
ControVol: A Framework for Controlled Schema
Evolution in NoSQL Application Development

Stefanie Scherzinger∗, Thomas Cerqueus† and Eduardo Cunha de Almeida‡
∗ OTH Regensburg, stefanie.scherzinger@oth-regensburg.de

† Lero@UCD, School of Computer Science and Informatics, University College Dublin, thomas.cerqueus@ucd.ie
‡ UFPR, Brazil & University of Luxembourg, eduardo@inf.ufpr.br

Abstract—Building scalable web applications on top of NoSQL
data stores is becoming common practice. Many of these data
stores can easily be accessed programmatically, and do not en-
force a schema. Software engineers can design the data model on
the go, a flexibility that is crucial in agile software development.
The typical tasks of database schema management are now
handled within the application code, usually involving object
mapper libraries. However, today’s Integrated Development En-
vironments (IDEs) lack the proper tool support when it comes to
managing the combined evolution of the application code and
of the schema. Yet simple refactorings such as renaming an
attribute at the source code level can cause irretrievable data loss
or runtime errors once the application is serving in production.
In this demo, we present ControVol, a framework for controlled
schema evolution in application development against NoSQL
data stores. ControVol is integrated into the IDE and statically
type checks object mapper class declarations against the schema
evolution history, as recorded by the code repository. ControVol
is capable of warning of common yet risky cases of mismatched
data and schema. ControVol is further able to suggest quick fixes
by which developers can have these issues automatically resolved.

I. INTRODUCTION

As software evolves in building web applications, so does
the schema of persisted data. Keeping the schema in sync
with the application code is a known challenge, and remains
an active research area. Systematic database schema evolution
control, to use a term coined in [1], arises in relational data
stores, object-oriented data stores, XML and NoSQL data
stores alike [2]–[4].

However, with agile software development, the frequency
of evolutionary changes is reaching a new and unprece-
dented rate: A recent study on the web application managing
Wikipedia shows that the database schema in this software
project experiences at least one publicly released schema
change per month [5]. Large web companies such as Google
make weekly, if not daily releases (quoting Marissa Meyer
in [6]). As a consequence, parts of the developer community
turn to schemaless NoSQL data stores which provide more
flexibility compared to relational databases.

NoSQL document stores such as Google Cloud Datas-
tore [7] or MongoDB [8] are popular backends for web devel-
opment, since they allow for storing structured data (rather than
just opaque values) and offer a basic support for queries. While
these data stores do not enforce a global schema, professional
software engineering actually relies on data being structured
consistently, both in the objects of the application code and
in the persisted entities. Developers therefore turn to object

Fig. 1: Deploying version v1 of the application from develop-
ment into production. Version v0 stops serving, yet its persisted
legacy entities remain in the NoSQL data store.

mappers for the translation of persisted entities into objects in
the application space, and back. Thus, the schema of persisted
data is now maintained within the application code.

Let us sketch the typical setup of a web development
project, e.g., using a platform-as-a-service (PaaS) stack for
hosting web applications. Figure 1 shows the development
environment on the left. The software engineers have just
finalized version v1 of the application using an Integrated De-
velopment Environment (IDE). The code repository manages
the source code versions, and currently contains the upcoming
release v1, as well as the earlier release v0. On the right,
version v0 of the application has been serving in production
until now. The application is backed by a NoSQL data store,
offered as database-as-a-service (DaaS).

Once version v1 is ready, the engineers deploy it to
production and the serving version v0 is replaced. After
deployment, version v1 is now serving users and persisting its
own entities into the data store, adding to the entities persisted
by version v0, which have now become legacy entities.

The new application code, in particular its object mapper
class declarations, must be able to also handle the legacy
entities, a requirement that brings about a range of challenges.
For instance, when the current application code loads a legacy
entity that it cannot properly handle, this can trigger runtime
errors or can lead to severe cases of data loss. Currently, there
is no proper tool support within IDEs to detect such problems
early on. Instead, developers need to rely on their discipline,
foresight, and on exhaustive testing.

What is missing in the development environment is a



(a) Before renaming. (b) After renaming.

Fig. 2: Refactoring at the risk of data loss: Attribute level is
renamed to rank. The IDE consistently changes all references
in the source code, but this does not affect already persisted
entities. When legacy players are loaded, their level attribute
cannot be matched and is consequently not loaded. If the player
is then persisted, its level data is lost.

framework that statically type checks object mapper class
declarations and gives immediate feedback, already during the
development process.

Type checking in database programming has a long his-
tory [9]. In this tradition, we present ControVol, an Eclipse
plugin capable of detecting problems related to schema evolu-
tion. To the best of our knowledge, ControVol is the first tool
of its kind specifically designed for NoSQL data stores.

Contributions: The main contributions of our demo are:

• We discuss the acute problem of managing schema evolu-
tion in agile web development against schemaless NoSQL
data stores.

• We present the ControVol Eclipse plugin, which success-
fully integrates with established Java object mappers.

• ControVol statically type checks object mapper class
declarations against earlier versions in the code repository.
It issues valuable warnings during changes to the code,
thus providing instant feedback to developers.

• ControVol also suggests and performs automatic fixes to
resolve possible schema migration problems.

Organization: The rest of this paper is organized as follows.
Section II describes common schema migration pitfalls in
refactoring object mapper class declarations. Section III in-
troduces the ControVol framework with its core features and
underlying type checking scheme. Section IV sketches the
demonstration plan. We conclude with Section V.

II. SCHEMA EVOLUTION PITFALLS

We now discuss common pitfalls in evolving the software
regardless of the data already persisted in production. These
pitfalls are rooted in typical Schema Modification Operations,
as they commonly arise in web development projects [5]. We
start with discussing a concrete example in greater detail, and
then list further common pitfalls.

Renaming Attributes: We assume an online role playing
game. Figure 2(a) shows the Java declaration of a Player class.
The object mapper annotation @Entity declares that instances
of this class can be persisted. A player’s login serves as the
unique key (@Id). Based on the annotations, object mappers
take care of the marshalling and unmarshalling between objects

Fig. 3: Refactoring without data loss: Annotation @AlsoLoad
ensures that when loading legacy entities, attribute level will
also be loaded and renamed to rank.

in the application space and entities persisted in the NoSQL
data store.

Figure 2 also shows that the developer is about to rename
the attribute level to rank. IDEs such as Eclipse provide
convenient refactoring support, and will consistently change all
references to this attribute in the source code. The developer
then commits the new version of the code into the code
repository. With the next release of the application, this code
is deployed to production. Yet, if the new application loads
a persisted legacy player with the new class declaration, their
level data will not be loaded, since there is no matching class
attribute. Moreover, the level is irretrievably lost once the
object has been persisted in its new form.

This seemingly innocent refactoring step at the level of the
source code causes data loss, since NoSQL object mappers
will generally not throw an exception when encountering
unmatched attributes in persisted entities. As the data loss is
“silent”, it requires extensive and targeted testing if it is to be
caught prior to launch. In addition, we also risk runtime errors
if the remaining code relies on the rank attribute being set to
a meaningful value.

A safe way to rename an attribute, shown in Figure 3, uses
an object mapper library capable of lazy schema evolution.
Mappers such as Objectify [10] and Morphia [11] provide
dedicated migration annotations. In Objectify, @AlsoLoad
declares that if an attribute level is present when loading a
persisted player entity, its value is loaded as the rank attribute.
This class declaration safely handles both the legacy players
having a level, as well as the players with a rank. All legacy
players loaded by the application will thus be migrated. The
change is persisted when the object is saved to the data store.

Further Schema Migration Pitfalls: Besides renaming at-
tributes, there are further pitfalls in refactoring object mapper
class declarations:

• Changing the type of an attribute may yield errors at
runtime if the types are incompatible, e.g., converting
from String to Integer. Some type changes are more
subtle, e.g., from Float to Integer. Objectify will not raise
an exception, but the result of type conversion might not
be anticipated by the developer (e.g., a truncated value).

• Reintroducing attributes that are still present in ancient
legacy entities may yield unexpected values when loading
these entities, since the values from legacy entities may
have been written with different semantics.



Fig. 4: The ControVol Eclipse plugin warns that in the latest version of class Player (shown to the right), attribute level from an
earlier class declaration (shown on the left) may have been inadvertently removed (or renamed).

• Ambiguous migration annotations can yield runtime er-
rors. For instance, Objectify throws a runtime exception
when trying to load a legacy object with both a level and
a rank attribute with the class declaration from Figure 3.

With frequent releases, it becomes easy to lose track of the
schema evolution history. Relying on the developers’ discipline
alone is risky. Thus, a tool that can automatically check for
these pitfalls is of great value in agile software development.

III. THE CONTROVOL TYPE CHECKING SCHEME

The core of ControVol is its static type checking system
which checks the compatibility of object mapper class decla-
rations. ControVol has access to the code repository, and thus
the full history of all released class declarations. With each
change to an object mapper class declaration, ControVol type
checks against the schema evolution history of this class. In
sketching out the basic idea in the following, we use a notation
inspired by the Machiavelli system [12].

Schema Migration Warnings: We reconsider the problem of
renaming attributes. From the class declaration in Figure 2(a)
we derive the following mapping function.

Player2(a) : {Jlogin : String, name : String, level : IntegerK}
→ {Jlogin : String, name : String, level : IntegerK}

The domain of this mapping captures the entities that can be
loaded safely (i.e., without data loss or runtime exceptions).
The codomain captures the entities persisted according to the
object mapper class declaration. In our example, the mapper
expects all players to have the attributes login, name, and level,
and persists entities of the same type.

The class declaration from Figure 2(b) expects an attribute
rank (instead of level):

Player2(b) : {Jlogin : String, name : String, rank : IntegerK}
→ {Jlogin : String, name : String, rank : IntegerK}

Now the legacy players that were persisted according to
the class declaration of Figure 2(a) cannot be safely loaded
according to the class declaration of Figure 2(b). In other

Fig. 5: ControVol suggests quick fixes to resolve warnings.

words, the codomain of Player2(a) and the domain of Player2(b)
do not match. While legacy entities will be loaded without run-
time errors, the object mapper cannot load the level attribute.
Objectify will instead create a new rank attribute, initialized
to zero by default.

ControVol recognizes a potential pitfall1 and reports a
warning in the IDE, as shown in Figure 4. For the convenience
of the developers, we show the conflicting class versions side
by side (see Figure 4).

Quick Fixes: Developers using IDEs like Eclipse are accus-
tomed to resolving warnings with so-called quick fixes, which
can be applied automatically with only a few mouse clicks.
In this tradition, ControVol proposes quick fixes to resolve the
migration warning from Figure 4, as can be seen in Figure 5:

• Adding Objectify annotation @AlsoLoad("level") to
attribute rank explicitly renames level to rank,

• adding annotation @Ignore to attribute level makes clear
that level is removed intentionally, and

• restoring attribute level prevents losing its value. In this
case, attributes level and rank co-exist.

Annotations Recognized by ControVol: ControVol type

1If developers use the refactoring tools within the IDE for renaming at-
tributes, ControVol recognizes this specifically as a renaming issue. Otherwise,
ControVol suspects that attribute level has been inadvertently removed.



checks the following Objectify annotations to attributes2.

• @Id marks the identifying key of the object.
• @Ignore denotes that an attribute will not be loaded from

the data store or saved to the data store.
• @IgnoreSave denotes that an attribute will be loaded

from the data store, but not saved.
• @IgnoreLoad denotes that an attribute will not be loaded

from the data store, but it will be saved to the data store.
• @AlsoLoad denotes that an attribute will be renamed.

For instance, let us consider how ControVol treats
@AlsoLoad in the Java class declaration from Figure 3. The
inferred mapping function performs pattern matching:

Player3 : {Jlogin : String, name : String, level : IntegerK}
→ {Jlogin : String, name : String, rank : IntegerK}

Player3 : {Jlogin : String, name : String, rank : IntegerK}
→ {Jlogin : String, name : String, rank : IntegerK}

This object mapper class declaration loads legacy and current
players alike. Since the entities persisted by class declarations
Player2(a) and Player2(b) can be safely loaded by Player3,
ControVol reports no warnings.

Objectify also offers life-cycle annotations for methods. A
method with annotation @OnLoad is called when an entity is
loaded. Developers can thus declare more complex migrations,
such as splitting Strings, or extracting class member attributes
into embedded classes (c.f. [13]). Since these methods may
contain arbitrary Java code, the migration problems that can
be recognized by static code analysis are inherently limited.
We plan to extend ControVol so that simple yet common
migrations within methods may be analyzed as well.

IV. OUTLINE OF THE DEMONSTRATION

The general outline for our interactive demo is this:

1) We introduce the typical setup for NoSQL web devel-
opment, as shown in Figure 1: Developers write source
code in an IDE (Eclipse), manage it in a version control
system (Git), and regularly deploy the application to a
PaaS framework (Google App Engine). The application is
backed by a NoSQL data store (Google Cloud Datastore).

2) We show common pitfalls in refactoring the application
code without also changing the schema of the persisted
legacy entities: changing the types of attributes, renaming
or removing attributes, and ambiguous annotations.

3) We demonstrate the imminent consequences of such mis-
takes: data loss, data corruption, and runtime errors.

4) We let the ControVol Eclipse plugin detect these mistakes.
For instance, Figure 2 shows a case of inadvertent data
loss by the seemingly harmless renaming of attributes in
the IDE. ControVol then issues warnings (see Figure 4).

5) We let ControVol suggest quick fixes (see Figure 5).
Developers can then conveniently resolve the detected
problems, as depicted in Figure 3.

2We list the Objectify annotations, as the Morphia annotations are similar.

V. SUMMARY

While schema evolution has been intensively studied for
relational, object-oriented, and XML databases, the problem
presents itself with new acuteness in the construction of web
applications on top of NoSQL data stores. With an ever-
growing developer community using object mappers capable
of lazy schema migration, there is a pressing need to address
their concerns. Earlier academic solutions, while extremely
valuable research contributions, cannot be directly applied:
Either these solutions were not designed with NoSQL data
stores in mind (but for relational databases [14]), or they were
not developed for widely adopted web programming languages
such as Java, as well as their object mappers (e.g., versus
Eiffel in [15]). We regard this as an opportunity for the
data management community to contribute our experience in
building data management tools.

We plan to release the ControVol Eclipse plugin under an
open source licence, and to extend it with a query rewriting
capabilities, so that queries also work for legacy entities.

ACKNOWLEDGMENTS

This work was partially supported by Science Foundation Ireland grant
10/CE/I1855 to Lero (www.lero.ie), SERPRO Brazil and National Research
Fund Luxembourg TOOM Project: C12/IS/4011170. We thank Maximilian
Böhm for his early ControVol prototype that he built as part of his Bachelor
thesis project at OTH Regensburg.

REFERENCES

[1] J. Andany, M. Léonard, and C. Palisser, “Management Of Schema
Evolution In Databases,” in Proc. VLDB ’91, 1991.

[2] M. Hartung, J. F. Terwilliger, and E. Rahm, “Recent Advances in
Schema and Ontology Evolution,” in Schema Matching and Mapping,
2011, pp. 149–190.

[3] S. Scherzinger, M. Klettke, and U. Störl, “Managing Schema Evolution
in NoSQL Data Stores,” in Proc. DBPL, 2013.

[4] S. Ambler, Agile Database Techniques: Effective Strategies for the Agile
Software Developer. John Wiley & Sons, Inc., 2003.

[5] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo, “Schema Evolution in
Wikipedia - Toward a Web Information System Benchmark,” in Proc.
ICEIS, 2008, pp. 323–332.

[6] S. Lightstone, Making it Big in Software. Prentice Hall, 2010.
[7] Google Developers, “Google Cloud Datastore,” Nov. 2014,

https://developers.google.com/datastore/.
[8] “MongoDB,” Nov. 2014, http://www.mongodb.org/.
[9] M. P. Atkinson and O. P. Buneman, “Types and Persistence in Database

Programming Languages,” ACM Computing Surveys, vol. 19, no. 2, pp.
105–170, 1987.

[10] “Objectify,” Nov. 2014, https://code.google.com/p/objectify-appengine/.
[11] “Morphia. A type-safe Java library for MongoDB,” Nov. 2014,

https://github.com/mongodb/morphia/.
[12] P. Buneman and A. Ohori, “Polymorphism and Type Inference in

Database Programming,” ACM Transactions on Database Systems,
vol. 21, no. 1, pp. 30–76, 1996.

[13] “Objectify: Migrating Schemas,” Nov. 2014,
https://code.google.com/p/objectify-appengine/wiki/SchemaMigration.

[14] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the
Database Schema Evolution Process,” The VLDB Journal, vol. 22, no. 1,
pp. 73–98, 2013.

[15] M. Piccioni, M. Oriol, and B. Meyer, “Class Schema Evolution for
Persistent Object-Oriented Software: Model, Empirical Study, and Au-
tomated Support,” IEEE Transactions on Software Engineering, vol. 39,
no. 2, pp. 184–196, 2013.


