheless Yakout et al. [41] as well as Lehmberg [20]
found context features to be crucial for high quality match-
ing. Braunschweig et al. [1] take the surrounding words to
extract attribute-specific context in order to find alternative
names for attribute labels. The CONTEXT operator of the
Octopus system [3] uses context features to find hidden at-
tributes which are not explicitly described in the table.

Most state-of-the-art matching systems only exploit single
table features [26, 43, 38, 40, 25, 22, 24, 39, 23, 16]. Mul-
tiple table features are considered by Wang et al. [40] (set
of attribute labels), by the TableMiner system [42] (set of
attribute labels and entities), and by the InfoGather sys-
tem [41] (set of attribute labels, entities, and tables). Only
the systems InfoGather and TableMiner leverage context
features.

Table 2 shows the features of the knowledge base (DBpedia)
that we exploit within the experiments. Analog to the table
features, DBpedia features can either refer to a single triple,
e.g. a triple representing the information about an instance
label, or to a set of triples like the set of all abstracts of
instances belonging to a certain class.

In addition to the web table and knowledge base features,
external resource can be exploited for matching, e.g. general
lexical databases like WordNet [12]. For matching web tables,
systems use external resources which have been created based
on co-occurrences [39], that leverage a web text corpus and
natural language patterns to find relations between entities
[35], or that exploit the anchor text of hyperlinks in order to
find alternative surface forms of entity names [2].

4. MATCHING TASKS
The overall task of matching web tables against a knowl-

edge base can be decomposed into the subtasks table-to-
class matching, row-to-instance matching, and attribute-to-
property matching. In this section, we provide an overview
of the existing work on each subtask. Afterward, we describe
the matching techniques that we have selected from the lit-
erature for our experiments. We employ the T2KMatch
matching framework [32]1 for the experiments and imple-
ment the selected techniques as first line matchers within

1http://dws.informatik.uni-mannheim.de/en/research/
T2K

Table 1: Web table features

Feature Description Category
Entity label The label of an entity TS
Attribute label The header of an attribute TS
Value The value that can be found in a cell TS
Entity The entity in one row represented as a bag-of-words TM
Set of attribute labels The set of all attribute labels in the table TM
Table The text of the table content without considering any structure TM
URL The URL of the web page from which the table has been extracted CPA
Page title The title of the web page CPA
Surrounding words The 200 words before and after the table CFT
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Table 2: DBpedia features

Feature Description
Instance label The name of the instance mentioned in the rdfs:label
Property label The name of the property mentioned in the rdfs:label
Class label The name of the class mentioned in the rdfs:label
Value The literal or object that can be found in the object position of triples
Instance count The number of times an instance is linked in the wikipedia corpus
Instance abstract The DBpedia abstract describing an instance
Instance classes The DBpedia classes (including the superclasses) to which an instance belongs to
Set of class instances The set of instances belonging to a class
Set of class abstracts The set of all abstracts of instances belonging to a class

the framework. The framework covers all three matching
subtasks. Similar to PARIS [37], T2KMatch iterates between
instance- and schema matching until the similarity scores
stabilize. Correspondences between tables and classes are
chosen based on the initial results of the instance matching.
Due to this decision, only instances of this class as well as
properties defined for this class are taken into account. Thus,
the class decision can have a strong influence on the other
matching tasks [32].

4.1 Row-To-Instance Matching
The goal of row-to-instance matching is to find corre-

spondences between instances in the knowledge base and
entities described by individual rows of a web table. The
row-to-instance matching task is tackled frequently by vari-
ous systems in literature. Some systems purely rely on the
label of the entity [26, 43] or on the label enriched with
alternatives surface forms [22]. In addition, other systems
also take the cell values into account [42, 38, 40, 25]. Most of
them have in common that they query APIs to find potential
instances, e.g. the Probase, Freebase or Wikiontology API.
As a result, a ranked list of possible instances per entity is
returned. The ranking function is not always known in detail
but often relies on the popularity of an instance. Besides the
internal API ranking, other rankings like the page rank of the
according Wikipedia page of an instances can be added [26,
38]. As another source of information, Zhang [42] introduced
context features (page title, surrounding words).

Within our experiments, we evaluate the utility of all single
table features as well as the entity feature for the row-to-
instance matching task. For this, we have implemented the
following first line matchers within the T2KMatch frame-
work:

Entity Label Matcher: Before the entity label can be
matched, we need to identify the attribute of the web tables
that contains the entity label (entity label attribute). For
determining the entity label attribute, we use a heuristic
which exploits the uniqueness of the attribute values and
falls back to the order of the attributes for breaking ties [32].
For matching the entity label, we apply the entity label
matcher that is included in T2K. The matcher compares
the entity label with the instance label using a generalized
Jaccard with Levenshtein as inner measure. Only the top
20 instances with respect to the similarities are considered
further for each entity.

Value-based Entity Matcher: T2KMatch implements

a value matcher which applies data type specific similarity
measures. For strings, a generalized Jaccard with Leven-
shtein as inner measure, for numeric the deviation similarity
introduced by Rinser et al. [30], and for dates a weighted
date similarity is used which emphasizes the year over the
month and day. The value similarities are weighted with
the available attribute similarities and are aggregated per
entity. If we already know that an attribute corresponds to a
property, the similarities of the according values get a higher
weight.

Surface Form Matcher: Web tables often use synony-
mous names (”‘surface forms”’) to refer to a single instance
in the knowledge base, which is difficult to spot for pure
string similarity measures. In order to be able to under-
stand alternative names, we use a surface form catalog that
has been created from anchor-texts of intra-Wikipedia links,
Wikipedia article titles, and disambiguation pages [2]. Within
the catalog, a TF-IDF score [34] is assigned to each surface
form. We build a set of terms for each label resp. string value
consisting of the label/value itself together with according
surface forms. We add the three surface forms with the high-
est scores if the difference of the scores between the two best
surface forms is smaller than 80%, otherwise we only add the
surface form with the highest score. For each entity label
resp. value, we build a set of terms containing the label or
value as well as the alternative names. Each term in the set
is compared using the entity label resp. value-based entity
matcher and the maximal similarity per set is taken.

Popularity-based Matcher: The popularity-based matcher
takes into account how popular an instance in the knowledge
base is. For example, an instance with the label “Paris” can
either refer to the capital of France or to the city in Texas.
Both instances are equal regarding the label but most of
the times, the city in France will be meant. To compute
the popularity of an instance, we count the number of links
in Wikipedia that point at the Wikipedia page which cor-
responds to the instance [7]. Similar methods based on the
Wikipedias instance’s page rank are applied by Mulwad et
al. [26] and Syed at al. [38].

Abstract Matcher: Comparing the entity label and the
values can be insufficient if the labels differ too much or if not
all information about an instance is covered in the values, e.g.
the capital of a country is not contained in the knowledge
base as a value but stated in the abstract of the instance.
This is especially relevant when thinking about the use case
of filling missing values in the knowledge base. Therefore,
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the abstract matcher compares the entity as a whole with the
abstracts of the instances, both represented as bag-of-words.
For each entity represented as bag-of-words, we create a TF-
IDF vector and compare it to the TF-IDF vectors constructed
from the abstracts where at least one term overlaps. As
similarity measure we use a combination of the denormalized
cosine similarity (dot product) and Jaccard to prefer vectors
that contain several different terms in contrast to vectors
that cover only one term but this several times:

A •B + 1 − ( 1
‖A∩B‖ ) where A and B are TF-IDF vectors.

4.2 Attribute-To-Property Matching
The attribute-to-property matching task has the goal to

assign properties from the knowledge base (both data type
and object properties) to the attributes found in web tables.
Existing attribute-to-property matching methods often fo-
cus on the matching only object properties to attributes[26,
25, 24], also named “relation discovery”. As cross-domain
knowledge bases usually contain data type and object prop-
erties, the goal in this paper is to detect correspondences
for both types of properties. Beside exploiting attribute and
property values, other methods also take the attribute label
into account and compare it to the label of the property [22].
Similar to the instance matching task, the label comparison
can be enhanced by including alternative attribute labels,
e.g. computed based on co-occurrences [41]. The system
introduced by Braunschweig et al. [1] discovers synonymous
labels by using the context as well as the lexical database
WordNet. Neumaier et al. [27] present a matching approach
that explicitly focuses on numeric data which is published
via open data portals.

Within our experiments, we evaluate solely single features
for attribute-to-property matching and have implemented
the following matchers for this:

Attribute Label Matcher: The attribute label can give
hints which information is described by the attribute. For ex-
ample, the label “capital” in a table about countries directly
tells us that a property named “capital” is a better candidate
than the property “largestCity” although the similarities of
the values are very close. We use a generalized Jaccard with
Levenshtein as inner measure to compare the attribute and
property label.

WordNet Matcher: To solve alternative names for at-
tribute labels, we consult the lexical database WordNet which
has also been used by Braunschweig et al. [1]. WordNet is
frequently applied in various research areas, e.g. in the field
of ontology matching. Besides synonyms, we take hypernyms
and hyponyms (also inherited, maximal five, only coming
from the first synset) into account. As an example, for the
attribute label “country” the terms “state”, “nation”, “land”
and ”commonwealth“ can be found in WordNet. We again
apply a set-based comparison which returns the maximal
similarity scores.

Dictionary Matcher: While WordNet is a general source
of information, we additionally create a dictionary for at-
tribute labels based on the results of matching the Web Data
Commons Web Tables Corpus to DBpedia with T2KMatch.
As a result, from 33 million tables around 1 million tables

have at least one instance correspondence to DBpedia [31].
We group the property correspondences and extract the ac-
cording labels of the attributes that have been matched to a
property. Thus, we are able to generate a dictionary contain-
ing the property label together with the attribute labels that,
based on the matching, seem to be synonymous. At this
point, the dictionary includes a lot of noise, e.g. the term
“name” is a synonym for almost every property. A filtering
based on the number of occurrences or on the number of web
sites is not useful, since the rare cases are most promising.
Thus, we apply a filter which excludes all attribute labels
that are assigned to more than 20 different properties because
they do not provide any benefit. The comparison is the same
as for the other matchers including external resources. A
related approach is performed by Yakout et al. [41] where
synonyms of attribute labels are generated based on web
tables that have been matched among each other.

Duplicate-based Attribute Matcher: The duplicate-
based attribute matcher is the counterpart of the value-based
entity matcher: The computed value similarities are weighted
with the according instance similarities and are aggregated
over the attribute. Thus, if two values are similar and the
associated entity instance pair is similar, it has a positive
influence on the similarity of the attribute property pair, see
[32] for more details.

4.3 Table-To-Class Matching
The goal of table-to-class matching is to assign the class

from the knowledge base to a web table which fits best to
the content of the whole table. Assigning the class to which
the majority of the instances in the table belong to is most
common strategy for table-to-class matching [22, 42, 39, 23,
38, 43, 16]. On top of this approach, methods take also
the specificity of a class into account [25], exploit the set of
attribute labels [40] or consider the context [42].

We evaluate the utility of features from the categories
“table multiple” and “context” for table-to-class matching and
have implemented the following matchers for this:

Page Attribute Matcher: We process the page at-
tributes page title and URL by applying stop word removal
and simple stemming. The similarity of a page attribute to
a class of the knowledge base is the number of characters of
the class label normalized by the number of characters in the
page attribute.

Text Matcher: Ideally, the set of abstracts belonging to
instances of a class contains not only the instance labels and
associated property labels but also significant clue words.
We use this matcher for the features “set of attribute labels”,
“table” and “surrounding words”. All features are represented
as bag-of-words. After removing stop words, we build TF-
IDF vectors indicating the characteristic terms of the table
and the classes. We apply the same similarity measure which
is used by the abstract matcher.

Majority-based Matcher: Based on the initial similar-
ities of entities to instances computed by the entity label
matcher, we take the classes of the instances and count how
often they occur. If an instance belongs to more than one
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class, the instance counts for all of them. Such a matching
approach has for example been applied by Limaye et al. [22]
to assign classes to attributes covering named entities.

Frequency-based Matcher: Ideally, we want to find
correspondences to specific classes over general classes which
is not captured by the majority-based class matcher. Similar
to Mulwad et al. [25], we define the specificity of a class as
following:

spec(c) = 1 − ‖c‖
maxd∈C ‖d‖

where c represents a particular class and C the set of all
classes in DBpedia.

Agreement Matcher: The agreement matcher is a sec-
ond line matcher which exploits the amount of class matchers
operating on features covering different aspects. Although
the matchers might not agree on the best class to choose, a
class which is found by all the matchers is usually a good
candidate. We propose the agreement matcher which takes
the results of all other class matchers and counts how often
they agree per class. In this case, all classes are counted
having a similarity score greater than zero.

The results of our matching experiments are presented in
Section 8.

5. SIMILARITY SCORE AGGREGATION
Each of the previously described matchers generates a

similarity matrix as result. Depending on the task, these
matrices contain the similarities between the entities and
instances, attributes and properties or the table and classes.
In order to generate the correspondence, all matrices dealing
with the same task need to be combined which is the task of
a non-decisive second line matcher. Most approaches in the
field of web table matching use a weighted aggregation to
combine similarity matrices. While some of them empirically
determine the weights, e.g. TableMiner [42], others employ
machine learning to find appropriate weights [41, 22]. All
existing approaches for web table matching have in common
that they use the same weights for all tables. Due to the
diversity of tables, one single set of weights might not be the
best solution. To overcome this issue, we use a quality-driven
combination strategy which adapts itself for each individual
table. Such strategies have been shown as promising in the
field of ontology matching [5]. The approach tries to mea-
sure the reliability of matchers by applying so called matrix
predictors [33] on the generated similarity matrices. The
predicted reliability is then used as weight for each matrix.
Since the prediction is individually performed on each matrix,
the reliability of a matcher can differ for each table and in
turn we are able to use weights which are tailored to a table.

We evaluate three different matrix predictors: the average
predictor (Pavg), standard deviation predictor (Pstdev) [33]
as well as a predictor (Pherf ) which bases on the Herfindahl
Index [29] and estimates the diversity of a matrix.

Average: Based on the assumption that a high element
in the similarity matrix leads to a correct correspondence, a
matrix with many high elements is preferred over a matrix
with less high elements. We compute the average of a matrix
M as following:

Pavg(M) =

∑
i,j|ei,j>0 ei,j∑
i,j|ei,j>0 1

Standard Deviation: In addition to the average, the
standard deviation indicates whether the elements in the
matrix are all close to the average. Formally:

Pstdev(M) =

√∑
i,j|ei,j>0(ei,j−µ)2

N

µ is the average and N is the number of non-zero elements.

Normalized Herfindahl Index: The Herfindahl Index
(HHI) [29] is an economic concept which measures the size of
firms in relation to the industry and serves as an indicator of
the amount of competition among them. A high Herfindahl
Index indicates that one firm has a monopoly while a low
Herfindahl Index indicates a lot of competition. We use this
concept to determine the diversity of each matrix row and
in turn of the matrix itself. Our matrix predictor based
on the Herfindahl Index is similar to the recently proposed
predictor Match Competitor Deviation [13] which compares
the elements of each matrix row with its average.[

1.0 0.0 0.0 0.0
]

Figure 3: Matrix row with the highest HHI (1.0)[
0.1 0.1 0.1 0.1

]
Figure 4: Matrix row with the lowest HHI (0.25)

Figure 3 and Figure 4 show the highest and lowest possible
case for a four-dimensional matrix row. At best, we find
exactly one element larger than zero while all other elements
are zero. Having this ideal case, we can perfectly see which
pair fits. In contrast, a matrix row which has exactly the
same element for each pair does not help at all to decide
for correspondences. We compute the normalized Herfindahl
Index for each matrix row which ranges between 1/n and
1.0 where n is the dimension of the matrix row. That is
the reason why the matrix row in Figure 3 has a normalized
Herfindahl Index of 1.0 and the matrix row in Figure 4 of
0.25. To get an estimation per matrix, we build the sum
over all Herfindahl Indices per matrix row and normalize it.
Formally:

Pherf (M) = 1
V

∑
i

∑
j ei,j

2

(
∑

j ei,j)
2

where V represents the number of matrix rows in the ma-
trix.

Section 7 presents the evaluation results of the different
matrix predictors and determines the predictor that is most
suitable for each matching task. Further, we discuss how the
weights are distributed across the different matrices generated
by the matchers.

6. GOLD STANDARD
We use Version 2 of the T2D entity-level gold standard2

for our experiments. The gold standard consists of web ta-
bles from the Web Data Commons table corpus [19] which

2http://webdatacommons.org/webtables/
goldstandardV2.html
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has been extracted from the CommonCrawl web corpus3.
During the extraction, the web tables are classified as layout,
entity, relational, matrix and other tables. For the use case
of filling missing values in a knowledge base, relational tables
are most valuable as they contain relational data describ-
ing entities. However, as shown by Cafarella et al. [4], the
vast majority of tables found in the Web are layout tables.
In addition we have shown in [31] that only a very small
fraction of the relational tables can actually be matched to
the DBpedia knowledge base. Thus, it is important for a
matching algorithm to be good at recognizing non-matching
tables. For a gold standard, it is in turn important to contain
non-matching tables.

Version 2 of the T2D entity-level gold standard consists of
row-to-instance, attribute-to-property, table-to-class corre-
spondences between 779 web tables and the DBpedia knowl-
edge base. The correspondences were created manually. In
order cover the challenges that a web table matching system
needs to face, the gold standard contains three types of tables:
non-relational tables (layout, matrix, entity, other), relational
tables that do not share any instance with DBpedia and re-
lational tables for which least one instance correspondence
can be found. Out of the 779 tables in the gold standard,
237 tables share at least one instance with DBpedia. The
tables cover different topics including places, works, and peo-
ple. Altogether, the gold standard contains 25 119 instance
and 618 property correspondences. About half the property
correspondences refer to entity label attributes, while 381
correspondences refer to other attributes (object as well as
data type attributes). Detailed statistics about the gold
standard are found on the web page mentioned above.

A major difference between Version 2 of the T2D gold
standard and the Limaye112 gold standard [22] is that the
T2D gold standard includes tables that cannot be matched
to the knowledge base and thus forces matching systems to
decide whether a table can be matched or not.

7. SIMILARITY AGGREGATION RESULTS
This section describes the experiments we perform regard-

ing the similarity score aggregation using matrix predictors.
Following Sagi and Gal [33], we measure the quality of a ma-
trix predictor using the Pearson product-moment correlation
coefficient [28]. With a correlation analysis, we can ensure
that the weights chosen for the aggregation are well suitable.
We perform the correlation analysis for the three matching
tasks with the three introduced matrix preditors Pavg, Pstdev
and Pherf on the evaluation measures precision P and recall
R.

P =
TP

TP + FP
R =

TP

TP + FN

While TP refers to the number of true positives, FP repre-
sents the number false positives and FN the number of false
negatives.

If a predictor has a high correlation to precision respect
recall and we use the prediction for weighting the similarity
matrix, we assume that the result also has an according
precision/recall.

3http://commoncrawl.org/

Table 3 shows the results of the correlation analysis for the
property and instance similarity matrices regarding precision,
e.g. PPstdev, and recall, e.g. RPstdev. All predictor correla-
tions are significant according to a two-sample paired t-test
with significance level α = 0.001. The analysis of the class
similarity matrix predictors is not shown since the correla-
tions are not significant. This results from the fact that only
237 tables in the gold standard can be assigned to a DBpedia
class and in turn only for those tables we can compute a
correlation with precision and recall. However, in practice
the predictor Pherf shows the most promising results. The
same holds for instance similarity matrices where Pherf has
the highest correlation with precision as well as recall. In
contrast, for property similarity matrices, Pavg correlates
most. One reason is the comparably low amount of proper-
ties that can potentially be mapped to one attribute. Within
a single matching task, the choice of the best performing
predictor is in most cases consistent. One exception is the
correlation of Pherf to the recall of the matrix generated
by the popularity-based matcher since the most popular in-
stances do not necessarily need to be the correct candidates.
Based on the results, we use the prediction computed by
Pherf as weights for the instance as well as for class similarity
matrices and Pavg for the property similarity matrices in the
matching experiments that we report in the next section.

Figure 5 shows the variations of weights for the similar-
ity matrices coming from different matchers. We can see
that median of the weights differ for the various matchers
which in turn indicates the overall importance of the features
across all tables for a certain matching task. For the instance
matching task, the popularity of an instance seems to play
a crucial role, followed by the label. Contrary, the values
build the foundation for the property matching task. The
size of the class as well as the amount of instance candi-
dates belonging to one class, used in the frequency-based
resp. majority-based matcher, forms the basis of the class
matching task. Adding external resources like Wordnet only
leads to slight changes of the weights.

Besides the median, the variations of the weights show that
the actual utility of a feature depends on the individual ma-
trix and in turn on the table. This supports our assumption
that taking the same aggregation weights for all the tables
is not always the best strategy. While the weight variations
are very large for all matchers operating on attribute labels
(attribute label-, wordnet- and dictionary matcher), this is
the opposite for the matchers dealing with bag-of-words. A
large variation implies that the reliability is predicted dif-
ferently for various tables which in turn indicates that the
attribute label is a suitable feature for some but not for all
of the tables. This finding is reasonable since tables can
either have attribute labels that perfectly fit to a property
label like “capital” while others do not use any meaningful
labels. For the bag-of-words matchers, the reliability is es-
timated quite similar but low for all the tables. Since they
compare bag-of-words, they will always find a large amount
of candidates.

8. MATCHING RESULTS
In this section, we report the results of our matching ex-

periments and compare them to results from the literature.
After applying the different matchers and aggregating their
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Table 3: Correlation of matrix predictors to precision and recall

First Line Matcher PPstdev RPstdev PPavg RPavg PPherf RPherf

Property Similarity Matrices
Attribute label matcher 0.474 0.415 0.433 0.448 0.215 0.209
Duplicate-based attribute matcher 0.048 0.094 0.086 0.106 -0.074 0.042
WordNet matcher 0.425 0.341 0.317 0.367 0.120 0.178
Dictionary matcher 0.360 0.274 0.364 0.447 0.130 0.150
mean 0.327 0.281 0.300 0.342 0.098 0.145

Instance Similarity Matrices
Entity label matcher -0.167 0.092 -0.160 0.049 0.233 0.232
Value-based entity matcher 0.361 0.496 0.122 0.311 0.378 0.531
Surface form matcher -0.291 -0.094 -0.294 -0.128 0.241 0.238
Popularity-based matcher 0.136 -0.043 0.112 -0.038 0.263 -0.236
Abstract Matcher 0.047 0.182 0.134 0.286 0.205 0.152
mean 0.022 0.158 -0.021 0.120 0.330 0.229

Figure 5: Matrix aggregation weights

similarity scores, we use a 1 : 1 decisive second line matcher
for generating correspondences. The matcher selects for each
entity/attribute/table the candidate with the highest simi-
larity score. This score needs to be above a certain threshold
in order to ensure that correspondences are only generated if
the matching system is certain enough. The thresholds are
determined for each combination of matchers using decision
trees and 10-fold-cross-validation. In addition to threshold-
ing, we also apply the filtering rule that we only generate
correspondences for a table if (1) a minimum of three entities
in the table have a correspondence to an instance in the
knowledge base and (2) one forth of the entities in the table
is matched to instances of the class we decided for.

We evaluate the matching results according to precision,
recall and F1. We compare our results to the results of
existing approaches. However, it is tricky to directly compare
result as the other systems were tested using different web
tables and different knowledge bases and as the difficulty of
the matching task is highly dependent on these inputs.

8.1 Row-to-Instance Matching Results
Table 4 presents the results of the row-to-instance match-

ing task for different combinations of matchers. If we only
considering the entity label feature, a moderate result with a
precision of 0.72 is achieved. Also taking the table cell values
into account increases the recall by 0.09 and the precision by
0.08. As expected, based on the weight analysis, considering

the values helps to improve the performance but only using
the entity label already leads to a decent amount of correct
correspondences. By adding surface forms, the recall can
again be raised by 0.02 which indicates that we indeed find
alternative names for entities in the tables. The popularity-
based matcher can slightly increase the precision and recall.
Whenever the similarities for candidate instances are close, to
decide for the more common one is in most cases the better
decision. However, this assumption does especially not hold
for web tables containing long-tail entities, e.g. entities that
are rather unknown.
Including the only instance matcher relying on a multiple
table feature (Abstract matcher), the precision is strongly
increased by 0.13 while 0.08 recall is lost. This might be
unexpected at first glance since a matcher comparing bag-of-
words tends to add a lot of noise. The reason is the choice
of the threshold since it needs to be very high to prevent
a breakdown of the F1 score. Thus, comparing the entity
as a whole with the DBpedia abstracts helps to find correct
correspondences but has to be treated with caution to not
ruin the overall performance. If we use the combination of
all instance matchers, the highest F1 value can be achieved.
This shows that the instances found by matchers exploiting
different features do not necessarily overlap and that the
matchers can benefit from each other by compensating their
weaknesses.

In the following, we compare our results to existing results
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Table 4: Row-to-instance matching results

Matcher P R F1
Entity label matcher 0.72 0.65 0.68
Entity label matcher + Value-based entity matcher 0.80 0.74 0.77
Surface form matcher + Value-based entity matcher 0.80 0.76 0.78
Entity label matcher + Value-based entity matcher + Popularity-based matcher 0.81 0.76 0.79
Entity label matcher + Value-based entity matcher + Abstract matcher 0.93 0.68 0.79
All 0.92 0.71 0.80

from literature. While Mulwad et al. [26] report an accuracy
of 0.66 for a pure label-based instance matching approach,
the F1 score achieved by Limaye et al. [22] (web manual data
set) is 0.81 when taking alternative names for the labels into
account. Extending the label-based method by including the
values results in an accuracy of 0.77 [38] resp. a F1 score
of 0.82 if the web tables are matched to DBpedia and 0.89
if they are matched against Yago [25]. Very high F1 scores
above 0.9 are stated by Zhang [42]. However, the presented
baseline that only queries the Freebase API already obtains
very close scores such that the good performance is mainly
due to the internal API ranking. For other APIs used by the
systems, it is not always clear which ranking functions are
used and which performance they already achieve without
considering any other features.

8.2 Attribute-To-Property Matching Results
Table 5 shows the results of our attribute-to-property

matching experiments using different combinations of match-
ers. In contrast to the row-to-instance matching task, we get
a rather low recall (0.49) if we only take the attribute label
into account. Based on the weight analysis, we already know
that the attribute label is not necessarily a useful feature for
all the tables. Including cell values increases the recall by
0.35 but decreases the precision by 0.10. While it provides
the possibility to compensate non-similar labels, it also adds
incorrect correspondences if values accidentally fit. This
especially holds for attributes of data type numeric and date,
for example, in a table describing medieval kings it will be
quite difficult to distinguish birth dates and death dates by
only examining a single attribute at a time. Nevertheless,
the values present a valuable feature especially to achieve
a decent level of recall, given that the attribute labels are
often misleading. Taking WordNet into account does neither
improve precision nor recall. This shows, that a general
dictionary is not very useful for the property matching task.
In contrast, using the dictionary created from web tables
increases the recall as well as the precision. With specific
background knowledge that is tailored to the web tables, it is
possible to enhance the performance. However, the creation
of the dictionary requires a lot of smart filtering. Without
proper filtering, the dictionary would add only noise. The
result of using all matchers together is slightly lower than
the best result due to the WordNet matcher.

Our results for the attribute-to-property matching task are
difficult to compare to other existing results as many of the
existing systems only match attributes to object properties
and do not cover data type properties, such as numbers and
dates. For this task, Mulwad et al. [26] report an accuracy of
0.25, their advanced system achieves a F1 score of 0.89 [25]
while Muñoz et al. [24] report a F1 score of 0.79. Although

Limaye et al. [22] additionally include the attribute header,
only a result of 0.52 (F1) can be reached. Even without the
consideration of data type properties, the property matching
task seems to be more difficult than the instance matching
task.

8.3 Table-To-Class Matching Results
Table 6 reports the results of our table-to-class matching

experiments. Since we need an instance similarity matrix for
the class matching, we use the entity label matcher together
with the valued-based matcher in all following experiments.
When only considering the majority of the instance correspon-
dences to compute the class correspondences, the precision is
0.47 and the recall 0.51, meaning that only for approximately
half of the tables the correct class is assigned. One reason
for this is the preferential treatment of superclasses over
specific classes which are further down in the class hierarchy.
All instances that can be found in a specific class are also
contained in the superclass and there might be further in-
stances belonging to the superclass that fit. Together with
the consideration of the frequency which exactly tackles the
mentioned issue, a F1 score of 0.89 can be reached.

In order to see how far we get when solely considering
matchers that rely on context features, we evaluate the page
attribute matcher and the text matcher independently from
the others. Since the differences in the performance are
marginal, we do not present the results for the individual
features. Whenever the page attribute matcher finds a corre-
spondence, this correspondence is very likely to be correct.
However, since the URL and page title are compared with the
label of the class, it can happen that no candidate is found at
all. Regarding the recall, similar holds for the text matcher
but the generated correspondences are not necessarily correct.
This is not surprising because we already discovered that
matchers using features represented as bag-of-words have a
weak ability to differentiate between correct and incorrect
candidates due to a lot of noise.

When we combine all previous matchers, a F1 of 0.88
is obtained which is still lower than the outcome of the
majority-based together with the frequency-based matcher.
If we make use of the number of available class matchers
which is transposed by the agreement matcher, we reach a
F1 value of 0.92. Thus, taking advantage of features covering
the whole spectrum of available information and deciding for
the class most of them agree on, is the best strategy for the
class matching task.

Due to the fact that the table-to-class matching task
has a strong influence on the other two matching tasks in
T2KMatch, their performance can be substantially reduced
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Table 5: Attribute-to-property matching results

Matcher P R F1
Attribute label matcher 0.85 0.49 0.63
Attribute label matcher + Duplicate-based attribute matcher 0.75 0.84 0.79
WordNet matcher + Duplicate-based attribute matcher 0.71 0.83 0.77
Dictionary matcher + Duplicate-based attribute matcher 0.76 0.86 0.81
All 0.70 0.84 0.77

Table 6: Table-to-class matching results

Matcher P R F1
Majority-based matcher 0.47 0.51 0.49
Majority-based matcher + Frequency-based matcher 0.87 0.90 0.89
Page attribute matcher 0.97 0.37 0.53
Text matcher 0.75 0.34 0.46
Page attribute matcher + Text matcher +
Majority-based matcher + Frequency-based matcher 0.9 0.86 0.88
All 0.93 0.91 0.92

whenever a wrong class decision is taken. For example, when
solely using the text matcher, the row-to-instance recall drops
down to 0.52 and the attribute-to-property recall to 0.36.

For the table-to-class matching task, results between 0.43
(F1) [22] and 0.9 (accuracy) [38] are reported in the literature.
In between, we find outcomes varying from 0.55 (F1) [43]
over 0.65 to 0.7 for different knowledge bases [39]. When
taking also the specificity of the classes into account, the
performance of 0.57 (F1) is neither higher nor lower than
other results [25]. Similar holds for considering the context
with a result of 0.63 (F1) [42].

In summary, our matching system is able to distinguish
between tables that can be matched to DBpedia and tables
that do not have any counterparts. This becomes especially
obvious if we look at the results of the table-to-class match-
ing task. The ability to properly recognize which tables can
be matched is a very important characteristic when dealing
with web tables. Whenever the table can be matched to
DBpedia, features directly found in the table are crucial for
the instance and property matching tasks. For properties,
the cell values need to be exploited in order to achieve an
acceptable recall. Adding external resources is useful the
closer the content of the external resource is related to the
web tables or to the knowledge base. For the table-to-class
matching task, the majority of instances as well as the speci-
ficity of a class has a very high impact on the performance.
While matchers based on page attributes often do not find
a correspondence at all, this is the opposite for all features
represented as bag-of-words which add a large amount of
noise. Ways to handle the noise are either filtering or to
only use them as an additional indicator whenever matchers
based on other features agree with the decision.

Comparing the related work among each other shows that
almost no conclusions can be drawn whether a certain feature
is useful for a matching task or not. One reason for this is
that the systems are applied to different sets of web tables
and different knowledge bases. As indicated by Hassanzadeh
et al. [16], the choice of the knowledge base has a strong
influence on the matching results. For example, a knowledge

base might not contain certain instances (e.g. web tables
contain a lot of product data while DBpedia hardly covers
products) or properties at all (e.g. product prices) and the
granularity of the classes can differ a lot, depending on the
structure and the focus of the knowledge base [16, 31].

9. CONCLUSION
This paper studied the utility of different features for task

of matching web tables against a knowledge base. We pro-
vided an overview as well as a classification of the features
used in state-of-the-art systems. The features can either be
found in the table itself or in the context of the table. For
each of the features, we introduce task specific matchers that
compute similarities to instances, properties, and classes in a
knowledge base. The resulting similarity matrices, represent-
ing the feature-specific results, have been combined using
matrix predictors in order to gain insights about the suitabil-
ity of the aggregation weights. Using matrix predictors, we
allow different web tables to favor the features that are most
suitable for them.

We showed that a positive correlation between the weight-
ing based on the reliability scores as well as the performance
measures precision and recall can be found. However, the
best way to compute reliability scores differs depending on
the matching task. While predictors based on the diversity
of the matrix elements work best for the row-to-instance
and table-to-class matching task, an average-based predictor
shows a better performance for the attribute-to-property
matching task.

The computed weights gave us an idea which features are
in general important for the individual matching tasks and
how much their significance varies between the tables. While
the entity label and the popularity of an instance are very
important for the row-to-instance matching task, compar-
ing the cell values is crucial for the attribute-to-property
matching task. For the table-to-class matching task, several
features are important, while the ones directly coming from
the table outperform context features. The largest variation
in the weights was discovered for the attribute labels. This
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indicates that attribute labels can be a good feature as long
as meaningful attribute names are found in the web tables
but also that this is not always the case.

We further explored the performance of different ensembles
of matchers for all three matching tasks. In summary, taking
as many features as possible into account is promising for all
three tasks. Features found within tables generally lead to
the best results than context features. Nevertheless, taking
context features into account can improve the results but
particular caution is necessary since context features may
also add a lot of noise. External resources proofed to useful
as long as their content is closely related to the content of the
web tables, i.e. the general lexical database WordNet did not
improve the results for the attribute-to-property matching
task while a more specific dictionary did improve the results.
The performance that we achieved in our experiments for
the row-to-instance and the attribute-to-property matching
tasks are roughly in the same range as the results reported in
literature. For the table-to-class matching task, our results
are higher than the ones reported in the related work.

The source code of the extended version of the T2KMatch
matching framework that was used for the experiments is
found on the T2K website4. The gold standard that was
used for the experiments can be downloaded from the Web
Data Commons website5.
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