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Abstract.

Ontology mapping is a crucial step for the facilitation of information
exchange between knowledge sources. In the industry this process is of-

ten performed semi-automatically, with a domain expert supervising the

process. Such an expert can supply a partial alignment, known as an-
chors, which can be exploited with more elaborate mapping techniques

in order to identify the remaining correspondences. To do this we pro-

pose a novel approach, referred to as anchor-profiles. For each concept
its degree of similarity to each anchor is gathered into a profile for com-

parison. We evaluated our approach on the Ontology Alignment Evalua-

tion Initiative (OAEI) benchmark dataset using partial alignments that
are randomly generated from the reference alignments. The evaluation

reveals an overall high performance when compared with mapping sys-

tems that participated in the OAEI2012 campaign, where larger partial
alignments lead to a higher f-measure.
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1. Introduction

The ability to access and process information is an ever increasing issue due to the
rise of the internet and with it the ability to access knowledge sources across the
world. While in the past information domains would be modelled using database
schemas, recent developments resulted in the proliferation of semantic web tech-
nologies for this purpose. Many companies depend on these data solutions for
their business operations and services. However, since every user of such tech-
nologies has different requirements and views of a given domain, it is likely that
he or she would model this domain differently when compared to another user.
This leads to the interoperability problem, where the presence of different domain
specifications, known as ontologies, prohibits the exchange of information between
the two different knowledge sources. As an example, this leads to problems when
two businesses want to cooperate and access each other’s knowledge bases, or
when one company acquires another and wishes to integrate the new data into
its existing knowledge system.

In order to circumvent this issue, the heterogeneous ontologies that are em-
ployed by the two different knowledge systems need to be mapped, such that for



each data concept a corresponding concept in the other ontology is identified.

Traditionally, this task has been done manually by domain experts. However, this

solution is rarely appropriate due to the required manual labour being too much

when mapping large ontologies. This lead to the development and evaluation of

different ontology mapping approaches and systems [6, 17, 18], which aim to aid

the domain expert with the mapping task or even perform the mapping of ontolo-

gies completely autonomously. The ability of automatically mapping ontologies

becomes increasingly important with the ongoing development of the semantic

web [3], which would allow autonomous agents to roam the semantic web and

access heterogeneous data sources to provide different services to the user.

Following established work [5, 8], we define ontology mapping as a process

that receives two ontologies O1 and O2 as input and produces an alignment A.

Furthermore, there are a series of optional inputs to this process, like a previously

computed alignment A′, a set of parameters p and a list of external resources r.

We define a correspondence between entities of two ontologies O1 and O2 as a

5-tuple < id, e1, e2, r, c > such that:

• id is a unique identifier allowing the referral to specific correspondences.

• e1 is a reference to an entity originating from the first ontology. Commonly

a Uniform Resource Identifier (URI) is used as referral to a specific entity.

• e2 is a reference to an entity originating from the second ontology.

• r denotes the semantic relation between e1 and e2. Several types of re-

lations can be modelled, which are subsumption (v), generalization (w),

undirected disjointness (⊥), overlapping (u) and equivalance (≡).

• c is a confidence value in the interval [0, 1], which is used to express the

certainty that the particular relation holds.

Given the definition of a correspondence, an alignment A between two ontolo-

gies O1 and O2 is defined as a set of correspondences where each correspondence

contains a reference to one entity of O1 and one entity of O2. In order to evaluate

A, it is compared to a reference alignment R, which contains correspondences as

specified by a domain expert and thus are assumed to be correct. In this research,

we will explore a mapping technique which exploits the optional input alignment

A′. Here, we make the distinction between two cases, being (1) a complete align-

ment and (2) a partial alignment (PA). In a complete alignment, all concepts

which a domain expert would map are present in at least one correspondence,

where the main focus of the applied techniques lie on refining the already existing

alignment. However, in a partial alignment this is not the case, resulting in the

problem that one has to discover the remaining correspondences. The proposed

technique is designed to deal with the second case, where a partial alignment

needs to be completed. Such a partial alignment can originate from a domain

expert who, due to time constraints, cannot produce a complete mapping. For

this research, we will assume that all correspondences in PA, also referred to as

anchors, are correct, such that PA ⊂ R and included in A, such that PA ⊂ A.



2. Related Work

Several works exist that have tackled approaches which reuse previously gener-
ated alignments. This type of approach has initially been suggested by Rahm
et al. [13]. Here, the focus lies on finding auxiliary ontologies which are already
mapped to the target ontology. This has the intention that, by selecting the aux-
iliary ontology according to a specific criteria, the remaining mapping problem
between the source and auxiliary ontology might be easier to solve than the orig-
inal problem. Subsequent works have expanded this idea to deriving mappings
when both input ontologies have an existing alignment to an auxiliary ontology.

COMA++ employs several strategies with regard to exploiting pre-existing
alignments [2]. Most prominently, the system can explore alignment paths of
variable lengths between multiple ontologies, which are obtained from a corpus,
in order to derive its mappings. It is also possible to explore ontologies from the
semantic web for this purpose [14]. The resulting mapping derivations of multiple
alignment paths can be combined to form a more reliable mapping.

While the previously mentioned approached utilized complete mappings in-
volving auxiliary ontologies, there has been some research into approaches that ex-
ploit partial alignments that exist between the source and target ontologies. These
alignments can either be user generated, by for instance using the PROMPT tool
[12], or automatically generated from a different system.

The most prominent approach is the Anchor-PROMPT [11] algorithm. Here,
possible paths between anchors are iteratively explored in parallel in both ontolo-
gies while the encountered concept combinations are registered. The intuition is
that concept pairs which have been encountered regularly during the exploration
phase are more likely to correspond with each other.

The Anchor-Flood algorithm also features a type of iterative exploration by
exploiting anchors [16]. This approach selects a main anchor and iteratively ex-
pands the explored neighbourhood of this anchor. At each iteration, a matching
step is invoked which compares the concepts in this neighbourhood and updates
the alignment if new correspondences are found.

3. Anchor Profiles

A profile similarity gathers context information of ontology concepts and com-
pares these context collections by parsing them into a vector space and compar-
ing the resulting vectors. This context information can consist of data from the
concept description and the descriptions of related concepts [10]. The intuition
behind this approach is that concepts can be considered similar if they have sim-
ilar context information. More generally, a profile can be considered as a vector
generated from data which describes a concept, hence two concepts are similar if
their profiles can be considered similar.

When mapping two ontologies for which a partial alignment is provided by
a domain expert, new opportunities arise when selecting similarity measures for
a mapping system. Instead of using description information as the basis for a
profile, we suggest utilizing the correspondences of the given partial alignment,



also referred to as anchors, as basis for a new kind of profile similarity. Here,
since the anchors are assumed to be correct, the main intuition is that two con-
cepts can be considered similar if they exhibit a comparable degree of similar-
ity towards a given anchor. More formally, given two ontologies O1 and O2, and
given an anchor Ax[C1, C2] containing a correspondence between the concepts C1

and C2 originating from O1 and O2 respectively, and given a concept similarity
sim′(E,F ) ∈ [0, 1] which expresses the similarity between two concepts, we define
an anchor similarity simA(C,Ax) between an arbitrary concept C and Ax as:

simA(C,Ax) =

{
sim′(C,C2) if C ∈ O1

sim′(C,C1) if C ∈ O2

(1)

Note that C is compared to the concept in the anchor which originates from
the other ontology. If one were to compare C to the anchor concept from the same
ontology, sim′ would be reduced to a structural similarity, similar to a taxonomy
distance, making the distinction between classes that are related equivalently close
to a given anchor prohibitively difficult. From equation 1 follows that two concepts
C and D can be considered similar if simA(C,Ax) and simA(D,Ax) are similar.
Given that a partial alignment most likely contains multiple correspondences,
this intuition needs to be expanded for a series of anchors. This brings us back
to the generalized idea of a profile, such that we can use the anchor similarities
simA between a concept C and all anchors as the basis of a profile, referred to as
anchor-profile. Figure 1 visualizes the concept of an anchor-profile similarity.
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Figure 1. Visualization of an anchor profile similarity.

The example in Figure 1 shows two ontologies, O1 and O2, and three anchors
A1, A2 and A3. Two concepts C1 and C2, originating from O1 and O2 respectively,
are compared using their respective anchor-profiles Profile(C1) and Profile(C2).
The profile vectors are compared using the similarity simP . While there exist
various similarity measures for vectors, for this research the well-known cosine-
similarity [19] has been applied as simP .

Since the main intuition of this approach is that corresponding concepts
should exhibit a comparable degree of similarity towards the given anchors, it is
necessary to choose sim′ such that this metric is robust under a wide variety of
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Figure 2. Overview of the tested mapping system.

circumstances. Since every single metric has potential weaknesses [17], it is prefer-
able to aggregate different metrics in order to overcome these. To realise this,
sim′ utilizes the aggregate of all similarities from the MaasMatch system [15].
Figure 2 displays the configuration of the evaluated mapping system. Here, two
distinct similarity matrices are computed, being the similarities of the anchor-
profiles and an aggregate of other metrics. This second matrix is necessary for
the eventuality where the system has to differentiate correspondences that all
contain anchor-profiles which closely resemble null vectors, which occurs when a
concept displays no similarity to any of the given anchors. This can occur when
a given ontology has a considerable concept diversity and the given anchors do
not adequately cover the concept taxonomy. The aggregate of these two matrices
is then used to extract the output alignment A.

4. Experiments

Evaluation Measures The most established way of evaluating an ontology map-
ping approach is to produce an alignment between two ontologies O1 and O2 for
which a correct alignment already exists. This allows for the comparison between
the two alignments with the intuition that the correctness of the computed align-
ment is in correlation with its similarity to the reference. Provided such a golden
standard, one can compute measures such as precision, recall and f-measure in
order to express to what extent a computed alignment resembles the reference
[7]. Given a generated alignment A and a reference alignment R, the precision
P (A,R) and recall R(A,R) of alignment A can be computed as follows:

P (A,R) =
R ∩A

A
(2) R(A,R) =

R ∩A

R
(3)

The F-Measure can be used to express the overall quality of an alignment. It is
calculated by computing the harmonic mean of the precision and recall measures.
Given the precision P (A,R) and recall R(A,R) of an alignment A, the f-measure
F (A,R) of alignment A can be computed as follows:

F (A,R) =
2 ∗ P (A,R) ∗R(A,R)

P (A,R) + R(A,R)
(4)



Evaluating with Partial Alignments While the measures of precision, recall and

f-measure are widely used as evaluation criteria for ontology mapping approaches

[6], they are inadequate when evaluating a mapping procedure which utilized a

partial alignment as input. This issue stems from the assumption that correspon-

dences in PA are assumed to be correct, and hence included in the output align-

ment A. Computing the standard measures using A would then result in biased

values, concealing the true quality of the new computed correspondences. It fol-

lows that in order to measure the quality of the computed correspondences, it

becomes necessary to exclude the correspondences of PA from this computation.

To achieve this, the standard measures of precision, recall and f-measure can

be modified in order to remove this bias. Given an alignment A, a reference R

and a partial alignment PA that was provided as input for a given mapping task,

the adapted measures of precision P ∗(A,R, PA) and recall R∗(A,R, PA) can be

computed as follows:

P ∗(A,R, PA) =
| A ∩R ∩ PA |
| A ∩ PA |

(5) R∗(A,R, PA) =
| A ∩R ∩ PA |
| R ∩ PA |

(6)

Given these adapted measures of precision and recall, the adapted f-measure

F ∗(A,R, PA) can be computed as follows:

F ∗(A,R, PA) =
2 ∗ P ∗(A,R, PA) ∗R∗(A,R, PA)

P ∗(A,R, PA) + R∗(A,R, PA)
(7)

Evaluating Datasets In order to evaluate the performance of a mapping approach

which exploits partial alignments, it is necessary to have access to a dataset which

not only contains appropriate mapping tasks and their reference alignments, but

also partial alignments that can be used as input. However, within the boundaries

of the OAEI competition, which allows a comparison with other frameworks, there

does not exist a dataset which also supplies partial alignments as additional input.

When a dataset does not contain partial alignments, it is possible to generate these

by drawing correspondences from the reference alignment at random. However,

in order to account for the random variation introduced by the generated partial

alignments, it becomes necessary to repeatedly evaluate the dataset using many

generated partial alignments for each mapping task. The values of precision, recall

and f-measure can then be aggregated using the arithmetic mean.

Next to establishing the mean performance of a system, it is also interest-

ing to see how stable its performance is. Traditionally, this is expressed via the

standard deviation. However, given that in this domain the measurements origin

from different tasks of differing complexity, this introduces a problem. Given the

presence of tasks of varying complexity that can occur in a dataset, it is to be

expected that the mean performances of the repeated evaluations differ for each

task. Thus, in order to combine the standard deviations of the different tasks, a

statistical measure is needed that takes this into account. To do this we propose

using the pooled standard deviation of the different measures [4, 9].



Given k samples, the different sample sizes n1, n2, . . . , nk and sample vari-
ances s21, s

2
2, . . . , s

2
k, the pooled standard deviation of the collection of samples can

be calculated as follows:

s′ =

√
(n1 − 1)× s21 + (n2 − 1)× s22 + · · ·+ (nk − 1)× s2k

n1 + n2 + · · ·+ nk − k
(8)

In this domain, the repeated evaluation of a single track using randomly
generated partial alignments can be viewed as a sample, such that the pooled
standard deviation expresses how much the results deviate across all tracks. For
the remainder of this paper, we will refer to the pooled standard deviation of P ∗,
R∗ and F ∗ as s′P∗ , s′R∗ and s′F∗ respectively.

4.1. Evaluation

To evaluate an anchor-profile approach, an ontology mapping system incorporat-
ing the proposed similarity has been evaluated on the benchmark-biblio dataset
originating from the 2012 Ontology Alignment Evaluation Initiative [1]. This syn-
thetic dataset consists of tasks where each task tests a certain limiting aspect of
the mapping process, for instance by distorting or removing certain features of an
ontology like concept names, comments or properties. Since this dataset does not
contain partial alignments that can be used as input, they were randomly gener-
ated from the reference alignments. In order to evaluate what impact the size of
the partial alignment can have on the mapping process, we evaluated our approach
over a spectrum of partial alignment recall values [0.1, 0.2, . . . , 0.9]. Thus, as an
example, a partial alignment recall of 0.2 indicates that PA was randomly gener-
ated from the reference R such that PA has a recall of 0.2. In order to mitigate
the variance introduced through the random generation of PA, each recall level
has been evaluated 100 times where each evaluation contained a new set of ran-
domly generated partial alignments. For each evaluation, the adapted measures
of precision, recall and f-measure, P ∗, R∗ and F ∗ respectively, were computed
and aggregated. Table 1 displays the aggregated results of the evaluation.

PA Recall 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P ∗ 0.760 0.769 0.779 0.786 0.801 0.817 0.835 0.855 0.866

R∗ 0.632 0.641 0.649 0.656 0.663 0.674 0.685 0.702 0.745

F ∗ 0.668 0.678 0.686 0.693 0.701 0.713 0.726 0.743 0.780

s′P∗ 0.094 0.099 0.107 0.112 0.125 0.139 0.155 0.180 0.219

s′R∗ 0.049 0.068 0.083 0.092 0.102 0.117 0.133 0.158 0.215

s′F∗ 0.038 0.053 0.066 0.074 0.083 0.098 0.115 0.142 0.199

Table 1. Results of the evaluations on the benchmark-biblio dataset using different recall re-
quirements for the randomly generated partial alignments. For each recall requirement, 100

evaluations were performed and aggregated.

From Table 1, several interesting results and trends can be seen. First, we can
see that overall for all PA recall levels the system resulted in an adapted precision



in the interval [0.76, 0.87], adapted recall in the interval [0.63, 0.75] and adapted
f-measure in the interval [0.66, 0.78]. Thus, for every PA recall level the approach
resulted in high precision and moderately high recall measure. Furthermore, we
can observe that as the recall of PA increases, the adapted precision, recall and
f-measure of A increase as well. This increase is fairly consistent over all PA recall
levels, indicating that a larger amount of anchors improves the representative
strength of the computed anchor profiles.

Inspecting s′P∗ , s′R∗ and s′F∗ reveals each measure shows a similar trend. For
each measure, an increase of the recall level of PA also yields an increase of the
pooled standard deviation, with the resulting alignments at PA recall level of 0.1
being fairly stable, while a moderate variance can be observed at a PA recall level
of 0.9. This trend is to be expected since any variation in A will have a larger
impact on P ∗, R∗ and F ∗ if PA has a significant size.

Having established the overall performance of the proposed approach for dif-
ferent size levels of PA, it would be interesting to inspect the performance over the
different tasks of the dataset. Table 2 shows the mean f-measure over several task
groups when using different PA size levels, of which three were selected for the
sake of brevity. The task groups reflect different kinds of alterations in the target
ontology, such as altered names and comments (201-202, 248-253, 254-266) and al-
tered or suppressed structures or properties (221-228, 232-247, 248-253, 254-266),
where groups 232-247 and 254-266 test combinations of structural changes. The
results indicate that the approach is robust against structural deformities, while
being susceptible to deformity in the concept names and descriptions. This can
be attributed to the underlying similarities used in sim′, meaning that a wider
spectrum of aggregate similarities could remedy this weakness.

PA recall 101 201-202 221-228 232-247 248-253 254-266

0.1 1.0 0.71 1.0 1.0 0.59 0.57

0.5 1.0 0.75 1.0 1.0 0.63 0.61

0.9 1.0 0.86 1.0 1.0 0.74 0.69

Table 2. Average f-measure of the anchor-profile approach using three different PA size thresh-
olds across the different task groups of the benchmark-biblio dataset.

Next to establishing the overall performance on the benchmark dataset, it
is also important to provide some context to that performance. To do this, we
will compare the performance of the Anchor-Profile approach with the top 8
frameworks out of 18 frameworks that participated in the OAEI 2012 competition
[1] in Table 3. Unfortunately, none of the OAEI evaluations contained a task
which also provided partial alignments, however a comparison with state-of-the-
art systems which tackled the same task without a partial alignment can still be a
useful performance indication. For this comparison, both the smallest and largest
evaluated PA size levels were used.

The results of Table 3 indicate that the quality of correspondences produced
by our approach is in line with the top ontology mapping frameworks in the field.
In fact, when including PA in the evaluation metrics, the anchor-profile approach
outperforms these frameworks given a large enough recall level1 of PA. Using

1The results of the experiments indicate that a recall level of 0.5 would suffice.



System Precision Recall F-Measure

MapSSS 0.99 0.77 0.87

YAM++ 0.98 0.72 0.83

Anchor-Profile (0.9) 0.866*(0.998) 0.745*(0.967) 0.78*(0.982)

AROMA 0.98 0.64 0.77

WeSeE 0.99 0.53 0.69

AUTOMSv2 0.97 0.54 0.69

Hertuda 0.9 0.54 0.68

Anchor-Profile (0.1) 0.760*(0.88) 0.632*(0.623) 0.668*(0.691)

HotMatch 0.96 0.5 0.66

Optima 0.89 0.49 0.63

Table 3. Comparison of the Anchor-Profile approach, using two different PA thresholds, with

the 8 best performing frameworks from the OAEI 2012 competition. An asterisk indicates the

value has been adapted with respect to PA, while the values inside the brackets indicate the
respective measure over the entire alignment.

partial alignments with a recall of 0.1 resulted in an f-measure similar to the
HotMatch framework, ranking at 8th place in this comparison. A PA recall level
of 0.9 resulted in a sufficiently high f-measure to rank 3rd among the top ranking
systems. With regards to precision and recall, our system differentiates itself from
other frameworks by having a comparatively lower precision and higher recall.
This indicates that our approach is capable of identifying correspondences which
other system cannot, while further measures must be implemented to differentiate
between correspondences that have similar anchor profiles.

5. Conclusion

In this paper, we proposed the creation of concept profile based on their similar-
ities to given anchor correspondences. We evaluated this approach on the OAEI
benchmark-biblio dataset using various sizes of input partial alignments, which
are used as anchors. The performed experiments revealed an high performance,
where the aggregated f-measure is positively correlated with the size of the input
partial alignment. The investigation into the different tracks revealed that, while
the approach is robust against distortions of the ontology properties, hierarchy
and instances, it is susceptible to disruptions of the concept names and descrip-
tions. However, this tendency can be explained by the used metrics which deter-
mine the similarity between the concepts and individual anchor. A comparison
with other mapping systems revealed that the quality of the computed corre-
spondences is on-par with state-of-the-art systems when using only small input
partial alignments. When using larger partial alignments, the proposed approach
outperforms most of the compared systems.

This research assumed that all the correspondences in the input partial align-
ment are correct, due to the assumption that these would be generated by a do-
main expert. However, this might not always be the case since even experts can
make mistakes. Further research should investigate to what extent this approach
can work if there are some anchors which represent incorrect correspondences.
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