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Abstract. Computing alignments between ontologies is a crucial task for the fa-
cilitation of information exchange between knowledge systems. An alignment is
a mapping consisting of a set of correspondences, where each correspondence
denotes two ontology concepts denoting the same information. In this domain,
it can occur that a partial alignment is generated by a domain expert, which can
then be exploited by specialized techniques. In order for these techniques to func-
tion as intended, it must be ensured that the given correspondences, also known
as anchors, are indeed correct. We propose an approach to this problem by refor-
mulating it as a feature selection task, where each feature represents an anchor.
The feature space is populated with a set of reliably generated correspondences,
which are compared with the anchors using a measure of alignment. We apply
feature selection techniques to quantify how well the anchors align with this set
of correspondences. The resulting scores are used as anchor reliability measures
and combined with the anchor similarities.
We evaluate the approach by generating a set of partial alignments for the used
dataset and weighting the concept similarities with anchor evaluation measure of
our approach. Three different similarity metrics are used, a syntactic, structural
and semantic metric, in order to demonstrate the effectiveness of our approach.

1 Introduction

The availability of semantically structured data via the semantic web [3] allows for a
varied set of approaches exploiting this data, ranging from data-warehousing and web
site creation and management [19, 27], to querying one or multiple knowledge sources
[16, 6]. The semantic structure of this data is determined by an ontology written by a
domain expert using expressive languages such as RDFS [4] or OWL [20]. A com-
mon issue in this field is that two ontologies describing the same information can be
heterogeneous with regard to its terminology, structure, scope or granularity [8]. If the
situation arises that one needs to transfer information between knowledge systems us-
ing heterogeneous ontologies, then one needs transform the data in such a way that it
is in compliance with the new ontology. For every concept in the first ontology a cor-
responding concept in the second must be identified which is used to store the same
information. The task of identifying the correspondences between ontologies is known
as ontology mapping.

Creating a mapping between ontologies is a laborious task which would require a
domain expert to inspect both ontologies and determine mappings, if it were done by
hand. Doing so becomes prohibitively difficult and time consuming when faced with



increasingly large ontologies, such that automatic approaches are necessary for large
scale problems [13, 32]. This also becomes a problem with the rise of the Semantic Web
[3], which envisions autonomous agents automatically querying multiple knowledge
sources for information.

Approaches which autonomously map ontologies have been an active field of re-
search in the past decade [2, 5, 7, 12, 17, 23]. These systems use a varied selection of
similarity metrics to determine the similarity of ontology concepts and use these values
to derive a complete mapping, also known as alignment, between the input ontologies.
Typically, multiple similarity measures are used to ensure the robustness of the system
in the case that certain meta-information is missing in the ontologies. These similarity
measures utilize different types of meta-information of the ontology concepts with the
intuition that corresponding concepts will have aspect of this information in common,
e.g. similar names, properties or neighbouring concepts.

A special case of a mapping problem is where a partial mapping is already avail-
able from a domain expert. Specialized approaches can then utilize this mapping to
derive further correspondences in order to produce a complete mapping [2, 24, 28, 30].
However, these techniques rely on the correctness of the correspondences in the partial
mapping, known as anchors, in order to deliver additional high quality correspondences.
While, evaluating these correspondences using similarity metrics can be used for this
task, they require a substantially high similarity threshold to ensure a high likelihood of
correctness. This results in a large quantity of correspondences being filtered out, which
also negatively affects the specialized techniques.

In this paper, we present an approach for the task of evaluating the correspondences
originating from a partial alignment. This approach does not compare the concepts
of these correspondences directly, allowing true correspondences whose concepts do
not share much meta-information to be classified more correctly. The approach uti-
lizes feature-selection techniques stemming from the fields of data mining and machine
learning. We create a feature space with each feature representing an anchor, which is
populated by generating a set of reliably correct and incorrect correspondences. The
values of this feature space are computed using a measure of dissonance, which should
yield predictable results only if the given anchor is correct. This predictability is then
exploited using different feature selection methods. We evaluate this approach on a real-
world dataset [14] by randomly generating partial alignments containing both correct
and incorrect anchors and evaluating how well our approach can complement similarity-
based techniques.

The remainder of this paper is structured as follows. The mapping problem is for-
mally introduced in section 2 and detail our approach in section 3. We present the em-
pirical evaluation in section 4. Finally, section 5 concludes the paper and suggests future
research.

2 Mapping with Partial Alignments

Formally, ontology mapping is defined as the process of identifying concepts pairs,
also referred to as correspondences between two ontologies which denote the similar
information [9]. We define a correspondence between two ontologies O1 and O2 as a



5-tuple < id, e1, e2, r, s >, where id denotes a unique identifier, e1 and e2 denote a
reference to a concept originating from O1 and O2 respectively, r denotes the semantic
relation that is asserted between e1 and e2 and s denotes a confidence value lying in
the interval [0, 1]. The classic process of ontology mapping thus receives as input two
ontologies O1 and O2, and produces a set of correspondences A = {c1, c2, . . . , cn},
referred to as an alignment.

A special case of this process occurs when a partial alignment PA is available as
additional input for the mapping process. This is an alignment that has been produced
by a pre-processing approach or assembled by hand by a domain expert. However,
this alignment considered to be incomplete, such that it becomes necessary to compute
addition correspondences in order to generate a complete mapping betweenO1 andO2.
To achieve this, the correspondences in PA can be utilized by special techniques in
order to determine the remaining correspondences [24, 28]. The resulting alignment A
thus be considered as the merger of all correspondences given in PA, since these can be
assumed to be correct, and all correspondences that have been computed.

2.1 Anchor Filtering

While the correspondences originating from a partial alignment, referred to as anchors,
can be assumed to be correct, this is not always the case. In case of a generated partial
alignment, there is no guarantee that the used approach has a precision of 100% for
every mapping task. If the partial alignment is made by a domain expert, it can always
occur that the expert makes a mistake. The presence of incorrect anchors can degrade
the quality of the computed correspondences, with the degradation of quality being cor-
related to the quantity of incorrect anchors. In order to ensure that a mapping approach
that utilizes partial alignments performs as designed, it becomes necessary to perform
a pre-processing step that ensures that the provided anchors are of sufficient quality.

The procedure of pre-processing partial alignments can be described by two key
steps: anchor evaluation and the application of a filtering policy. Given two ontologies
O1 and O2, and a partial alignment PA consisting of n anchors {c1, c2, . . . cn}, the
anchor evaluation step produces a set of n scores S = {s1, s2, . . . , sn}, with each score
sx indicating the quality of its anchor cx. The filtering step uses these scores to discard
any anchor which does not satisfy a given policy, creating a new partial alignment PA′,
such that PA′ ⊆ PA. The entire process is illustrated in Figure 1.

Typically, the evaluation and filtering steps are achieved through the application
of already existing approaches from the field of ontology mapping. The filtering step
can be performed by simply applying a threshold to the score set S, with the threshold
value set by a domain expert or learned using a training set. To evaluate the anchors,
one can utilize any available concept similarity metric [31]. However, such metrics are
unfortunately susceptible to concept heterogeneities, where a concept pair for which a
human would immediately conclude that it denotes the same information would result in
a low similarity values. Such heterogeneities can be mitigated through the combination
of multiple similarity metrics, though the aggregation of several similarity values has
its disadvantages. For example, given two concept pairs which respectively receive the
similarity values {0, 1} and {0.5, 0.5} as determined by two metrics, one would be
more inclined to accept the first pair than the second, since it can occur that the feature



Mapping 
Process

O1

O2

PA
Anchor 

Evaluation
Filter 
Policy

S PA’
A

Fig. 1: Illustration of the anchor filtering process when mapping with partial alignments.

on which a similarity metric relies might be absent while at the same time the maximum
score of a given metric is only rarely a false positive. Computing the aggregate of two
similarities would thus obscure this information. The approach presented in this paper
attempts to tackle this problem by proposing a new way in which a similarity metric
can be used to evaluate anchors.

3 Proposed Approach

A similarity metric can produce a small set of reliable correspondences, given a suffi-
ciently high similarity threshold. Furthermore, one can also reliably generate a set of
incorrect correspondences, given a sufficiently low threshold. One can utilize correct
and incorrect correspondences for the analysis of the anchors given in the input partial
alignment. To achieve this, one needs a method for evaluating anchors against this set of
reliable correspondences, which allows for the distinguishment of correct and incorrect
anchors.

When comparing an anchor with a given correct correspondence, one would desire
a measure which assigns this comparison a certain value, regardless of the proximity be-
tween the anchor and correspondence in the taxonomy. This aspect becomes especially
important when dealing with poorly designed ontologies which may lack a thoroughly
structure taxonomy. For example, comparing an anchor denoting the concept vehicle
with two correct correspondences denoting the concepts car and physical object respec-
tively, one would desire the same outcome despite physical object being less related to
vehicle than car. The same would also be desired when comparing a correct anchor
with incorrect correspondences, albeit with the output being different than the compar-
ison with correct correspondences. One can interpret such a measure as expressing how
well an anchor aligns with a correspondences, as opposed to measuring the semantic
similarity between the anchor concepts. A correct anchor would thus be expected to
be better aligned with regard to a reliably classified correspondence as opposed to an
incorrect anchor. To minimize the effect of outliers and utilize all available reliably clas-
sified correspondences, one should measure the degree of alignment of an anchor and
all given correspondences, and measure how well this measure correlates with the ex-
pected result. A way to measure how well an anchor aligns with a given correspondence
would be to compute the concept similarities between the concepts in the anchor and the



concepts of the given correspondence and express how these similarities differ. To mea-
sure this difference in similarity between the concepts of an anchor and the concepts of
a given correspondence, we propose a measure of dissonance. Given a correspondence
{c1, c2}, an anchor {a1, a2} and a base similarity measure sim(a, b) ∈ [0, 1], we define
the dissonance d as follows:

d({c1, c2}, {a1, a2}) = |sim(c1, a2)− sim(c2, a1)| (1)

Using the measure of dissonance, the core of the approach consists of comparing the
given anchor to a set of reliably generated correspondences, correct and incorrect, and
quantifying to what extend the anchor aligns with the given correspondences. Based
on this quantification, the set of anchors can then be filtered. For this research, we will
investigate three different metrics when used as base similarity sim.
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(b) Correct anchor A contrasted against
two incorrect matches m3 and m4.

Fig. 2: Example scenarios of an anchor A being compared to either correct matches,
illustrating the expected semantic difference between anchors and given correspon-
dences.

To illustrate the principle behind the approach, consider the examples illustrated
in Figures 2 and 3. Each example illustrates two ontologies, an anchor A and two
correspondences linking two other concept pairs. Figure 2a depicts a correct anchor
and two correct correspondences m1 = [b1, b2] and m2 = [d1, d2]. m1 is seman-
tically more related to A than to m2, thus it can be expected that when calculating
sim(a1, b2) and sim(a2, b1) results in higher values than when computing sim(a1, d2)
and sim(a2, d1). It is reasonable to presume that sim(a1, b2) and sim(a2, b1) will re-
sult in equally high, and sim(a1, d2) and sim(a2, d1) will result in equally low values,
meaning that computing the dissonance d(m1, A) and d(m2, A) will result in equally
low values, indicating a high degree of alignment.
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Fig. 3: Four example scenarios of an anchor A being compared to incorrect matches,
illustrating the irregularity in the expected semantic difference between anchors and
given correspondences.

Comparing a correct anchor to dissimilar correspondences is expected to not exhibit
this behaviour. Figure 2b illustrates a correct anchor A, consisting of the concepts a1
and a2, and two incorrect matches m3 and m4, which link the concepts b1 with e2 and
c1 with d2 respectively. In this situation, a similarity calculation between a2 and b1 is
likely to result in a higher value than the similarity between a1 and e2. Similarly, the
concept similarity between the concepts of A and m3 are also likely to differ, despite
m4 being semantically more apart from A than m3.

When given an incorrect anchor, the similarity difference between the concepts of
A and the concepts of either correct or incorrect matches are less likely to be pre-
dictable, as illustrated in Figure 3a and 3b. Figure 3a depicts an incorrect anchor A
being compared to two correct correspondences. Here, both correspondences contain
one concept, b1 and d2 respectively, which are semantically closer to A than their other
concept. Thus, computing a similarity measure between the concepts of a correct corre-
spondence and the concepts of an incorrect anchor will likely produce unequal results,
regardless of the semantic distance of the correspondence to the anchor. However, to
which degree these similarity will differ is not predictable, since this depends on how
semantically related the concepts of the incorrect anchor are. If one were to compare an
incorrect anchor to an incorrect correspondences, then the expected difference in con-
cept similarities is not predictable at all, as illustrated in Figure 3b. The comparison of
A with m3 is likely to produce a low difference in similarity when comparing a1 with
a2 and b1 with b2. On the other hand, the similarity difference between an anchor can
be very large, as illustrated with m4.



3.1 Filtering using Feature Selection

Having identified a measurement which leads to predictable behaviour for correct an-
chors and less predictable behaviour for incorrect anchors, one now needs to find a
method for quantifying this predictability. As previously stated, in order for the disso-
nance to behave in a predictable way one must use correspondences of which their truth
value is known with a high degree of certainty. The correct and incorrect comparison
correspondences need to be generated reliably, such that labelling them as true and false
respectively results in only few incorrect labels. Assuming that these generated corre-
spondences have indeed their corresponding labels, one can interpret the different disso-
nance measures as separate samples over a feature space. Given a set of n input anchors
A = {a1, a2, . . . , an} and the set of generated correspondences C = {c1, c2, . . . , cm}
with their respective labels Y = {y1, y2, . . . , ym}, containing both reliably correct and
incorrect correspondences, each correspondence cx would thus consist of n dissonance
measurements dx,i(i = 1, . . . n) and its label yx. If an anchor ax is correct, then eval-
uating the dissonances over C would lead to discernible differences for correct and
incorrect correspondences, making the variable representing ax in the feature space a
good predictor of the labels Y .

To determine how well each dimension can serve as a predictor, one can utilize
established feature selection techniques [15], which have become part of a set of impor-
tant pre-processing techniques facilitating the use of machine learning and data-mining
techniques on high-dimensional datasets. These techniques quantify how much a fea-
ture can contribute to the classification of a given labelled dataset. Their scores are then
used in order to dismiss features which do not hold information that is relevant for clas-
sifying the data, allowing for the reduction of the feature space and the quicker training
and execution of classifiers.

For this research, we will use the computed feature scores as evaluation metric for
their corresponding anchors. Based on these values, a filtering policy can then dismiss
anchors which are unlikely to be correct. Feature selection methods can utilize different
underlying principles, for instance using correlation measures or information theory
approaches. In order to not bias our approach to a single method, we will evaluate six
different feature evaluation measures.

Pearson Correlation Coefficient A fundamental method in the field of mathematical
analysis, the Pearson Correlation Coefficient [22] measures the linear correlation
between two variables. Having the sample set X and Y of two variables, the Pear-
son Correlation Coefficient is defined as:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(2)

Spearman Rank Correlation The Spearman Rank Correlation [22] is a method which
utilizes the method of computing the Pearson Correlation Coefficient. However, the
sample sets X and Y are transformed into the ranking sets x and y. The correlation
between x and y is then computed as:

p =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3)



Gain Ratio Information theoretical approaches have also been employed as measures
of feature quality. Information gain techniques compute how much impurity is left
in each split after a given attribute has been employed as the root node of a clas-
sification tree [26]. To measure this impurity, the measure of entropy is commonly
employed. The entropy of a variable X is defined as:

H(X) = −
∑
xi

p(xi)log2p(xi) (4)

The entropy after observing another variable is defined as:

H(X|Y ) = −
∑
yj

p(yj)
∑
xi

p(xi|yj)log2p(xi|yj) (5)

The information gain of X is defined as the additional amount of information left
after partitioning for all values of Y :

IG(X|Y ) = H(X)−H(X|Y ) (6)

The Gain Ratio is defined as the normalized information gain:

GainRatio(X|Y ) = IG(X|Y )/H(X) (7)

Symmetrical Uncertainty The Symmetrical Uncertainty [11] is a measure that is sim-
ilar to the Gain Ratio. It however employs a different normalization principle to
counteract the bias towards larger attribute sets. Using equations 4 and 6, the Sym-
metrical Uncertainty SU(X) can be computed as follows:

SU(X) = 2

[
IG(X|Y )

H(X) +H(Y )

]
(8)

Thornton’s Separability Index Instead of using a correlation measure, Thornton’s
Separability Index[33] expresses separability between the classes in a dataset. Specif-
ically, it is defined as the fraction of data-points whose nearest neighbour shares the
same classification label. It is computed as follows:

TSI =

∑n
i=1(f(xi) + f(x′i) + 1) mod 2

n
(9)

where f is a binary value function returning 0 or 1, depending on which class label
is associated with value xi. x′i is defined as the nearest neighbour of xi.

Fisher’s Linear Discriminant Fisher’s Linear Discriminant [10] evaluates the dis-
criminatory quality of a set of features by calculating the difference of means of
the features and normalizing this distance by a measure of the within-class scatter.
The dataset is transformed into a linear space using the projection w which op-
timizes the output of the value function. The discriminant of two features can be
computed as follows:

J(w) =
|µy1 − µy2 |
s2y1

+ s2y2

(10)

where µy and s2y denote the means and variance of class y.



Using these feature evaluation methods one can evaluate the given anchors of a
partial alignments with regards to their discriminatory qualities over the dissonance
feature space. Based on the evaluation values, a filtering policy can then decide which
anchors to discard before continuing the mapping process. The computation of these
measures has been facilitated using the Java-ML framework [1].

4 Evaluation

To evaluate the proposed technique of filtering anchors, we utilized the conference
dataset originating from the 2013 Ontology Alignment Evaluation Initiative [14]. This
dataset contains matching tasks, including reference alignments, of real-world ontolo-
gies describing the domain of scientific conferences. While this dataset does not contain
predefined partial alignments as additional input, it is possible to simply generate par-
tial alignments from the supplied reference alignments. For this domain, it is preferable
that the partial alignment also contains incorrect anchors such that the capability of fil-
tering these incorrect anchors can be adequately tested. For each mapping task, PA is
generated randomly such that it exhibits a precision and recall of 0.5 with respect to
the reference alignment. Since we assume that a similarity metric can produce limited
set reliable correspondences given a high threshold, as mentioned in Section 3, we limit
the set of correct correspondences in the partial alignment to correspondences which do
no exhibit a high pairwise similarity. The experiments thus provide an insight to what
extent we can reliably evaluate anchors for situations where a basic similarity-based
evaluation produces unreliable results.

Each task is repeated 100 times and the results aggregated in order to minimize ran-
dom fluctuations. For each task, the given approach evaluates the given anchors, such
that from the resulting scores a ordered ranking is created. While in a real-world appli-
cation a given filtering approach would discard a series anchors based on a given policy,
for instance by applying a threshold, for an experimental set-up it is more appropriate
to perform a precision vs. recall analysis. Such an analysis allows for a comparison of
performances without having to limit oneself to a set filtering policies.

To evaluate the dissonance between an anchor and a comparison correspondence,
as stated in Section 3, a base similarity metric sim is required. We investigate three
different categories of base similarity metrics:

Syntactic A comparison between concept names and labels using a specific algorithm.
The Jaro [18] similarity was applied for this purpose.

Structural A comparison between concepts which also includes information of related
concepts in its computation. As an example of a structural similarity, a profile sim-
ilarity [25] has been evaluated. A profile similarity gathers syntactical information,
e.g. concept names, labels and comments, from a given concept and its related con-
cepts into a collection, which is referred to as profile. The similarity of two profiles
determines the similarity of the corresponding concepts.

Semantic A similarity of this type aims to identify the meanings of concept senses
within a lexical resource. The senses of the lexical resource are related with each
other using semantic relations, e.g. ‘is-a-kind-of’ relations, forming a taxonomy



of senses. Concept similarities are determined by identifying the correct concept
senses and determining the distance of these senses within the lexical taxonomy.
This distance is then transformed into a similarity metric. For this evaluation a
semantic similarity using WordNet as a lexical resource has been evaluated [29].

The final score of each anchor is determined by computing the pairwise similarity
of the anchor concepts, also computed using sim, and multiplying this similarity with
the anchor consistency score as determined using the proposed approach, using one of
the tested feature evaluation methods. We will compare the rankings of our approach
with a baseline, which is obtained by computing the pairwise similarities of the anchor
concepts using the base similarity sim, while omitting the evaluation of the anchors
using our approach. The comparison with the baseline allows us to establish how much
our approach contributes to the evaluation of the given anchors.

The presented approach requires a method of generating the set of correspondences
C which serve as individuals of the feature space. In order to apply feature selection
techniques on a dataset, the class labels y of each individual must be known, and ide-
ally also correct. Since a single similarity metric can produce a reliable set or correct
correspondences, albeit limited in size, one can use this set as the part ofC which repre-
sent true correspondences. In order to generate reliably incorrect correspondences, one
can simply select two concepts at random while ensure that their pairwise similarity is
below a threshold. For the experiments, the quantity of incorrect correspondences is set
to be equal to the quantity of reliably correct correspondences. To generate C the Jaro
similarity with thresholds 0.75 and 0.3 was utilized to ensure that the correspondences
had a sufficiently high or low similarity.

4.1 Syntactic Similarity

In the first performed experiment the Jaro similarity was evaluated when applied as sim
in order to evaluate a syntactical similarity. The generated anchors are evaluated and
ranked according to their evaluation scores. We evaluate these rankings by computing
their aggregated interpolated precision vs. recall values, displayed in Figure 4.

From the results depicted in Figure 4 several observations can be made. The most
striking observation to be made is that all six tested feature evaluation methods pro-
duced a better ranking than the un-weighted baseline. At low recall levels this resulted
in an increased precision of up to .057. At the higher recall levels we observe an increase
in precision of up to .035.

With regard to the individual feature evaluation metrics a few trends are observable.
First of all, we can see that the information theoretical approaches, meaning the Gain-
Ratio and the Symmetrical Uncertainty improve the precision fairly consistently across
all recall levels. On average, these measure improve the precision by approximately
0.3. The Spearman rank correlation and Fisher’s discriminant only display a marginal
improvement for lower recall levels, however show a more significant improvement
for higher recall levels. The most significant improvements for the lower recall levels
are observed when applying Thornton’s separability index and Pearson’s correlation
coefficient.
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Fig. 4: Precision vs. recall of the rankings created using a syntactic similarity weighted
by the evaluated feature selection methods. The un-weighted variant of the syntactic
similarity is used as baseline.

4.2 Structural Similarity

For the second evaluation of our approach, we replaced the Jaro similarity with a profile
similarity for sim. The profile similarity [25] compiles meta-information, primarily the
name, comments and annotations, of a given concept and concepts that are linked to
the given concept using relations such as ‘is-a’ and ‘domain-of’. A profile similarity
can be classified as a structural similarity due the utilization of information originat-
ing from related concepts. The gathered meta-information is represented as a weighted
document-vector, also referred to as a profile. The similarity between two concepts is
determined by computing the cosine similarity of their corresponding document vec-
tors. The results of evaluating our approach using a profile similarity as sim can be
seen in Figure 5.

From Figure 5 we can observe a more mixed result compared to the previous eval-
uation. The information-theoretical methods, namely Gain Ratio and Symmetrical Un-
certainty outperform the baseline at lower recall levels, maintaining a near-perfect pre-
cision of 0.99 for one additional recall level and outperforming the baseline by a margin
of roughly .022 at a recall of 0.3. However, for higher recall levels this margin drops
until both measures perform roughly on par with the baseline at the highest recall levels.
Thornton’s Separability Index outperforms the baseline only at lower recall levels, while
Pearson’s correlation coefficient performs lower than the baseline. The most promising
measures in this experiment were Fisher’s linear discriminant and the Spearman rank
correlation, which performed higher than the baseline for all recall levels. Contrary to
the baseline, both measures produce a near perfect ranking of 0.99 at a recall of 0.2.
The Spearman rank correlation produces rankings which have an increased precision
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Fig. 5: Precision vs. recall of the rankings created using a structural similarity weighted
by the evaluated feature selection methods. The un-weighted variant of the structural
similarity is used as baseline.

of roughly .025 for most recall levels, while for the highest recall levels this difference
is widened to roughly .045.

4.3 Semantic Similarity

In the third performed evaluation, we evaluated our approach when utilizing a semantic
similarity as sim. A semantic similarity derives a similarity between two concepts by
identifying their intended senses within a corpus and computing the semantic or tax-
onomic distance between the senses. The resulting distance value is then transformed
into a similarity measure. For a semantic similarity to functions it is necessary that
the given corpus also models the domains of the two input ontologies. To ensure this,
WordNet [21] has been utilized as corpus, which aims at modelling the entire English
language. The result of utilizing a semantic similarity as sim can be seen in Figure 6.

From Figure 6 several key observations can be made. First of all, the baseline dis-
plays a distinctively constant precision of .82 up to a recall level of .5. For the lower
recall levels, our approach outperforms the baseline by a significant margin using any of
the tested feature evaluation methods. Most measures produced an interpolated preci-
sion and recall of approximately .9, indicating an improvement of .08. When increasing
the recall levels, the performance of these measures slowly approaches the performance
of the baseline, while still staying above it. The exception is Pearson’s correlation co-
efficient, which performs lower than the baseline at higher recall levels.

The clearly best performing measure is Thornton’s separability index, which pro-
duced a precision higher than both the baseline and the other measures for all recall
levels. At recall levels of .3 and higher Thornton’s separability index improved upon
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Fig. 6: Precision vs. recall of the rankings created using a semantic similarity weighted
by the evaluated feature selection methods. The un-weighted variant of the semantic
similarity is used as baseline.

the baseline by up to .047. At recall levels of .0 and .1 Thornton’s separability index
produced rankings with a precision of approximately .94, an improvement of .12 com-
pared to the baseline. At a recall level of .2 it still produced rankings with a commend-
able precision of .91, which is .09 higher than the baseline.

Improvements of this magnitude are particularly important for the utilization of
partial alignments, since they allow a significantly larger amount of anchors to be uti-
lized while maintaining a degree of certainty that the anchors are correct. An approach
which utilizes partial alignments relies on the quantity and quality of the anchors, but
is likely biased towards the quality of the anchors. Thus in order to perform well, such
an approach is likely to enforce stringent criteria on the given anchors instead of risk-
ing wrong anchors to be included in its computation. In the case of using a semantic
similarity to achieve this, our approach would lead to a significantly higher amount of
correct anchors being retained.

5 Conclusion and Future Research

In this paper we presented an approach of filtering correspondences of partial align-
ments, known as anchors, using feature selection techniques. By defining a measure
of dissonance, with which one can compare anchors to correct or incorrect correspon-
dences, and observing that this measure only renders predictable results if the anchors
represent correct correspondences, we can formulate the task of evaluating anchors as a
feature selection problem. Since this approach does not utilize the direct comparison of
the anchor concepts, its resulting scores should display better results for anchors whose
concept similarities do not allow for a reliable positive classification.



A variety of feature evaluation methods are empirically evaluated. A syntactical,
structural and semantic similarity are evaluated as base similarity of our approach and
compared to a baseline rankings obtained from computing the pairwise similarity of
the anchors. We observe improvements for all tested base similarity measures, with the
most significant improvements observed when utilizing the syntactic and semantic sim-
ilarity. For the syntactic similarity all tested feature evaluation methods outperformed
the baseline with regard to precision for all recall levels by approximately .057. For the
semantic similarity we observed a particularly significant increase in precision up to .12
for lower recall levels, and a considerate increase for the remaining recall levels up to
.047.

Overall, we conclude that our proposed approach displayed a promising start as a
novel approach for evaluating anchors when mapping with partial alignments.
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