
Incremental Multi-source Entity Resolution for
Knowledge Graph Completion

Alieh Saeedi, Eric Peukert, and Erhard Rahm

University of Leipzig & ScaDS.AI Dresden/Leipzig, Germany

Abstract. We present and evaluate new methods for incremental entity
resolution as needed for the completion of knowledge graphs integrating
data from multiple sources. Compared to previous approaches we aim at
reducing the dependency on the order in which new sources and entities
are added. For this purpose, we consider sets of new entities for an op-
timized assignment of them to entity clusters. We also propose the use
of a light-weight approach to repair entity clusters in order to correct
wrong clusters. The new approaches are integrated within the FAMER
framework for parallel and scalable entity clustering. A detailed evalu-
ation of the new approaches for real-world workloads shows their high
effectiveness. In particular, the repair approach outperforms other incre-
mental approaches and achieves the same quality than with batch-like
entity resolution showing that its results are independent from the order
in which new entities are added.

1 Introduction

Knowledge graphs (KG) physically integrate numerous entities with their prop-
erties and relationships as well as associated metadata about entity types and
relationship types in a graph-like structure [1]. The KG entities are typically in-
tegrated from numerous sources, such as other knowledge graphs or web pages.
The initial KG may be created from a single source (e.g., a pre-existing knowl-
edge graph such as DBpedia) or a static integration of multiple sources. KG
completion (or extension) refers to the incremental addition of new entities and
entire sources. The addition of new entities requires solving several challenging
tasks, in particular an incremental entity resolution to match and cluster new
entities with already known entities in the KG [2].

Most previous work on entity resolution (ER) deals with static ER to match
entities from one or several static data sources. Such static approaches are not
sufficient to add entities to an in-use KG where the majority of already in-
tegrated entities is largely unaffected by new entities and should not have to
be re-integrated for every update. ER for entities of multiple sources typically
groups or clusters matching entities and these clusters can then be used to fuse
(merge) the properties of the matching entities to obtain an enriched entity
description for the KG. Incremental ER thus requires to update these entity
clusters for new entities. A naive approach is to simply add a new entity either
to the most similar existing cluster or to create a new cluster if there is no similar

one [3,4]. However, this approach typically suffers from a strong dependency on
the order in which new entities are added. In particular, wrong cluster decisions,
e.g., due to data quality problems, will not be corrected and can lead to further
errors when new entities are added. The overall ER quality can thus be much
worse than for batch ER where all entities are simultaneously integrated.

We therefore propose and evaluate new approaches for incremental entity
clustering that reduce the dependency on the order in which new entities and
sources are added. The approaches have been developed for our framework
FAMER that supports a parallel ER for entities from multiple sources [5]. For
batch ER, FAMER first applies pairwise linking among entities and derives a so-
called similarity graph. This graph is input for entity clustering that determines
a set of clusters where each cluster groups the matching entities from several
sources. These linking and clustering steps now need to become incremental
while preserving a similarly high quality than for batch ER.

We make the following contributions:
– We propose several approaches for incremental linking and clustering. For

an optimized cluster assignment, we consider the addition of sets of entities
and so-called max-both assignments that add an entity to the most similar
cluster only when there is no more similar new entity from the respective
data source. Furthermore, we optionally can link new entities with them-
selves before updating entity clusters. We also support the fusion of cluster
members to a single entity which simplifies and speed-ups incremental clus-
tering as new entities need no longer be compared to several entities of a
cluster.

– We propose a new method called n-depth reclustering for incremental ER
that is able to repair existing clusters for improved quality and a reduced
dependency on the insert order of new entities.

– We provide parallel implementations of all methods for improved runtimes
and high scalability to large datasets.

– We evaluate the incremental approaches for datasets of three domains in
terms of cluster quality and runtime efficiency. We also provide a comparison
to a previous approach for incremental cluster repair [6] and with batch ER.
After a discussion of related work, we give an overview of the incremental

methods within FAMER in Section 3. Section 4 presents the new methods in
detail and Section 5 is the evaluation.

2 Related Work

ER and link discovery have been widely investigated and are the subject of
several books and surveys [7][8][9][10][11]. Most previous approaches are static
and focus on either finding duplicates in a single source or binary matching
between entities of two sources. A few studies investigate multi-source ER and
clustering [12][5][4][13].

Relatively little work has been done on incremental ER to deal with new
entities which should be fast and not have to repeat the linkage of already linked

entities. Most of these approaches [14][15][3] focus on a single data source only.
In these approaches, new entities are either added to the most similar cluster
(group) of entities or are considered as new entities. These approaches do neither
aim at an optimized cluster assignment for sets of new entities nor do they repair
previous match and cluster decisions.

Only little work coped with repairing previous cluster decisions for incremen-
tal ER and the previous approaches focus on a single source. Gruenheid et al. [6]
maintain the clusters within a similarity graph and propose several approaches
to update this graph based on different portions of the graph. Furthermore, a
greedy method is introduced to use the updated graph to correct clusters by
merging and splitting them or by moving entities among clusters. Nascimento
et al. [16] extend the approach of [6] by defining six filters to limit the number
of cluster updates. The filters improve runtime but also reduce the quality. The
evaluations in both [6] and [16] are limited to small single-source datasets. In
our evaluation we will also consider the greedy approach of [6].

To our knowledge, there is no previous method for multi-source incremental
entity clustering except the initial approach introduced in [4]. This method as-
sumes duplicate-free sources and provides an optimized addition for sets of new
entities or entire new sources which was shown to achieve better cluster qual-
ity than the isolated addition of one new entity at a time. The most effective
approach was a so-called max-both assignment where an entity e from a set S
of new entities is only assigned to the cluster c with the highest similarity to e
(above a minimal similarity threshold) if there is no other entity in S from the
same source than e with a higher similarity.

Here, we substantially extend this simple approach by considering more op-
tions for incremental linkage, in particular the optional linkage among new en-
tities and the use of cluster fusion. Moreover, we propose and evaluate a new
repair method for incremental multi-source entity clustering. We also provide
distributed implementations of the approaches for improved performance.

3 Overview of incremental ER with FAMER

For batch ER of multiple sources, FAMER applies the two configurable phases
of linking and clustering [12][5]. The linking phase determines a similarity graph
containing links between pairs of similar entities. This phase starts with block-
ing [8] so that only entities of the same block need to be compared with each
other. Pairwise matching is typically based on the combined similarity of several
properties and a threshold for the minimal similarity. The second phase uses
the similarity graph to determine entity clusters. It supports several cluster-
ing schemes to group similar entities that represent the same real-world object.
The most effective clustering approaches such as CLIP [5] assume duplicate-free
sources so that a cluster should at most contain one entity per source. While the
proposed incremental approaches are largely independent of the specific cluster-
ing scheme we analyze them here in combination with the optimized approaches

Fig. 1: FAMER workflow for incremental entity resolution

for duplicate-free data sources (assuming that dirty sources can first be dedupli-
cated before their integration into a KG).

In this paper we propose significant extensions to FAMER for incremental
ER. The corresponding workflow is indicated in Fig. 1. The approach uses a
so-called clustered similarity graph, i.e., a similarity graph reflecting already de-
termined clusters. The input of the workflow is a stream of new entities from
existing sources or from a new source plus the already determined clustered
similarity graph from previous iterations. The linking part now focuses on the
new entities and does not re-link among previous entities. We also support the
linking among new entities to provide additional links in the similarity graph
that may lead to better cluster results. The output of the linking is a grouped
similarity graph composed of existing clusters and the group of new entities and
the newly created links (the light-blue colored group in the middle of Fig. 1).

The Incremental Clustering/Repairing part supports two methods for in-
tegrating the group of new entities into clusters. In the base (non-repairing)
approach called Max-Both Merge (MBM) the new entities are either added to
a similar existing cluster or they form a new cluster. A more sophisticated ap-
proach is able to repair existing clusters to achieve a better cluster assignment
for new entities by reclustering a portion of the existing clustered graph. The
method is named n-depth reclustering (nDR) where n is a parameter to control
the portion of the similarity graph that is considered for reclustering. The details
of the incremental clustering approaches are explained in Section 4.

The output of incremental clustering is a fully clustered graph. The clus-
ters can optionally be fused in the Fusion component so that all entities are
represented by a single entity called cluster representative. Fusion can improve
linking efficiency since new entities only have to be compared with the cluster
representatives instead of all cluster members. On the other hand, we loose the
possibility to recluster if we retain only a single fused entity per cluster. The
fusion approach is outlined in Section 4.2 and the impact of fusion on quality
and runtime is evaluated in Section 5.

FAMER and the new approaches for incremental entity linking and cluster-
ing are implemented using the distributed execution framework Apache Flink.
Hence, all match and clustering approaches can be executed in parallel on mul-
tiple machines. We will evaluate our methods for different datasets and different
numbers of worker machines.

4 Incremental clustering approaches

We first define the main concepts in Section 4.1. We then describe the general
incremental ER process in Section 4.2 and the base approach MB in Section 4.3.
Finally, the repairing method is described in Section 4.4.

4.1 Concepts

Similarity graph: A similarity graph G= (E , L) is a graph in which vertices of
E represent entities and edges of L are links between similar entities. Edges have
a property for the similarity value (real number in the interval [0,1]) indicating
the degree of similarity. Since we assume duplicate-free sources in this paper,
there are no edges between entities of the same source.
Grouped similarity graph: A grouped similarity graph GG is a similarity
graph where each entity can be associated to a group or cluster. Clustered enti-
ties have a cluster-id of the cluster they belong to. The grouped similarity graph
allows us to maintain already determined clusters together with the underlying
similarity graph as input for incremental changes such as adding new entities.
A grouped similarity graph may also include new entities with their similarity
links to other entities. Fig. 2a shows a grouped similarity graph with four groups
cg0, cg1, cg2, cg3 and group gnew with new entities. There are links between enti-
ties of the same group, so-called intra-links, as well as links between entities of
different groups (inter-links) resulting in group neighborhoods.
Cluster: A cluster has a unique cluster-id and consists of a group of entities
that are meant to represent to the same real-world object. With the assumption
of duplicate-free sources, we require source-consistent clusters, i.e. there should
be at most one entity per source in a cluster so that all cluster members are
from different sources.
Clustered similarity graph: A clustered similarity graph CG is a similarity
graph G such that all of its entities are clustered. The same cluster-id is assigned
to all vertices of the same cluster.
Fused similarity graph: A fused similarity graph is a clustered similarity
graph in that each cluster is only represented with a cluster representative.
The cluster representative combines the property values of the original cluster
members and also records the ids of the originating data sources as provenance
information (see sample cluster representatives in Fig. 5aa).
Max-Both link: An entity from a source A may have several links to entities
of a source B. From these links, the one with the highest similarity value is called
maximum link. If a link is a maximum link from both sides, it is a max-both
or strong link. In Fig. 2b, for entity a1 the maximum link to source B is the
one to entity b1 (similarity 0.95). This link is also maximum for b1 so that it is
a max-both link. By contrast, the link between c2 and b1 is only the maximum
link for one side (c2) and the link between a1 to b0 for none of the sides.
n-depth neighbor graph: If a group in a grouped similarity graph is linked to
the other groups via inter-links, the graphs directly linked to it are called 1-depth
neighbor graphs. Recursively, the 1-depth neighbors of the n-depth neighbors are

(a)
(b)

Fig. 2: a) sample grouped similarity graph b) Max-Both concept

the (n+1)-depth neighbors. For example in Fig. 2a, Gnew is the 1-depth neighbor
of cg1 and cg3 and also 2-depth neighbor of cg0 and cg2.

4.2 Incremental Entity Resolution

Incremental ER limits linking and clustering to the new entities rather than
processing all entities as for batch ER. At the same time the resulting linkage
and cluster quality should be similar to batch ER which means that the order
in which entities are added should ideally have no impact on quality. The latter
requirement is a main reason for re-clustering as otherwise wrong cluster deci-
sions can impact further cluster decisions and thus lead to increasing quality
problems.

As explained in Section 3, incremental ER entails the two main steps of
Linking and Clustering. The input of linking is an existing clustered graph CGexist

and a set of new entities Enew from already known sources or from a new source.
For illustration, we consider a running example with existing entities from four
sources (shown in Fig. 3a) and new entities to be integrated (shown in Fig. 3b).
As typical for real-world data, the entity properties are partly erroneous. Fig. 4a
shows the clustered similarity graph indicating that the previous entities form
four clusters named cg0 to cg3. Note, that the colors indicate the originating
source and that every cluster contains at most one entity per source.

For the linking of new entities we optionally support a linking among new
entities. While this introduces additional computations, the additionally found
links may lead to better clusters. Note that this new-input-linking is not ap-
plicable if all new entities are from the same source due to the assumption of
duplicate-free sources. To limit the number of comparisons we apply blocking
and only compare new entities with other entities of the same block. For the
running example we assume that the two initial letters of the surname are used
as blocking key (specified in the configuration) as shown in Fig. 3c. Without
new-input-linking, we only compare new entities (marked in blue) with previous
entities of the same block. With new-input-linking, we additionally link new en-
tities among each other, e.g., for blocking key su. All links between new entities

with a similarity above a threshold (specified in the configuration) are added to
the similarity graph. Fig. 4b and Fig. 4c illustrate the resulting grouped similar-
ity graphs without and with new-input-linking, respectively. The only difference
occurs for the new entity 10 which is not linked with any previous entity but a
link with the new entity 12 is generated by new-input-linking so that entity 10
may be added to the same cluster.

The clustering part (second step of incremental ER) uses the determined
grouped similarity graph GG and the clustering configuration as input. The clus-
tering configuration specifies either one of the base methods or the repair method
with their parameters (to be explained in sections 4.3 and 4.4). The output is an
updated clustered graph CGupdated that includes the new entities within updated
clusters.

The sketched process is similar when we choose to fuse all entities of a cluster
to build cluster representatives and when we use a fused similarity graph instead
of a clustered similarity graph. The reduced number of entities in this graph
reduces the number of comparisons and can thus lead to a more efficient linking.
Fig. 5a shows the fused similarity graph of the running example to which the new
entities have to be compared. The cluster representatives (fused entities) may
contain per property multiple values from the original entities. When linking a
new entity we can choose to only link to cluster representatives that do not yet
include an entity from the same source. For example, in Fig. 5b, the link between
entity 9 and cluster cg0 does not need to be created (indicated as dashed line)
since this cluster already contains an entity of the same source.

Fig. 3: Running example: existing entities, new entities and blocking

(a)
(b) (c)

Fig. 4: a) Linking input b) w/o new-input-linking c) with new-input-linking

(a) (b)

Fig. 5: a) Linking input b) linking output with fused clustered graph

4.3 Max-Both Merge

The max-both merge approach integrates new entities into already existing clus-
ters or creates new clusters for them. The decision is based on the max-both
(strong) links between new entities and already clustered entities. In case of
new-input-linking, we first apply a pre-clustering among the linked new entities
to create source-consistent clusters which may then be merged with the existing
clusters. The case without new-input-linking can be viewed as a special case
where each new entity forms a singleton cluster.

If GG is a grouped similarity graph consisting of Gnew, CGexistand Lexist new,
the max-both approach merges a new cluster n ∈ Gnewwith an existing cluster c ∈
CGexistif there is a max-both link l(ei, ej) ∈ Lexist newbetween a new entity ei ∈ n
and an entity ej ∈ c and the two clusters n and c have only entities from different
sources. Hence, max-both merge assigns a new cluster to the maximally similar
existing cluster and merges them only if this does not violate source consistency.
For the example in Fig. 6, we would assign entity 9 neither to cluster cg0 nor to
cg1 if the link between entity 9 and entity 1 of cg0 has a higher similarity than
the link with entity 3 of cg1.

The further processing of the selected max-both links has to consider that
max-both links ensure the maximal entity similarity only w.r.t. a fixed pair of
sources. Hence, it is possible that clusters can have several max-both links re-
ferring to entities of different sources. As a result, it may be possible to merge
more than two clusters as long as source consistency is ensured. For the example
in Fig. 6, we would merge three clusters including cg6, cg7 and cg3, because the
links from the new entities 11 and 12 to the existing entity 7 are max-both links
and merging all of the associating clusters (cg6, cg7 and cg3) as one cluster still
keeps the source consistency constraint. When merging more than two clusters
is not possible due to the source consistency constraint, we determine for each
existing cluster cgi, the linked new clusters as candidates. These candidate clus-
ters are sorted and processed according to the link similarity and the cluster size
giving preference for merging to higher similarity values and bigger candidate
clusters.

Fig. 6 illustrates the max-both merge algorithm for the grouped similarity
graph of Fig. 4c. The left part of the Fig. 6 shows the result after pre-clustering

Fig. 6: Max-Both merge

the new entities resulting in clusters cg4 to cg7. Then the links are selected that
are max-both and that connect mergeable clusters as shown in the middle part
of Fig. 6 (the links from the new clusters cg4 and cg5 to clusters cg0 and cg2

would lead to source inconsistency and are thus removed). The right part of Fig.
6 indicates the final merge result with six instead of eight clusters. The existing
cluster cg3 is linked to two new clusters cg6 and cg7. Assuming that both links
have the same similarity value, the sort order would first consider the bigger
cluster cg7 and merge it. Then cluster cg6 is considered and also merged with
cg3 since source consistency is preserved.

For fused clusters, we use the provenance information in the cluster repre-
sentatives to avoid linking new entities to clusters containing already an entity
from the same source (Fig. 5b). This leads to an incremental clustering result
corresponding to the one for the max-both approach.

4.4 n-Depth Reclustering

The approaches described so far cannot add a new entity to an existing cluster if
there is already another entity of the respective source. This can lead to wrong
cluster decisions, e.g., if the previously added entity is less similar to the other
cluster members than the new entity. Our n-depth reclustering scheme addresses
this problem to obtain better clusters and to become largely independent from
the order in which new entities are added. At the same time, we want to limit
the amount of reclustering in order to maintain good efficiency.

Algorithm 1: n-Depth Reclustering

Input: grouped similarity graph GG (Gnew, CGexist, Lexist new), configuration
config

Output: updated Clustered Graph CGupdated
1 CGneighbors ← getNeighbors(GG, n)
2 Greclustering ←CGneighbors∪ Gnew∪ Lexist new

3 CGnew ← batchClustering(Greclustering, conf.getClustering())

4 CGupdated ← GG
5 updateGraph(GG, CGnew)
6 return CGupdated

Fig. 7: 1-depth reclustering (1DR)

The approach reclusters the new entities in Gnew with their neighbors in the
existing clustered graph CGexist. The parameter n controls the depth up to which
the neighboring clusters and their entities are reconsidered thereby allowing us to
control the scope of processing and associated overhead. For n = 1, the algorithm
only re-evaluates entities of the existing clusters directly connected to the new
entities. For n = 2, the neighbors of 1-depth neighbors are also selected. The
selected portion of the grouped similarity graph GG , Gnew and the neighbors,
are reclustered using a static clustering scheme.

Algorithm 1 outlines this process. In line 1, the neighbors up to depth
n are determined. The union of the found neighbor clusters (including their
intra- and inter-links) with the subgraph of new entities Gnew forms the portion
(Greclustering) of the grouped similarity graph to be re-clustered (line 2). In line 3,
the static clustering scheme is applied leading to an updated set of clusters. Any
clustering algorithm can be used for the batchClustering. In our experiments
in Section 5 we used the CLIP algorithm that was shown in [5] to achieve better
quality than other ER clustering approaches.

Fig. 7 illustrates the algorithm for n = 1. The portion of the input to be
reclustered consists of the new graph Gnew and its 1-depth neighbor clusters (cg0

to cg3). The output (right part of the Fig. 7) shows that the previous cluster cg2

is changed so that the new entity 8 is included instead of the previous member
6 from the same source.

Fig. 8a shows the output of Fig 7 as existing clustered graph and the next
increment of new entities (13, 14 and 15). By performing 1-depth reclustering
(1DR), a small portion of the graph including clusters cg1 and cg2 plus the new
entities are reclustered. As illustrated in Fig. 8b only cluster cg1 is modified and

(a) (b) (c)

Fig. 8: a) 2nd increment input b)1DR output c) 2DR output

the entities 14 and 15 create a new cluster. For the same input choosing n = 2
would end to reclustering a bigger portion of the existing clustered graph com-
pared with 1-depth reclustering. As illustrated in Fig. 8c, the 2-depth neighbour
cluster cg4 and the 1-depth neighbor clusters, cg1 and cg2 are modified by the
reclustering.

The introduced reclustering of existing clusters depends on the intra-cluster
links. Therefore, the repairing method is not applicable for fused clusters.

5 Evaluation

We now evaluate the effectiveness and efficiency of the proposed incremental clus-
tering/repairing algorithms in comparison to the batch ER approach of FAMER
and the Greedy incremental cluster repair of [6]. We first describe the used
datasets from three domains. We then analyze comparatively the match quality
of the proposed algorithms. Finally, we evaluate runtime performance.

We use datasets from three domains with different numbers of duplicate-free
sources. The datasets are publicly available and have been used in prior ER
studies1. Table 1 shows the main characteristics of the datasets in particular the
number of clusters and match pairs of the perfect ER result. The smallest dataset
G contains geographical real-world entities from four different data sources DB-
pedia (dp), Geonames (geo), Freebase (fb) and NYTimes (ny) and has already
been used in the OAEI competition. For our evaluation, we focus on a subset
of settlement entities as we had to manually determine the perfect clusters and
thus the perfect match pairs. For the other larger evaluation datasets M and P
we applied advanced data generation and corruption tools to be able to evaluate
the ER quality and scalability for larger datasets and a controlled degree of cor-
ruption. M is based on real records about songs from the MusicBrainz database.
We applied the DAPO data generator [17] to create five sources and duplicates
for 50% of the original records in two to five sources as described for the initial
evaluation of the FAMER framework [12][5]. P is based on real person records
from the North-Carolina voter registry and synthetically generated duplicates
using the tool GeCo [18]. We consider the configuration with 10 sources of 1
million entities each; i.e. we process up to 10 million person records.

We evaluate our proposed methods with two scenarios of incremental ER.
In the first scenario, called sources-wise, a complete new source is added to the
existing clustered graph in each increment. In the second scenario, called entity-
wise, specific portions of new entities from already existing sources are added
to the clustered graph. For this case, we consider the four configurations listed
in Table 2. Each configuration specifies the percentage of entities from each
source that is added to the knowledge base in each increment. For example, in
configuration conf1, the initial KG only contains 20% of the entities from each
source. In each of the following four increments 20% of the entities from each
source are added.

1 https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_

datasets_for_entity_resolution

https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution

Table 1: Evaluation datasets

general information perfect result
domain entity properties #entity #src #clusters #links

G geography label, longtitude, latitude 3,054 4 820 4,391
M music artist, title, album, year, length 19,375 5 10,000 16,250
P persons name, surname, suburb, postcode 10,000,000 10 6,625,848 14,995,973

For linking, we apply different configurations for each dataset (listed in Table
3). All configurations use standard blocking with different blocking keys. The
match rules rely on different attribute similarities using either string similarity
functions (Jaro Winkler, Trigram) or geographical distance.

Table 2:
Increment configura-
tions

conf 1 2 3 4

base 20% 33% 50% 80%
inc 1 20% 33% 10% 10%
inc 2 20% 33% 10% 10%
inc 3 20% - 10% -
inc 4 20% - 10% -
inc 5 - - 10% -

Table 3: Linking configurations

blocking key similarity function

G prefixLength1 (label)
Jaro Winkler (label)
geographical distance

M prefixLength1 (artist+title+album)
Trigram
(artist+title+album)

P prefixLength4 (surname)
+ prefixLength4 (name)

avg (Trigram (name)
+ Trigram (surname)
+ Trigram (postcode)
+ Trigram (suburb))

5.1 Evaluation Results

Initially we evaluate the quality and robustness of our proposed methods for
source-wise incremental ER. As described in Section 4, we do not need to perform
new-input-linking and pre-clustering in this scenario since sources are duplicate
free.

To analyze the impact of the order in which we add sources, we start with
the results for the real-world dataset G where the four sources differ strongly
in size and quality. We compare our proposed incremental methods against the
batch clustering approach of FAMER as well as the re-implemented Greedy
algorithm from [6]. In Fig. 9 we show the obtained cluster quality results in
terms of precision, recall and F-Measure for different similarity threshold of the
linking phase which influences the number and the quality of generated links
that are input to clustering. Lower thresholds produce more links (good recall)
at a higher chance of wrong links (lower precision) while higher thresholds lead
to the opposite behavior.

Twelve different orders of adding sources are possible. We examined all of
them and report results for the best order ”ny, fb, geo, dp” (conf1) and the worst
order ”dp, geo, ny, fb” (conf2) in Fig. 9. With a good insert order, the quality of

all approaches including MB (max-both merge) are close together and as good
as batch ER. However, for the worst order MB achieves substantially lower recall
and F-measure values indicating its strong dependency on the insert order. By
contrast, our proposed re-clustering approach nDR (n=1) strongly reduces the
dependency on the insert order and achieves the same quality as batch ER. The
weakest results are observed for the Greedy approach [6]. Greedy initially tries to
merge new entities to a randomly chosen neighboring cluster without considering
the actual similarity value of the link. Then if merging is not possible, it tries
to maximize the objective function of the clustering algorithm by iteratively
splitting existing clusters and moving entities in between clusters until no the
objective function is not improved further. However, the random assignment is
problematic when a new entity has multiple neighboring clusters. We observed
that even after many iterations of merge, split and move, some entities do not
end up in the optimal cluster. Moreover, Greedy suffers from very long execution
times due to its iterative nature and some experiments for larger datasets could
not even finish. Therefore, the quality (particularly precision) results as well as
the run-times are significantly lower than with our proposed approaches.

In Fig. 10 we compare the cluster quality of our proposed methods against
the non-incremental batch clustering approach of FAMER for datasets M and P
and different similarity thresholds for linking. In all experiments, our incremental
methods are able to compete with batch clustering. For dataset M (first row in
Fig. 10) all methods achieve high values for precision but lower recall values. The
recall of the max-both approaches is consistently lower than nDR (n=1) which
is like for dataset G as effective as the batch approach. For the largest dataset
P , the results are slightly different. Surprisingly, here all incremental methods
could achieve better precision than batch clustering. This can be explained by
the maximum possible cluster size of 10 while the average cluster size is only
about 1.5 for this dataset. In batch clustering 10 entities from 10 different sources
can be linked and considered as one cluster. Incremental methods do only touch
the direct neighboring entities of the linked new entities. Hence, it is less likely
for them to create clusters of non-matching entities.

Fig. 9: Source-wise cluster quality for dataset G

Fig. 10: Source-wise incremental ER for datasets M (1st row) and P (2nd row)

In Fig. 11 we report the F-Measure results for entity-wise incremental ER
with the different increment configurations from Table 2. The results are reported
for dataset M and we evaluate all methods with and without new-input-linking
(we use subscript IL to indicate new-input-linking). MBIL achieves higher F-
Measure than MB due to better recall. The positive effect of new-input-linking
is also visible in the results for 1DR so that 1DRIL mostly achieves higher F-
Measure than 1DR. The difference of methods with new-input-linking compared
with their counterparts without new-input-linking in conf3 and conf4 is lower
because a big portion of the dataset is already contained in the initial knowledge
base and the data increments only contain 10% of the dataset. Therefore, when
the volume of data in a new increment is much smaller than the volume of the
existing knowledge graph, we may save the overhead of new-input-linking and
pre-clustering. The approach 1DRIL with new-input-linking consistently achieves
the best results in all scenarios and newer achieves lower F-Measure than batch
ER for our configurations.

Fig. 11: F-Measure results for entity-wise incremental ER (dataset M)

5.2 Efficiency Evaluation

The run-times of all approaches are evaluated for the large dataset P and using
a Hadoop cluster with 16 worker nodes, each consisting of an E5-2430 6(12) 2.5

Ghz CPU, 48 GB RAM and two 4 TB SATA disks. The nodes are connected
via 1 Gigabit Ethernet. The used software versions are Flink 1.6.0 and Hadoop
2.6.0. We run Apache Flink with 6 threads and 40 GB memory per worker.

Table 4 shows the accumulated runtimes when executing the methods on
clusters with 4, 8 and 16 workers for the large dataset P with a linking threshold
of 0.7. As expected, all incremental approaches are faster than Batch. Moreover,
the MB approaches are faster than our 1DR method. The reason is, that MB
methods just process newly computed links while 1DR relies on intra-links of
already existing clusters and the newly computed links. All methods achieve their
best runtime with 16 workers. Batch shows to have a better speedup, but starts
at a much slower run-time. It is important to note that with less resources (less
number of workers), the Batch runtime is significantly higher than the others.
As expected, MB-fused performs slightly faster than MB.

In a further experiment we evaluated the runtimes of adding sources incre-
mentally for dataset P . Fig. 12 shows results of all 10 increments (adding 1 source
per increment) for 16 workers. In every increment the incremental approaches
are faster than the Batch method and MB-fused is faster than MB and both of
them are faster than 1DR. In later increments the differences become higher.
For example in the 10th increment the runtime of Batch is 5 times higher than
1DR. The reason is, that Batch clustering needs to process all vertices and links
in each increment, whereas MB and 1DR only need to process a small fraction
of links.

Table 4: Accumulated runtimes in
seconds for source-wise ER

P tmin0.7

#
W

Batch MB MB-
fused 1DR

4 117 852 5 648 2220 21 179

8 33 791 2 178 1 562 4 283

16 8 542 1 778 1 184 2 513
Fig. 12: Incremental runtimes

6 Conclusion and Outlook

Real-world data integration tasks such as the completion of knowledge graphs
require efficient and effective incremental methods for entity resolution rather
than batch-like approaches on static datasets. We proposed several new incre-
mental methods for multi-source ER including a new method that can repair
previous linking and cluster decisions. Our evaluation with datasets from differ-
ent domains shows that the incremental approaches are much faster and similarly
effective than batch ER. In particular, the introduced repair and re-clustering
approach nDR achieves the same quality than batch ER while being still much

faster. Its high effectiveness also shows that the quality does not depend on the
order in which new entities are added in contrast to the non-repairing approaches
such as max-both merge and previous repair schemes.

In future work, we plan to address further issues regarding knowledge graph
completion such as the joint consideration of entities (and relationships) of dif-
ferent types, e.g., publications, authors and affiliations.

7 Acknowledgements

This work is partially funded by the German Federal Ministry of Education and
Research under grant BMBF 01IS16026B in project ScaDS.AI Dresden/Leipzig.

References

1. Rahm E. The case for holistic data integration. In ADBIS. Springer, 2016.
2. Obraczka D., Saeedi A., and Rahm E. Knowledge graph completion with FAMER.

In Proc. DI2KG, 2019.
3. Welch M., Sane A., and Drome C. Fast and accurate incremental entity resolution

relative to an entity knowledge base. In CIKM, 2012.
4. Nentwig M. and Rahm E. Incremental clustering on linked data. In ICDMW.

IEEE, 2018.
5. Saeedi A., Peukert E., and Rahm E. Using link features for entity clustering in

knowledge graphs. In ESWC. Springer, 2018.
6. Gruenheid A. and et al. Incremental record linkage. PVLDB, 7(9), 2014.
7. Getoor L. and Machanavajjhala A. Entity resolution: theory, practice & open

challenges. PVLDB, 5(12), 2012.
8. Christen P. Data matching. Springer, 2012.
9. Volz J., Bizer C., Gaedke M., and Kobilarov G. Silk-a link discovery framework

for the web of data. Ldow, 538:53, 2009.
10. Nentwig M., Hartung M., Ngonga Ngomo A., and Rahm E. A survey of current

link discovery frameworks. Semantic Web, 8(3), 2017.
11. Papadakis G. and et al. The return of jedai: End-to-end entity resolution for

structured and semi-structured data. PVLDB, 11(12):1950–1953, 2018.
12. Saeedi A., Peukert E., and Rahm E. Comparative evaluation of distributed clus-

tering schemes for multi-source entity resolution. In ADBIS. Springer, 2017.
13. Bellare K. and et al. Woo: A scalable and multi-tenant platform for continuous

knowledge base synthesis. PVLDB, 6(11), 2013.
14. Benjelloun O. and et al. Swoosh: a generic approach to entity resolution. VLDB

Journal, 18(1), 2009.
15. Costa G., Manco G., and Ortale R. An incremental clustering scheme for data

de-duplication. Data Mining and Knowledge Discovery, 20(1), 2010.
16. do Nascimento D. and et al. Heuristic-based approaches for speeding up incremen-

tal record linkage. Journal of Systems and Software, 137, 2018.
17. Hildebrandt K., Panse F., Wilcke N., and Ritter N. Large-scale data pollution

with Apache Spark. IEEE Transactions on Big Data, 2017.
18. Christen P. and Vatsalan D. Flexible and extensible generation and corruption of

personal data. In ACM CIKM. ACM, 2013.

	Incremental Multi-source Entity Resolution for Knowledge Graph Completion

