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Abstract—Matching is a task at the heart of any data in-
tegration process, aimed at identifying correspondences among
data elements. Matching problems were traditionally solved in
a semi-automatic manner, with correspondences being generated
by matching algorithms and outcomes subsequently validated
by human experts. Human-in-the-loop data integration has been
recently challenged by the introduction of big data and recent
studies have analyzed obstacles to effective human matching
and validation. In this work we characterize human matching
experts, those humans whose proposed correspondences can
mostly be trusted to be valid. We provide a novel framework
for characterizing matching experts that, accompanied with a
novel set of features, can be used to identify reliable and valuable
human experts. We demonstrate the usefulness of our approach
using an extensive empirical evaluation. In particular, we show
that our approach can improve matching results by filtering out
inexpert matchers.

I. INTRODUCTION

Modern industrial and business processes require intensive
use of large-scale data alignment and integration techniques
to combine data from multiple heterogeneous data sources
into meaningful and valuable information. Such integration is
performed on structured and semi-structured data sets from
various sources such as SQL and XML schemata, entity-
relationship diagrams, ontology descriptions, Web service
specifications, interface definitions, process models, and Web
forms. Data integration plays a key role in a variety of
domains, including data warehouse loading and exchange,
data wrangling [23], aligning ontologies for the Semantic
Web, Web service composition [25], and business document
format merging (e.g., orders and invoices in e-commence) [33].
As an example, a shopping comparison app that supports
queries such as “the cheapest computer among retailers” or
“the best medical specialist for Crohn’s disease in Crete”
requires integrating and matching several data sources of
product purchase orders and medical records.

A major challenge in data integration is a matching task,
which creates correspondences between model elements, may
they be schema attributes, ontology concepts, model entities,
or process activities. Matching research has been a focus for
multiple disciplines including Databases [33], Artificial Intelli-
gence [7], Semantic Web [12], Process Management [26], and
Data Mining [16]. Most studies have focused on designing
high quality matchers, automatic tools for identifying corre-
spondences. Several heuristic attempts (e.g., COMA [9]) were
followed by theoretical grounding (e.g., see [3], [15]).

Matching problems have been historically defined as semi-
automated tasks in which correspondences are generated by
matching algorithms and outcomes are subsequently validated
by one or more human experts. The reason for that is twofold.
First, automatic matchers were unable to overcome the inher-
ent uncertainty in the matching process due to ambiguity and
heterogeneity of data description concepts [15]. Second, there
was an inherent assumption that humans “do it better,” leading
to the necessity of humans in the loop.

Human-in-the-loop data alignment and integration has been
recently challenged by the need to handle large volumes of
data, arriving at high velocity from a variety of sources, and
demonstrating varying levels of veracity. Existing matching
techniques, especially human-intensive methods, become ob-
solete in the presence of such data. Solutions in the form of
crowdsourcing (e.g., [21], [39]) and pay-as-you-go frameworks
(e.g., [30], [45]), were therefore proposed to flexibly use
human input in the matching process. Such an approach may
have its drawbacks [18], and, in turn, requires a deeper under-
standing on human capabilities when it comes to matching.

Several recent works that study human matching abilities
have raised concerns about the existing conception of human
superiority in matching. Dragisic et al. have pointed out that
schema and ontology matching require domain expertise [10].
Following this insight, Zhang et al. stated that users that match
schemata are typically non experts, and may not even know
what is a schema [45]. Others, e.g., [35], [40], have observed
the diversity among human inputs. Recently, Ackerman et al.
have challenged both traditional and new methods for human-
in-the-loop matching, showing that humans have cognitive
biases decreasing their ability to perform matching tasks
effectively [1]. For example, the study shows that over time,
human matchers are willing to determine that an element pair
matches despite their low confidence in the match, leading
to poor performance. Finally, to date there has been little
agreement on what makes a human a matching expert, which
is the focus of this work.

A. Motivating Example

This work aims to characterize the expertise of human
matchers using their behavioral profile.

To motivate the research into seeking matching experts,
consider Figure 1, which depicts two archetypes of human
matchers based on our experiments (see Section IV-A). For
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(a) Matcher A: Precise and Thorough
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(b) Matcher B: Imprecise and Incomplete

Fig. 1: Accumulated Precision (P), Recall (R), and average confidence by number of sequential decisions is shown on the left.
Movement heat map2 is given on the right.

each matcher, we measure accumulated Precision, Recall,1

and average confidence ordered sequentially according to the
order in which decisions were taken. In addition, we provide
a mouse movement heat map.2

Figure 1a illustrates the performance of an expert. From the
very beginning, Matcher A demonstrates precise decision mak-
ing with high Precision values. In addition, many decisions are
geared towards increasing the coverage of the match, adding
more and more correct correspondences and incrementally
increasing Recall. The average confidence, in this case, closely
follows the aggregated precision values indicating that the
matcher is cognitively-aware of decision odds. The heatmap
shows Matcher A focuses on three main parts of the screen,
the two schemata descriptions at the top and the matching
matrix at the bottom.

Matcher B (Figure 1b) represents typical performance of
a non-expert. Starting at a low Precision level, Matcher B
continues to make wrong matches, reducing Precision without
increasing Recall much. As a result, the final performance
measures remain fairly low. Matcher B demonstrates a sig-
nificant over confidence, a well-known established human
tendency, e.g., [1], [11]. It is interesting to see that the
heatmap reveals that Matcher B has consistently refrained from
investigating the metadata of the schema on the top left part of
the screen, which may explain some of the poor performance.

B. Contributions

In this work, we aim at characterizing human matching
experts, those humans whose proposed correspondences can
be trusted to provide valid matches. We do so by offering
MExI (Matching Expert Identification), a novel framework
that learns matchers’ qualification as experts based on their
behavioral profile. Such a profile is composed of state-of-
the-art matching predictors, aggregated behavioral features
adapted from recent crowd quality assessment literature, and
a novel use of neural networks to capture the decision making
and mouse movements of human matchers. With such a
tool at hand, we enhance the ability of matching systems

1Precision measures the proportion of correct decisions out of made
decisions and Recall is the proportion of correct decision out of all correct
possible decisions (see Section II-B).

2Figures of all heat maps are given in https://github.com/shraga89/MED/
tree/master/Heatmaps

to fuse appropriate experts and recognize their strengths and
weaknesses when incorporating their input. We demonstrate
our approach using the task of schema matching and further
show in our experiments its usefullness on the related task
of ontology alignment. Specifically, the paper provides the
following specific contributions.
• We suggest a 4-dimensional expert characterization

framework, grounded in matching and metacognition
research, to identify matching experts (Section II-B).

• We formulate expert matching identification as a classifi-
cation problem, utilizing a novel set of features that stem
from monitoring human matchers (Section III).

• We provide an extensive empirical evaluation to demon-
strate the benefit of our approach. In particular, we
show that MExI can identify and characterize matching
experts dealing with challenging matching problem and
the related problem of ontology alignment. In addition,
we show the benefit of MExI in boosting final matching
outcomes when identifying experts (Section IV).

Building blocks of our model are given in Section II-A and
related work in schema matching and assessing human exper-
tise is discussed in Section V. We conclude in Section VI.

II. MODEL AND PROBLEM DEFINITION

We present a human matching model and propose a 4-
dimension characterization of a matching expert.

A. A Human Matching Model

The schema matching task revolves around providing corre-
spondences among concepts, describing the meaning of data,
e.g., database attributes. We present next a human matching
model that has a static as well as dynamic components, the
former is based on a model, presented by Gal [15].

1) Static Matching Model: Let S, S′ be two data sources
with elements {a1, a2, . . . , an} and {b1, b2, . . . , bm}, respec-
tively. A matching process matches S and S′ by aligning their
elements.

Example 1: We illustrate the model using the task of
schema matching. Figure 2 presents two simplified purchase
order schemata [9]. PO1 has four attributes (foreign keys are
ignored for simplicity): purchase order’s number (poCode),
timestamp (poDay and poTime) and shipment city (city).
PO2 has three attributes: order issuing date (orderDate),
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Fig. 2: Schema Matching example.

order number (orderNumber), and shipment city (city). A
matching process aligns the schemata attributes, where a match
is given by double-arrow edges, e.g., orderNumber in PO2

corresponds to poCode in PO1.
A matcher’s output is conceptualized as a matching matrix

M(S, S′) (or simply M ), having entry Mij (typically a real
number in [0, 1]) represent a degree of alignment between ai ∈
S and bj ∈ S′.

A match, denoted σ, between S and S′ is a subset of
M ’s entries, containing of all non-zero entries. In our context
we assume the existence of a ground truth as a matrix Me,
which represents a reference match such that Mij = 1
whenever the pair (ai, bj) is part of the reference match
and Mij = 0 otherwise. Reference matches were created to
test matcher performance, typically compiled and refined by
domain experts over time.

Matching is a complex decision making process, which
involves a series of interrelated tasks [1]. Humans base their
decisions on several aspects of the data source, such as
attribute names, data-types, etc. Algorithmic matchers typ-
ically compute similarity between elements, which can be
transformed using additional information (such as domain
constraints) to report confidence. For human matchers, we
can directly query their confidence level regarding a corre-
spondence. We note, however, that these confidence values
may hide judgment biases [43]. An illustration of a matching
matrix, using the use-case of Example 1, is given in Figure 3.
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Fig. 3: Matching Matrix Generation Example

2) Dynamic Matching Model: Human matchers perform
sequential decisions regarding element pairs and may change
their mind, revisit previously determined matching decisions
and assign a different confidence level to the same correspon-
dence at different times. Therefore, we model the dynamic

component of human matching decision making using a deci-
sion history H , as follows. A decision regarding an element
pair (ai, bj) (ai ∈ S, bj ∈ S′), is associated with a confidence
c ∈ [0, 1] and a timestamp t ∈ IR. A history H = 〈ht〉Tt=1 is a
sequence of triplets of the form 〈(ai, bj) , c, t〉. Each element
in H records a matching decision confidence c concerning a
pair of elements (ai, bj) at time t. Timestamps induce a total
order over H’s elements.

In addition, we use matchers’ mouse movement to create
a movement map G. Each mouse movement (regardless of
matching decisions) is associated with the visited position on
the screen (x, y), its type v ∈ {move (∅), left click (l), right
click (r), and scrolling (s)} and a timestamp t ∈ IR. A map
G = 〈gt〉Tt=1 is a sequence of triplets 〈(x, y) , v, t〉 representing
a movement of type v to position (x, y) at time t. Aggregating
the map positions for each type creates a movement heat
map Gt, which is a screen size matrix where higher values
are assigned to positions (pixels) that are frequently visited.
Figure 1 illustrates two human matcher heat maps.

Given decision histories and movement maps, D=
{(H,G)} denotes the space of human matchers.

Example 1 (continued): Table I provides a history excerpt of
a human matcher, following Example 1. The human matcher
first matched PO1.city and PO2.city with a confidence level of
1.0, at timestamp 3, represented as the triplet 〈M34, 1.0, 3.0〉.
A decision regarding PO1.poDay and PO2.orderDate was
taken at time 8 (with a confidence of 0.9) and later lowered at
time 16 to a confidence of 0.5, following an encounter with
PO1.poTime (row 3 of Table I).

TABLE I: Human Matcher Decisions Example

Entry Confidence Time
1 M34 1.0 3.0
2 M11 0.9 8.0
3 M12 0.5 15.0
4 M11 0.5 16.0
5 M21 0.45 34.0

A matching matrix (Section II-A1) is created from a match-
ing history by assigning the latest confidence to each matrix
entry. Referring to decision elements as h.e (element pair), h.c
(confidence), and h.t (timestamp), we compute a matrix entry
as follows:

Mij =

ht.c|ht.t = max
ht∈H|Ht.e=(ai,bj)

(ht.t) if ∃ht ∈ H|ht.e = (ai, bj)

0.0 otherwise
(1)

B. A Model of a Matching Expert

Human matchers vary in their abilities. Ackerman et al. [1]
show that human matchers may be biased in their decision
making, which may lead to poor matching. Therefore, we
seek a model of a matching expert, one we can rely on to
be effective when making matching decisions. We consider



human matchers to be “weak experts” (rather than typical
crowd sourcing workers that are assumed to be only “gen-
erally knowledgeable”), satisfying some prerequisites such as
familiarity with database systems.

Given a pair of data sources, (S, S′), we model an expert
using measures of her observed performance, as captured
by a matching matrix M and a reference match Me. We
focus on two measure types, namely quantitative (high quality)
and cognitive (reliability). Specifically, on the quantitative
level, an expert should be precise and thorough, and on the
cognitive level she should be correlated and calibrated. These
characteristics were chosen as representative of a wide range
of requirements of a desirable matching system (see [1],
[15]). The proposed model can be extended and tuned to
fit various matching system desiderata. For each measure
we describe how to compute a matcher’s expertise level,
which when accompanied by a threshold (δ) can determine
expertise. Thresholds can be tailored to different expertise
needs compiling differing system requirements.

1) Quantitative Measures: We first describe the two quan-
titative measures, namely precision and thoroughness, for
achieving high-quality matches.

Precision: A matching task involves multiple decisions re-
garding correspondences between schema elements. Given a
limited human attention span, a human expert is not expected
to address all subtasks. However, we expect a matching expert
to succeed in the subtasks she chose to address. We use the
precision measure (Eq. 2, left) and set a threshold δP to capture
a precise expert (Eq. 2, right).

P (H) =
| σ ∩Me+ |
| σ |

, EP (H) = I(P (H) > δP ) (2)

Recall that σ is a subset of M ’s entries. Me+ represents the
set of non-zero entries of Me and I(·) denotes an indicator
function. P (H) measures the ratio of correct matching deci-
sions out of all matching decisions. δP was set to 0.5 in the
experiments to define a precise expert to be a matcher that
matches correctly more pairs than she matches incorrectly.

Thoroughness: Dealing with a complex task, and given lim-
ited span of attention, a human expert has to rely on her
intuitions. Thus, human matchers may set a self-imposed time
limit [1] and aim at covering more subtasks while sacrificing
precision. We use recall (Eq. 3, left) with a δR threshold to
define a thorough expert (Eq. 3, right).

R(H) =
| σ ∩Me+ |
|Me+ |

, ER(H) = I(R(H) > δR) (3)

where Me+, σ, and I(·) are defined as before. R(H) measures
the number of correct matching decisions from all correct
correspondences. Setting δR = 0.5 represents an ability to
cover most of the element pairs space as the number of
identified correct correspondences exceeds the misidentified.

Example 1 (continued): Let Hexp be the matcher pro-
ducing Table I. Projecting a match for Table I we obtain

{M34,M11,M12,M21}.3 Let Me+ = {M11,M12,M23,M34}
be the reference match for the matching problem of Figure 3,
then, P (Hexp) = 3

4 , EP (Hexp) = 1, R(Hexp) = 3
4 , and

ER(Hexp) = 1, leading to the conclusion that Hexp is both
precise and thorough.
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Fig. 4: Matcher C: Precise and incomplete (not Thorough)

Recalling the matcher archetypes described in Section I-A,
Figure 4 illustrates a third archetype, Matcher C. Similar
to Matcher A (Figure 1a), Matcher C maintains a precise
performance throughout the decision making process and
her average confidence level generally follows the average
precision level. However, in contrast to Matcher A, Matcher C
fails to improve significantly her recall over time, resulting in
an insufficient performance (less than 0.2). Matchers of type C
may be extremely confusing for contemporary human-in-the-
loop matching systems as they seem (and actually are) very
precise. Yet, with a limited timespan, matchers of type C cover
only a fraction of the correct match. The heatmap shows that
Matcher C mainly focuses on the top part of the right schema.
This may indicate that Matcher C failed to reach the nested
elements of the schema in the given timespan.

2) Cognitive Measures: To measure expert reliability, we
apply state-of-the-art metacognitive measures [1] to matcher’s
reported confidence, assessing correlation and calibration. As
both measures are computed relative to the entire matcher
population, in the experiments we set thresholds with respect
to the train set matchers.

Correlation: A correlated expert is a matcher who is more
confident when correct than when incorrect. We use resolution
(Eq. 4, top) to assess a correlated expert using a threshold δRes

(left part of Eq. 4, bottom). In addition, a matcher is considered
correlated only if the resolution is statistically significant (right
part of Eq. 4, bottom).

Res(H) =γ(σ,Me+),

ERes(H) =I(Res(H) > δRes ∧ pval < .05) (4)

where γ(·, ·) is a Goodman and Kruskal correlation.

Calibration: A calibrated expert is a matcher that can gauge
her confidence. We use the calibration measure (Eq. 5)
from metacognition research [2], accounting for over/under-

3Recall the Mij represents a correspondence between the i’th element in S
and the j’th element in S′. For example, including M11 in the match means
that PO1.poDay and PO2.orderDate correspond.



confidence. Noting that better calibration is lower, we set a
threshold δCal to define a calibrated expert.

Cal(H) = H.c−P (H), ECal(H) = I(|Cal(H)| < δCal) (5)

where H.c is the average confidence reported by the user and
P (H) is her precision (Eq. 2).

In the experiments, we set thresholds to correspond to
percentiles of the train population, setting δRes as the 80th

percentile and δCal as the 20th percentile.
Example 1 (continued): Recall the matcher that produced

Table I. Based on the table, the calculated resolution is 1.0 with
pval = 0.5. Although a resolution value of 1.0 satisfies any
δRes, since pval > .05, she is not considered correlated. The
matcher’s calibration is 0.67 − 0.75 = −0.12, which means
that she is under confident and given that the 20th percentile
in our experiments is 0.205, she is considered calibrated.
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Fig. 5: Matcher D: Precise, thorough, uncorrelated, and disor-
ganized (not calibrated)
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(a) Matcher A
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(b) Matcher D

Fig. 6: Accumulated Resolution and Calibration of Matcher A
(Figure 1a) and Matcher D (Figure 5)

Figure 5 illustrates a fourth archetype, Matcher D, which
like Matcher A (Figure 1a) maintains a precise and thorough
performance, preserving high Precision values and consistently
increasing Recall. However, the two matchers are different.
To illustrate, we use Figure 6 to lay out the accumulated
resolution (green bars) and calibration (pink bars) of matchers
A and D. The pink bars in Figure 6b represent the difference
between the black dots (confidence) and blue bars (precision)
of Figure 5. Figure 6 illustrates the questionable reliability
of Matcher D. While Matcher A (Figure 6a) provides a
cognitively consistent behavior with a resolution close to 1.0
and calibration close to 0.0, Matcher D (Figure 6b) fails to
self-monitor its decisions resulting in a fairly low resolution
(uncorrelated) and under confidence with a moderate absolute
calibration value (not calibrated).

As a final note, as suggested by Ipeirotis et al. [22],
predictable biased confidence levels, rather than low quality,
may be manipulated to achieve much higher quality. For
example, having realized that Matcher D is under-confident,
a correspondence assigned with a 0.4 confidence may be
adjusted to 0.6 and reconsidered as a part of the final outcome.

C. Problem Definition - Expert Identification

Having introduced a matching expert model, we are
interested in identifying such experts. Formally, let
Y ={+1,−1}|L|, with L being the expert characteristics
space (in our case |L| = 4, with precision, thoroughness,
correlation and calibration). Specifically, a +1 value for
property l ∈ 1, ..., |L| represents expert ability, and −1
represents expert inability. Our problem definition can be
expressed as follows.

Problem 1: Let D = (H,G) be a human matcher represen-
tation and Y be a matcher expert characteristics. We seek a
matching expert characterizer f : D → Y , which is a mapping
that maps D into Y .

III. IDENTIFYING MATCHING EXPERTS

We now move to the task of Matching Expert Identification
(MExI). We position expert identification as a classification
problem and utilize novel feature sets to learn a matching
expert characterizer (Problem 1). Our approach, different from
existing related work (see Section V), advocates no prior
knowledge regarding human matchers and focus on their
behavior throughout the decision making process.4 It is worth
noting that while casting our problem as a classification
problem imitates (binary) expert selection for a real-world
system, it can be easily repositioned as a regression problem,
estimating expertise level.

A. Human Matching Features

We propose feature encoding of a human matcher, Φ : D →
IRd that maps a pair of decision history H and movement map
G (see Section II-A) into a d dimensional feature vector.

In what follows we suggest feature sets that serve at
enhancing the ability to predict each of the four decision
measures, grounding them in the relevant research areas. When
designing the features, we make extensive use of the matching
matrix (final decisions), the decision history (decision paths),
and movement map (movement patterns). We note that some
features may be predictive of more than one decision measure.
Figure 7 summarizes the proposed feature sets and full details
are given in our repository.5

Precision Features: Matching predictors were suggested for
match evaluation when a reference match is unavailable [38].
A matching predictor is a function that quantifies the quality
of a match (given as a matching matrix). For example, a
dominants predictor measures the proportion of dominant

4Although prior knowledge is not part of the proposed model, we provide
a discussion on personal information of our human matchers in Section IV-C.

5https://github.com/shraga89/MED/blob/master/Featuresets.md
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Fig. 7: MExI (Matching Expert Identification) Framework. MExI features are composed of five sets extracted from two human
matching inputs D = (H,G). MExI uses H to extract behavioral features ΦBeh(H) and matching predictors ΦLRSM (H) and
G to extract aggregated movement-based features ΦMou(G). During training, MExI trains two sets of neural models using H
and G, which are fused as features during testing.

element pairs, i.e., having highest value in their respective
row and column. Matching predictors study yield observations
regarding their varying usability towards precision or recall.
Recently, matching predictors were suggested as features in
learning to rerank schema matches (LRSM) [16]. We use
the matching matrix (computed from the history H , see Sec-
tion II-A2) to generate matching predictors features, denoted
as ΦLRSM (H). We rely on Sagi et al. [38] when choosing
precision-oriented predictors.

Thoroughness Features: Similarly to precision features, we
use matching predictors to encode thoroughness features,
focusing on predictors that were shown in the literature to
lean towards higher recall. Specifically, predictors that capture
negative characteristics such as uncertainty, diversity, and
variability were shown to correlate with recall (and negatively
correlate with precision). For example, matrix norm predic-
tors [16] are used to quantify the amount of error in the
matching matrix, which can be attributed to uncertainty.

Correlation Features: Match consistency quantifies the extent
to which a human matcher produces consistent matches [1],
highlighting human biases in the matching process. We create
correlation features based on two consistency dimensions,
namely, temporal and consensuality, which were shown to be

predictive in terms of confidence and quality. The temporal
dimension measures matching time and consensuality assesses
the agreement among matchers. The predictive power of
consistency analysis concerning confidence makes it effective
for correlation features.

Calibration Features: Calibration aims at qualifying matchers
as experts by observing the dynamics of their matching.
Therefore, calibration features naturally relate to the decision
history H and movement map M . Calibration features are
grouped into three feature groups, as follows.

Aggregated features are extracted from the matching deci-
sion history (ΦBeh(H)) and the movement map (ΦMou(G)).
ΦBeh(H) contains aggregations over confidence, decision
times, and the number of changed matching decisions. For
ΦMou(G), we follow [19], [37], [44] to extact features.

Sequential features (ΦSeq(H)) examine the sequential
decision making of a matcher through her declared confidence
levels, the time spent until reaching a decision, and the extent
of agreement with other matchers. Sequential processing of
the matching process aims to capture development (decline)
in the matchers behavior.

Spatial features (ΦSpa(G)) capture human matcher move-



ment using its movement map G.6

B. Learning a Matching Expert Characterizer

Equipped with a feature encoding for human matchers, we
aim to find a “good” matching expert characterizer (Defini-
tion 1). We cast the problem as a multi-class multi-label clas-
sification problem. Following Read et al. [34], we transform
the multi-label problem into a set of binary problems, one for
each label. Hence, we train |L| binary classifiers (one for each
expert ability) using Φ(·), where classifier Li is responsible for
predicting i’s expert ability. The expert characterizer, f , returns
|L| binary labels, corresponding to the |L| binary classifiers.
Finally, given a (new) human matcher D = (H,G), we extract
Φ(H,G) and use the trained f to characterize her, possibly
identifying a new (unseen) expert.

The learning process is illustrated in Figure 7 and is applied
as follows. First, we capture the aggregated features, which
can be calculated offline. Then, we employ neural networks to
process the matching history H sequentially with a recurrent
neural network and the movement map G spatially with a
convolutional neural network.

Recurrent neural networks, and specifically long short-term
memory (LSTMs), serve as a natural choice when process-
ing the matching history sequentially. LSTMs use a gating
system to control the amount of information to preserve at
each timestamp using a hidden state. ΦSeq(H) encodes the
sequential decision making of a human matcher using her
confidence levels (h1.c, . . . , hT .c), the time spent on a decision
(h2.t − h1.t, . . . , hT .t − hT−1.t), and the level of agreement
on a decision, π1, . . . , πT , with πi calculated as the number of
human matchers in the training set that selected h1.e as part
of their final matching matrix.

Given a human movement map, we seek a spatial analysis
using a convolutional neural network (CNN), which was
originally used for image processing, and apply convolution
and pooling layers to extract filters over an input. ΦSpa(G)
encodes spatial matcher patterns of behavior through analysis
of the main areas visited on the screen. We train four networks
based on the movement heat maps G∅ (move over), Gl (left
click), Gr (right click), and Gs (scrolling). Since our dataset
size is limited, we fine-tuned a CNN model, which was pre-
trained on an image classification task [20], with our dataset.

Finally, the set of trained models are fused as additional fea-
tures to MExI. Specifically, in this work, we adapt a late fusion
strategy [32]. During training, we first train the aforementioned
networks on the training set of matchers. Then, we add label
coefficients predicted by the networks as additional features
(ΦSeq(H) and ΦSpa(G)) to Φ(D) to train MExI. During
testing, we extract ΦSeq(H) and ΦSpa(G) using the trained
networks, which are then added to ΦBeh(H),ΦMou(G) and
ΦLRSM (H) to construct Φ(D) and apply the trained MExI to
predict the labels.

6ΦSeq(H) and ΦSpa(G) are described in more details in the context of
the algorithm in the next section.

IV. EMPIRICAL EVALUATION

We conducted an extensive set of experiments to test the
ability of MExI to identify matching experts and its impact
on matching quality. We describe the experimental setup in
Section IV-B, followed by an analysis of human matcher char-
acteristics (Section IV-C). When experimenting with MExI we
focus on the behavioral aspects, demonstrating the following
four properties of our proposed approach:
• Expert Identification: Using a challenging matching

task, we demonstrate that MExI identifies expert matchers
better than state-of-the-art methods (Section IV-D, Ta-
ble IIa).

• Generalizability: Using a related problem of ontology
alignment, we show that a trained MExI can generalize
to identify experts in other similar tasks (Section IV-D,
Table IIb).

• Human Matcher Representation: Using an ablation
study we analyze the suggested feature representations
of human matchers and their effect of the identification
quality of MExI (Section IV-E).

• Matching Outcome Improvement: Using MExI’s iden-
tified matching experts, we generate better matching
results (Section IV-F).

A. Human Matching Dataset

The dataset contains 7716 match decisions of 140 human
matchers, all Science/Engineering undergraduates who stud-
ied database management courses. The study was approved
by the institutional review board and four pilot participants
completed the task prior to the study to ensure its coherence
and instruction legibility. Participants were briefed in matching
prior to the task, after which they were trained on a pair of
short schemata (9-12 attributes) from the Thalia dataset7 prior
to performing the main tasks.

The human matchers that participated in the experiments
were asked to self-report personal information before the
experiment. The gathered information includes gender, age,
psychometrics exam8 score, English level (scale of 1-5),
knowledge in the domain (scale of 1-5) and basic database
management education (binary). The human matchers that
participated in the experiments reported on psychometrics
exam scores that are higher than the general population.
While the general population’s mean score is 533, participants
average is 678. In addition, 88% of human matchers consider
their English level to be at least 4 out of 5 and only 14%
claim their knowledge in the domain is above 1. To sum, the
participating human matchers represent academically oriented
audience with a proper English level, yet with lack of any
significant knowledge in the domain of the task.

The main matching tasks were chosen from two domains.
The first is a Purchase Order (PO) dataset [9] with schemata
of medium size, with 142 and 46 attributes, and with high in-
formation content (labels, data types, and instance examples).

7www.cise.ufl.edu/research/dbintegrate/thalia/howto.html
8https://en.wikipedia.org/wiki/Psychometric Entrance Test



The second domain is taken from an ontology alignment [12]
task introduced in the OAEI 2011 and 2016 competitions,9

containing ontologies with 121 and 109 elements with high
information content. The two tasks offer different challenges,
where ontology elements differ in their characteristics from
schemata attributes. Element pairs vary in their difficulty level,
introducing a mix of both easy and complex matches.

Match confidence was inserted by participants as a value in
[0, 1] to construct a history. We record the matcher mouse us-
age (clicks, moves, scrolls), accompanied by a timestamp and
screen coordinates using Ghost-Mouse.10 Some preprocessing
of the data was required to ensure the correctness of the
results. This included removing the first three correspondences
per participant, assuming a warm-up period is needed before
response times are comparable. Of the 148 participants, 8
were discarded due to technical faults, leaving 140 valid
participants. Finally, elapsed time outliers (over 2 standard
deviations from the mean of each participant) were removed
due to the sensitivity of our measures to outliers. These outliers
may be the result of methodical pauses by the participant,
unrelated to the specific target term or revisiting a target term
after time.

The interface that was used in the experiments is an up-
graded version of the Ontobuilder research prototype [29],
which is open source.11 An illustration of the user interface
is given in a technical report12. Schemata are presented as
foldable trees of terms (attributes). When selecting an attribute
from the target schema, the match table presents a list of
candidate attributes synchronized with the candidate schema
tree. Selecting a term reveals additional information about it in
a properties box. Terms that have sub-terms are highlighted.
When a matcher selects an attribute, time until reaching a
decision is recorded.

B. Experimental Setup

Evaluation was performed on a GPU server that contains
two Nvidia gtx 2080 Ti and a CentOS 6.4 operating system.
For the classifiers we used scikit-learn13 implementation and
the networks were implemented using Keras14 with a tensor-
flow backend. Adam [24] (η = 0.001, β1 = 0.9, β2 = 0.999)
was used for optimization and cross entropy was used as a
loss function. The code repository is available online.15

1) Methodology: For the sequential feature extraction
(ΦSeq(H)), following an LSTM hidden layer of 64 nodes,
we perform a 0.5 dropout and a 100 nodes fully connected
layer with a ReLU activation. We fine-tuned a pre-trained
ResNet [20] to extract spatial features (ΦSpa(G)). Finally,

9http://oaei.ontologymatching.org/2011/benchmarks/
10https://www.ghost-mouse.com/
11https://github.com/shraga89/Ontobuilder-Research-Environment
12https://github.com/shraga89/MED/blob/master/MExI.pdf
13https://scikit-learn.org/stable/
14https://keras.io/
15https://github.com/shraga89/MED

we add the label coefficients of each trained network to the
feature-set (see Section III-B for details).16

We present the results of two experiments. The first aims to
quantify the ability of MExI to identify experts in a schema
matching task. The second aims at emphasizing the general-
ization abilities of MExI using a related problem of ontology
alignment. The experiments were conducted as follows:

Expert Identification experiment: 106 human matchers
performed a schema matching task over the PO task (see
Section IV-A), for which, we randomly split the matchers into
5 folds and repeat an experiment 5 times. For each experiment
we use 4 folds for training (84 matchers) and the remainder
fold (22 matchers) for testing. In tables IIa and III we report
on the average performance over the 5 experiments.

Generalizability experiment: We use the 106 PO task
human matchers as a training set and the 34 OAEI task (see
dataset description above) human matchers as a test set.

For each experiment, we trained a set of state-of-the-art
classifiers17 (e.g., SVM and Random Forest) for classification
and selected the top performing classifier to be used for testing.

We evaluated three variations of the model. The first uses
the set of human matchers as is (MExI ∅). As part of the
training phase (see Section IV-B1), we use sub-matchers to
ensure sufficient data for a deep network. The sub-matchers
were generated as a subset of consecutive decisions made by
matchers in the training set and were used only during train-
ing. Specifically, we trained two additional models, MExI 50
involves sub-matchers with 50 decisions each and MExI 70
contains sub-matchers of 30, 40, . . . , 70 decisions (average
decisions per expert is 55).

2) Baselines: We compared MExI to seven baselines, using
various methodologies for selecting high-quality individuals
for a task. The first two baselines are fairly simple, Rand
randomly assigns labels and Rand Freq assigns labels by
frequencies in the training set. Then, we introduce three
baselines based on common practice quality control in crowd-
sourcing [6]. Conf uses the reported confidence to determine
expertise [31], Qual. Test uses the warmup phase as a quali-
fication test to estimate crowd‘s accuracy following Zhang et
al. [45] which is used to determine expertise and Self-Assess
applies a pre-selection rule following Gadiraju et al. [14],
where matchers with |Cal| < 0.2 and P > 0.6 during the
warmup phase are classified as experts. Finally, we examine
two learning-based baselines, which classify experts using
matching predictors (LRSM [16]) and behavioral features as
suggested by Goyal et al. [19] (BEH) .

3) Evaluation Measures: In our experiments we use two
types of evaluation measures. First, we measure matching
performance (Section IV-F) using precision, recall, resolution,
and calibration (see Section II-B). Second, to assess expert
identification quality (Section IV-D), we quantify accuracy

16Networks implementation is available at https://github.com/shraga89/
MED/blob/master/utils.py

17Details in https://github.com/shraga89/MED/blob/master/Classifiers.md



with respect to a single characteristic (binary classification,
Eq. 6) and all characteristics (multi-label classification, Eq. 7).
Let Ŷ (D) and Y (D) be the predicted and real characterization
of D respectively. Recall that |Ŷ (D)| = |Y (D)| = |L|; thus,
we denote the c’th class (e.g., precise) as Yc(D) and Ŷc(D).
Then, accuracy for a single characteristic and all characteristics
are defined as follows.

Ac =
1

K

K∑
k=1

(Yc(Dk) = Ŷc(Dk)) (6)

AML =
1

K

K∑
k=1

Y (Dk) ∩ Ŷ (Dk)

Y (Dk) ∪ Ŷ (Dk)
(7)

C. Human Matcher Characterization

We start with an analysis of the overall population of
matchers. Figure 8 presents the mean performance of matchers
using each of the four expertise measures (recall Section II-B).
As illustrated, matchers are generally better in precision than
recall (average of 0.55 compared to 0.33, respectively), which
suggests that human matchers are geared towards correctness
rather than coverage. Cognitively, the average resolution is
relatively low in absolute value. However, when focusing
on matchers with positive resolution (those that are more
confident when correct), the average value is significantly
higher (0.61 compared to 0.37) indicating that positively
correlated matchers offer better end result. Similarly, the
average (absolute) calibration is deficient, i.e., the calibration is
fairly high (0.33). Yet, focusing on under confident matchers,
i.e., those with negative calibration, we obtain a much better
average absolute calibration of 0.11 indicating that under
confident matchers are more likely to be calibrated.

P R |Res| |Cal|
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Fig. 8: Average performance of matchers by measure. Resolu-
tion (Res) and Calibration (Cal) are given in absolute value.

The proportion of matching experts by expertise type is
illustrated in Figure 9. Overall, more than half of the matchers
are precise and only ∼15% of matchers are thorough. This
indicates again that human matchers aim to provide correct
answers and are concerned less with the amount of responses
they provide. 33% of the matchers are correlated and 42% of
matchers are calibrated. Yet, as discussed above, positively
correlated and under confident matchers are superior and

57% of the former are correlated and 80% of the latter are
calibrated. Interestingly, 84% of the under confident matchers
are precise and 40% are thorough (compared to 53% and 15%,
respectively, over all matchers). This demonstrates the impact
of cognitive measures on quantitative performance.
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Fig. 9: Proportion of matching experts by type. For each type,
the bar represents the proportion of matchers that are experts.
The darkest shade represents matchers that are experts in all
four types and above it those that are experts in additional
two and one type. The light shade at the top part of the bar
represents the proportion of experts of this one type only. Note
that all thorough experts (ER), are also experts in at least one
additional expertise type.

As a final note, we observe a correlation between reported
English level and Recall and between reported psychometrics
exam score and Precision. These results can be justified
as better English speakers read faster and can cover more
element pairs (Recall) and people that are predicted to have a
higher likelihood of academic success at institutions of higher
education (higher psychometric score) can be expected to
be accurate (Precision). It is noteworthy that these are the
only significant correlations found with personal information,
and no significant correlation was found with resolution and
calibration. This, in turn, emphasizes the importance of un-
derstanding the behavior of humans when seeking matching
expertise, even when personal information is readily available.

D. Characterizing Matching Experts

Now, we turn our efforts to analyze the ability of MExI to
identify matching experts. Table II compares accuracy (eqs. 6-
7) results of MExI to the baselines. An asterisk denotes
statistical significant differences in performance using a two-
sample bootstrap hypothesis test over the top performing
baseline, LRSM (p-value < .05).

Primarily, using submatchers (MExI 50) boosts results, im-
proving the PO task results (Table IIa) on AP , AR, ARes,
ACal, AML by 11%, 5%, 14%, 9%, and 48% over MExI ∅,
respectively, indicating that using sub-matchers is a valuable
approach. Yet, using it too aggressively, lowers accuracy,
suggesting that reusing subsets with different sizes (as in
MExI 70) is likely to overfit.



TABLE II: MExI’s accuracy compared to the baselines, using Eq. 6 for AP , AR, ARes and ACal and Eq. 7 for AML

(a) Schema Matching (PO)

↓Method AP AR ARes ACal AML

Rand .44 .88 .64 .60 .26
Rand eq .56 .88 .64 .40 .12
Conf .35 .70 .57 .40 .18
Qual. Test .58 .69 .59 .61 .26
Self-Assess .51 .80 .66 .64 .28
LRSM .80 .93 .71 .73 .33
BEH .81 .88 .64 .70 .30
MExI ∅ .88 .88 .71 .80 .46
MExI 50 .98∗ .93 .81 .87∗ .68∗
MExI 70 .93∗ .92 .79 .82 .66∗

(b) Ontology Alignment (OAEI)

↓ Method AP AR ARes ACal AML

Rand .39 .24 .27 .45 .04
Rand eq .60 .75 .27 .55 .18
Conf .58 .73 .39 .58 .17
Qual. Test .62 .73 .42 .52 .17
Self-Assess .61 .76 .43 .55 .17
LRSM .61 .76 .65 .52 .23
BEH .55 .70 .70 .55 .24
MExI ∅ .61 .74 .70 .57 .31
MExI 50 .70 .83 .74 .61 .43∗
MExI 70 .61 .76 .73 .61 .35∗

MExI 50 outperformed all baselines (statistically significant
for AP , ACal, and AML), suggesting that its ability to identify
matching experts is superior to naı̈ve approaches (Rand and
Rand Freq), trusting human judgment (Conf ), using a quali-
fication test (Qual. Test), self-assessment based pre-selection
(Self-Assess), and recent literature (LRSM and BEH).

Evaluating the generalizablity of MExI (OAEI task, Ta-
ble IIb), we observe a relatively smaller improvement over the
baselines. Nevertheless, both MExI 50 and MExI 70 achieved
a statistically significant improvement over the top performing
baseline. Thus, as a proof-of-concept, we show that even when
applying a trained MExI over a new domain, it can still achieve
high quality results improving the state-of-the-art.

E. Feature Importance via Ablation Study

Using MExI 50 results over the PO dataset, we performed
an ablation study to examine feature-sets influence. Table III
reports on accuracy, comparing MExI 50 to: 1) using each
feature-set by itself (include) and 2) removing a feature-set
one at a time (exclude). Boldface entries indicate the eminent
feature-set with respect to an expert measure. For include
(exclude), higher (lower) quality means higher importance.

TABLE III: MExI ablation study over the feature-sets. include
refers to training using only one feature set while exclude
refers to the exclusion of a single feature set at a time.

↓ Method AP AR ARes ACal AML

MExI 50 .98 .93 .81 .87 .68

include

ΦLRSM .80 .93 .71 .73 .33
ΦMou .68 .88 .56 .52 .32
ΦBeh .69 .86 .50 .57 .31
ΦSeq .77 .78 .66 .74 .37
ΦSpa .53 .78 .53 .53 .28

exclude

ΦLRSM .81 .85 .72 .68 .54
ΦMou .86 .87 .55 .72 .58
ΦBeh .86 .92 .66 .75 .62
ΦSeq .83 .88 .66 .60 .53
ΦSpa .83 .91 .56 .68 .61

In terms of quantitative measures, ΦLRSM is most im-
portant. For cognitive measures, mouse movement (mainly
ΦMou and low accuracy without ΦSpa) and sequential decision
process (ΦSeq) were predominant. This suggests that mouse

movement implies whether an expert discriminates between
the correct and incorrect decisions (correlation). Sequential
decision process is mainly important to detect over-confidence
(calibration). Finally, examining multi-label accuracy, results
suggest that using LSTM to capture the expert sequential
decision process (ΦSeq) is worthwhile and results in favorable
performance even as a standalone feature-set.

Next, we analyzed feature importance within each feature-
set18 using SHAP [27]. The two most important features in
a feature set are given in Table IV with the following main
insights for each group19. For ΦLRSM , Dominance and PCA
features were in the lead, supporting the feature analysis
reported by Gal et al. [16], emphasizing uncertainty and diver-
sity for expert identification. For aggregated features (ΦMou

and ΦBeh), time and confidence are important along with
the average screen position and the number of decisions and
changed decisions, indicating that the main location (similar to
“on focus” [37]) is important in determining expertise. In terms
of sequential learning (ΦSeq), the consensus features (which
were computed on the training set) were dominant across
measures and the time and confidence features play a notable
role as well. Finally, the scrolling features (SMouse), which
may indicate uncertain behavior, were the most dominant for
spatial learning (ΦSpa).

F. Utilizing Matching Experts

Finally, we analyze the impact the identification of matching
experts has on matching quality.

We begin by analyzing the average matching performance
(in terms of P , R, Res, and Cal, see Section II-B) of the
human matchers. We compare the performance of experts
identified by MExI (i.e., those that were identified as precise,
thorough, correlated, and calibrated) to the full population
of human matchers (no filter) and the crowdsourcing quality
assessment baselines (Conf, Qual. Test and Self-Assess, see
Section IV-B1.)

Figure 10 shows the quality of the identified experts ob-
tained by the different methodologies. MExI’s experts clearly

18recall that the full list of features is given in https://github.com/shraga89/
MED/blob/master/Featuresets.md

19Top 5 most important features for each feature set is given in a technical
report: https://github.com/shraga89/MED/blob/master/MExI.pdf



TABLE IV: Top 2 informative features for each feature set.18

Characteristic → EP ER ERes ECal

↓ Feature Set (1) (2) (1) (2) (1) (2) (1) (2)
ΦLRSM dom pca2 pca1 normsinf bpm normsinf pca2 bbm
ΦMou totalLength totalTime totalLength avgX totalTime totalLength totalLength totalTime
ΦBeh avgTime countDistinctCorr countDistinctCorr avgTime countMindChange maxTime avgConf maxTime
ΦSeq consensus (P ) consensus (Cal) consensus (Cal) consensus (R) consensus (P ) time (P ) consensus (Res) time (Cal)
ΦSpa SMouse (Res) SMouse (P ) SMouse (Res) Move (R) SMouse (Res) LMouse (Cal) Move (Cal) SMouse (Res)
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Fig. 10: Performance (with error bars representing variance)
of those identified experts by MExI compared to the full
population of matchers (no filter) and crowdsourcing qual-
ity assessment baselines (Conf, Qual. Test and Self-Assess),
recalling that lower calibration is better.

outperform all baselines in terms of matching performance.
Compared to no filter, MExI improved average precision by
42% (from .55 to .78), average recall by 90% (from .29
to .55), average correlation by 78% (from .41 to .73) and
average calibration by 218% (from .35 to .11, recalling that
lower calibration is better). In a technical report20, we show
that even when using an expert geared towards a different
measure, MExI generates superior results with respect to using
all human matchers. For example, thorough experts improve
average precision by 53% (from .55 to .84).

Human-in-the-loop systems can benefit from early iden-
tification, discharging non-experts sooner and preserving fi-
nancial resources for future use. Therefore, we next analyze
whether MExI can assist in improving the final matching result
using early detection of matchers as experts. We utilize MExI
to identify experts midway their decision process, and only use
the identified experts. We note that applying MExI for early
identification does not require labels for those decisions.

Figure 11 compares MExI’s experts, determined using the
first half of the median number of decisions per matcher (30),
to the ones identified by crowdsourcing quality assessment
methods and the full population of matchers. As illustrated,
although the experts identified early achieve slightly inferior
results than the ones identified at the end of the matching
process (Figure 10), they still improve over all of the baselines.

20https://github.com/shraga89/MED/blob/master/MExI.pdf
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Fig. 11: Performance (with error bars representing variance)
of those early identified experts by MExI compared to the full
population of matchers (no filter) and crowdsourcing quality
assessment baselines (Conf, Qual. Test and Self-Assess).

V. RELATED WORK

We now position the work with respect to related literature
in schema matching, ontology alignment, and quality and
assessment of humans. Matching works over the years assume
superiority of humans over algorithmic matchers. Using hu-
mans for matching validation was first proposed by McCann et
al. [28] and was later extended [30] by using crowd sourcing to
reduce uncertainty. Recently, Zhang et al. [45] assessed human
matching quality by associating probabilities to answers based
on question hardness and worker’s trustworthiness. In this
work, we model human matchers by extracting features and
applying learning to infer quality. Some of these features use
reported confidence, which Dragisic et al. [10], who specified
matching expertise types, proposed as future work. Moreover,
we specify expertise characterization, enabling a matching
system to choose a human resource that fits its need.

Assessing human expertise and quality has been researched
in the scope of identifying low quality crowd workers [4], [22],
computer user skill identification [17], performance analysis
and visualization [36], [37], and more. With most applications
relying on gold questions to infer quality in practice [6], we
utilize a learned model, relinquishing the need for ground
truth during inference. Rzeszotarski and Kittur [37] suggested
feature engineering over human behavior to assess quality,
which was later expended by others, e.g., [19], [44], to include
a richer representation of workers. Others use information
retrieval techniques, ranking workers for a task using a scoring
function calculated based on user personal information (and



social media activity) respecting the task description [8].
Finally, a recent paper detected human cognitive biases af-
fecting matching quality [1]. We formally define a set of
characteristics to assess human expertise and suggest novel
feature sets addressing the challenge.

VI. CONCLUSION AND FUTURE WORK

We presented MExI, a novel framework to identify experts
for Human-in-the-loop data integration. Using four-way exper-
tise characterization, drawing on insights from both matching
and metacognition, we provided a novel feature-set to repre-
sent a human matcher for the task. We empirically showed the
superiority of MExI over several state-of-the-art methods. To
the best of our knowledge, this work is the first to analyze
human expert decision making and mouse movements with
LSTMs and CNNs, respectively. Finally, we believe that any
human-in-the-loop process may benefit from our framework.

Throughout this work, we illustrated our approach using a
task of schema matching. In our experiments, we also demon-
strated how expert identification training on one task (schema
matching) can be useful for other tasks as well, demonstrating
it using the closely related area of ontology alignment. We
believe that the model and methods we proposed in this work
can be extended to other matching tasks in data integration.
For example, the task of entity resolution aims at identifying
duplicate tuples, either within a single “dirty” dataset or when
merging two “clean” (with no duplicates) datasets. Entity
resolution is similar to schema matching in many ways. In
both, human experts determine whether multiple elements are
equal, similar heuristics are applied to identify commonalities
among elements, and common 2-step approaches are applied.

This work focused on matcher performance as a whole. In
future work, we aim to extend quality assessment to handle
varying scales and platforms. Specifically, a common way to
assess a subset of the problem is by using crowdsourcing
(e.g., using [42]), where several additional aspects, such as the
heterogeneity of crowd workers [35], need to be considered.
Additionally, we aim to explore more facets of behavioral
change in the context of crowdsourcing. Another interesting
direction involves experimenting with additional matching
tools (e.g., using instances [13], embeddings [5] and deep
learning [41]) possibly providing better algorithmic sugges-
tions to enhance expert performance. In this direction it is
also intriguing to look at aspects relating to the tendency of
people to accept algorithmic advice.
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