
Event Pattern Matching over Graph Streams
Chunyao Song, Tingjian Ge, Cindy Chen, Jie Wang

University of Massachusetts, Lowell

{csong, ge, cchen, wang}@cs.uml.edu

ABSTRACT
A graph is a fundamental and general data structure underlying all
data applications. Many applications today call for the manage-
ment and query capabilities directly on graphs. Real time graph
streams, as seen in road networks, social and communication net-
works, and web requests, are such applications. Event pattern
matching requires the awareness of graph structures, which is
different from traditional complex event processing. It also re-
quires a focus on the dynamicity of the graph, time order con-
straints in patterns, and online query processing, which deviates
significantly from previous work on subgraph matching as well.
We study the semantics and efficient online algorithms for this
important and intriguing problem, and evaluate our approaches
with extensive experiments over real world datasets in four differ-
ent domains.

1. INTRODUCTION
A graph is the fundamental and general data structure underly-

ing all data applications. In many cases, we shun direct operations
on graphs through transforming the data model from ER diagrams
to relations, and resorting to a simple relational query language.
There has been an increasing awareness of the inadequacy of this
approach. Instead, it is realized that graphs and their operations
are a more powerful and/or efficient fit for many applications at
hand. In fact, for a great number of such applications, data is pro-
duced constantly in a streaming manner. Some examples include
telephone call networks, web server requests, road networks, and
the burgeoning social networks such as Twitter [29] and LinkedIn
[35]. In these graph streams, each event/item in the sequence can
be considered as an edge in the graph, in a unified model.
Example 1 (Road Networks). In a metropolitan city’s road net-
work, a key desired property is robustness – sudden traffic jams
on a road (e.g., due to an accident) should remain as local as
possible, i.e., its effect should not be propagated to the roads far
away. This property can be monitored as follows. In Fig. 1, we
match an event pattern query (with three parts shown in a, b, and
c) with a graph stream (with two snapshots shown in d and e).
Intersections map to vertices labeled with (𝑀) for a major one
(e.g., with lights) or (𝑆) for a secondary one. 𝐴-𝐹 in Fig 1(a) are
merely vertex IDs (not labels) for us to refer to vertices/edges. An
incoming traffic report of a road corresponds to a new directed
edge in the stream labeled either with “congested” (cong.) or
“smooth”. Fig. 1(a) is a structural pattern. Fig. 1(a, b) indicates
that a road segment (𝐴𝐵) is originally congested, followed by (at
least) two sequences of congested roads, each of which has two
congested roads (𝐶𝐴, 𝐷𝐶 and 𝐸𝐴, 𝐹𝐸, resp.). All roads here must
be between two major intersections (vertex label 𝑀). Fig. 1(b)

shows a strict partial order constraint on the timing of the edges
in (a). An edge (e.g., 𝐴𝐵) in (a) maps to a vertex (e.g., 𝐴𝐵) in (b).
A directed edge in (b), e.g., from 𝐴𝐵 to 𝐶𝐴, indicates the prece-
dence relationship of two edges in (a), e.g., 𝐴𝐵’s match in the
graph stream must arrive before 𝐶𝐴’s. Finally, the query has a
window constraint (c), i.e., a match is only meaningful when all
matching edges’ arrival times are within a time window of 5
minutes. (d) shows a snapshot of the graph stream, where a num-
ber in parentheses signifies the arrival time of the edge (traffic
report). An event pattern query requires matching vertex and edge
labels, as well as meeting timing constraints. (d) is not a match
since two edges’ labels “smooth” do not match those in (a). After
3 more units of time (at time 8, assuming it is within 5 minutes),
there is a match as shown in (e), where two new congested edges
appear. Note that 𝑠𝑚𝑜𝑜𝑡ℎ(3) and 𝑐𝑜𝑛𝑔. (6) are for two different
road segments that merge at their common intersection.

Fig. 1. An event pattern query (a, b, c) and its matching in a
traffic stream (d, e). Part (a) of the query is a structural pat-
tern. (b) requires a strict partial order on the matching edge
arrival times. (c) is a window constraint. (d) and (e) are two
snapshots of the graph stream, where (e) contains a match.

This is different from the previous work on subgraph matching
in static graphs (e.g., [9, 17]) in at least three aspects: (1) the
graph stream is dynamic with timestamps on each edge; (2) there
may be a partial order [24] constraint on the timing of edges in the
pattern; (3) there may be a time or count based window within
which the pattern is required to appear. Let us now look at exam-
ples in social network streams.

 (a) (b)
Fig. 2. Queries in LinkedIn streams (a) & Twitter streams (b).
Example 2 (LinkedIn Streams). Fig. 2(a) shows a job market
pattern that can be discovered from the LinkedIn stream, where at
least six people (𝑃1 to 𝑃6) leave company 𝐶1 and subsequently
join company 𝐶2 within a short time window. Such a query pattern

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact copy-
right holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 41st International Conference on Very
Large Data Bases, August 31st – September 4th 2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 4
Copyright 2014 VLDB Endowment 2150-8097/14/12

413

could be of great interest to industry analysts or headhunters.
Here we have two different edge labels: leaving a company (thin
lines in the figure) and joining a company (bold lines). Vertices
with IDs 𝑃1 to 𝑃6 have labels “people”, while 𝐶1 and 𝐶2 have
labels “company”. Vertex/edge labels need to be matched. We
omit the timing order graph (as in Fig. 1b), where a person’s
leaving 𝐶1 (thin edge) must precede his joining 𝐶2 (bold edge).
Example 3 (Twitter Streams). Rumor propagation through
Twitter has become a problem in many parts of the world [22, 25].
It would be useful to monitor, trace, and identify the influential
people who are responsible for the widespread of rumors, but who
may not be the originators. Fig. 2(b) shows a graph pattern that
accomplishes this, where the central big red vertex is the most
influential person with a fan-out at least 𝑓1 (e.g., 𝑓1 = 8); each of
the 𝑓1 vertices on the inner circle has a fan-out at least 𝑓2 (e.g.,
𝑓2 = 4), and so on. The fan-out indicates the number of people the
rumor is spread to. A rumor can be detected from the message
being tweeted or retweeted, and labeled on the edges. Vertices in
general may have two label types: user and message, and the
query in Fig. 2(b) requires all matching nodes to be of type user.
The partial timing order is that an edge must precede its “child”
edges that continue the rumor spread (we omit the timing order
graph and window constraint as in Fig. 1 b, c).

While there has been previous work on subgraph matching
(e.g., [28, 9]) and complex event processing in general data
streams (e.g., [21, 2]), it is inadequate for modeling and solving
the problems that we have just identified. Previous complex event
processing work cannot handle query graph patterns, while previ-
ous subgraph matching work does not deal with window con-
straints, partial timing order, or efficient and incremental match-
ing in real time. In addition to the window and timing constraints,
we show in Section 2 that the matching semantics in the state-of-
the-art work is still insufficient for the graph stream applications.

1.1 Related Work
There is previous work on subgraph pattern matching in static

graphs. Much of it (e.g., [11, 28, 33, 12, 26, 31]) is based on sub-
graph isomorphism (SI). Lee et al. [15] compare five state-of-the-
art SI algorithms in detail. Due to the intractability of SI, approx-
imate matching has been studied [1, 27, 14, 32, 4]. Unlike this
work, we do not allow mismatches or edge-path matches. A recent
approach to cope with the intractability of SI, which is the closest
to ours, is via simulation [19, 13, 9, 8, 17]. Specifically, [9] ex-
tends simulation [13] to allow bounds on the number of hops in
patterns, while [8] has regular expressions as edge constraints.
Their matching algorithms are in cubic time. Besides efficiency, a
primary reason for using simulation-based semantics is its flexi-
bility in identifying more useful matches than SI – which is often
too restrictive; we discuss this in more detail in Sec. 2.

Ma et al. [17] find that the simulation itself in [9, 8] often fails
to capture the topology of query graphs, yielding false matches or
too large a match relation. They rectify this problem by adding
constraints dual simulation and locality [17]. Our query semantics
is based on this; in addition, we observe that it is necessary to also
impose the degree-preserving constraints (Sec. 2). Furthermore,
we propose partial order time constraints and window constraints,
as necessary for event processing over dynamic graph streams. A
major departure of our work from subgraph matching is the focus
on dynamic graph streams, which are fundamentally different
from static graphs. Static graph matching is offline, where one
knows the whole graph ahead, and can build index or extract
neighborhood features. Graph streams require online matching
where edges are revealed one by one. We do not know the whole
graph at once, and must dynamically collect state information.

The concept of graph streams has been studied in previous
work, mostly theoretically (e.g., [6, 18, 10]), with a focus on ap-
proximating various statistics and functions of graph streams. This
line of work studies different problems than ours; none of it deals
with subgraph or event pattern matching. In all this work, a graph
stream is defined as a sequence of edges; we adopt this same no-
tion. The efficiency is measured in the time it requires to process
each edge, the number of passes it makes over the stream, and the
space it uses [10]. In particular, a semi-streaming graph algorithm
is defined as one that accesses the stream in sequential order
𝑃(𝑛,𝑚) passes, uses 𝑇(𝑛,𝑚) time for each edge, and uses
𝑆(𝑛,𝑚) bits of space, where 𝑛, 𝑚 are the number of vertices and
edges, resp., and 𝑆(𝑛,𝑚) is required to be 𝑂(𝑛 ∙ polylog(𝑛)) [10].
Previous work does not have the window concept. One of our
main algorithms (signature) has 𝑂(|𝐸𝑞|) space cost and 𝑂(|𝐸𝑞|)
time cost per edge, while the other (coloring) has 𝑂(|𝐸𝑤|) worst-
case space cost and an amortized 𝑂(1) time cost per edge, where
|𝐸𝑞| , |𝐸𝑤| are the numbers of edges in query graph and in a
stream window, respectively. Both only need a single pass of the
stream. Thus, our algorithms are very efficient.

Subgraph matching is studied under a different graph stream
model [3]. First, there is a fundamental difference in their model.
Their subgraph matching is over each snapshot of the graph
stream individually. They treat each snapshot as a static graph
over which a subgraph is searched for. In other words, they do not
do event reasoning over time. Our matching is over a window
(sequence) of snapshots continuously, and there are partial order
timing constraints on matching edges. Treating each incoming
edge as a simple event, our query semantics is analogous to com-
plex event matching in general data streams (which has sequence
order constraints), and has additional graph structure requirements
specifically for graph streams. For instance, none of Examples 1,
2, and 3 can be expressed with the query semantics in [3], as par-
tial timing order is crucial for defining cause and effect.

The second difference between [3] and our work is that [3] re-
quires each snapshot to be a connected graph. We do not have this
requirement. In fact, dynamic edges in each time window (e.g., a
set of road traffic reports in Example 1) may not form a connected
graph. The third difference is that [3] uses SI, which is an intrac-
table NP-complete problem. Moreover, the matching semantics is
too restrictive to find many useful matches. We discuss this issue
at length in Sec. 2. Last but not least, the filtering approach in [3]
using node-neighbor tree (NNT) works for SI, but not for our
degree-preserving dual simulation (DDS). It can be easily shown
that NNT-based filtering may have false negatives when used for
DDS since SI is more restrictive (Sec. 2). False negatives are not
allowed as that would lose true matches. Furthermore, we find in
experiments (Sec. 5) that the filtering in [3] is much slower than
our proposed algorithms (it is about the same or sometimes even
slower than our baseline method), not to mention it is inapplicable
to our problem due to the lack of event timing support and due to
false negatives, among other aforementioned reasons.

Finally, complex event processing on general data streams has
been studied in research and industry [21, 2, 30]. However, there
is no element of graph structure in their patterns, which is inade-
quate for many modern applications. In summary, to the best of
our knowledge, none of the previous work studies event pattern
matching over graph streams, which includes both sequence pat-
terns within a window (as in complex event processing) and
graph-structural patterns (as in subgraph matching).

1.2 Our Contributions
We formulate the problem and propose a semantics degree-

preserving dual simulation with timing constraints (DDST).

414

DDST captures more topology of a query graph than simulation
[17], yet is still feasible in polynomial time. We show that this
semantics is suitable for graph stream applications. We then focus
on devising efficient online matching algorithms. Our first algo-
rithm is based on number theoretic signatures. The basic idea is
that we create a small signature for the query graph, which cap-
tures key information of the query such as the edge and endpoints’
labels and in/out-degrees of all vertices. This is done one time
offline. Then as edges arrive online, we incrementally calculate
the signature of the stream so far. We show that if there is a true
match, then the signature calculated online must match the query
signature. Thus, only when there is a signature match, do we veri-
fy if it is a true match.

Our second algorithm proceeds by coloring stream edges to
black or red. When an incoming edge matches one in the query,
we color it black; when a black edge’s corresponding adjacent
edges in the query graph are all matched, we upgrade it to red.
When a connected component of red edges becomes large enough,
we verify if it contains a true match. Using an amortized analysis
[5], we prove that the cost of the coloring algorithm is 𝑂(1) per
incoming edge. Hence, it is very fast. Finally, we perform a sys-
tematic empirical study using four real world graph stream da-
tasets in different domains: road networks, social communication
networks, citation networks, and social media. In summary, our
contributions include the following:
• A formulation of the event pattern matching problem in graph

streams and a definition of the matching semantics (Sec. 2).
• A baseline matching algorithm and an efficient algorithm

based on number theoretic signatures (Sec. 3).
• An efficient coloring algorithm for matching, and an amor-

tized analysis of its costs (Sec. 4).
• A comprehensive experimental evaluation using real world

datasets in four domains (Sec. 5).

2. QUERY SEMANTICS
A graph stream 𝒢 = (𝑉,𝐸, 𝐿,𝑇) is a directed graph augmented

with a label function and a timing function, where each item 𝑒 in
the stream is a directed edge 𝑒 ∈ 𝐸, 𝑉 is a set of vertices, 𝐿:𝑉 ∪
𝐸 → Σ is a label function that assigns labels (from the alphabet set
Σ) to vertices and edges, and 𝑇:𝐸 → Γ is a timing function that
assigns timestamps (from the set Γ) to edges. A timestamp indi-
cates the beginning of existence of the edge. Intuitively, items of a
graph stream are edges that arrive in timestamp order.

A query graph 𝒬 = (𝑉𝑞 ,𝐸𝑞 , 𝐿𝑞 ,≺) is also a directed graph,
where 𝑉𝑞 is a set of vertices, 𝐸𝑞 is a set of directed edges, 𝐿𝑞:𝑉𝑞 ∪
𝐸𝑞 → Σ is a label function, and ≺ is a strict partial order relation
[24] on 𝐸𝑞, namely the timing order. Without loss of generality,
we assume 𝒬 is connected; if it contained more than one connect-
ed component, one could equivalently do the matching on multi-
ple connected query graphs.

As discussed in Sec. 1.1, simulation and dual simulation are
well-established and extensively studied semantics for subgraph
matching (e.g., [19, 13, 9, 8, 17]). Intuitively, simulation means
that a subgraph of 𝒢 simulates 𝒬, in that there is a binary match
relation 𝑆 pairing a vertex 𝑢 of 𝒬 with a vertex 𝑣 in 𝒢, such that
they have the same label, and every outgoing edge (𝑢,𝑢′) from 𝑢
in 𝒬 has a matching edge (𝑣, 𝑣′) in 𝒢, where 𝑢′ and 𝑣′ also match
according to 𝑆. The dual simulation is just to add an additional
symmetric constraint: every incoming edge (𝑢′,𝑢) into 𝑢 in 𝒬 also
has a matching edge (𝑣′, 𝑣) in 𝒢, where 𝑢′ and 𝑣′ match according
to 𝑆 too. We make these notions more precise in the DDS defini-
tion below, since both simulation and dual simulation are merely
subsets of the requirements of DDS.

Definition 1. (Degree-preserving Dual Simulation – DDS). We
say that a graph stream 𝒢 matches a query graph 𝒬 via degree-
preserving dual simulation (DDS) if the following condition holds.
∃𝑆 ⊆ 𝑉𝑞 × 𝑉 such that:
(1) ∀(𝑢, 𝑣) ∈ 𝑆, 𝐿𝑞(𝑢) = 𝐿(𝑣).
(2) ∀𝑢 ∈ 𝑉𝑞, ∃𝑣 ∈ 𝑉: (a) (𝑢, 𝑣) ∈ 𝑆.

(b) ∀𝑒𝑞 = (𝑢,𝑢′) ∈ 𝐸𝑞 , ∃𝑓(𝑒𝑞) = (𝑣,𝑣′) ∈ 𝐸 : (𝑢′, 𝑣′) ∈ 𝑆 ∧
𝐿𝑞�𝑒𝑞� = 𝐿(𝑓(𝑒𝑞)) ; moreover, for any two such edges
𝑒𝑞

(1) and 𝑒𝑞
(2) in 𝐸𝑞: 𝑒𝑞

(1) ≠ 𝑒𝑞
(2) → 𝑓(𝑒𝑞

(1)) ≠ 𝑓(𝑒𝑞
(2)).

(c) ∀𝑒𝑞 = (𝑢′,𝑢) ∈ 𝐸𝑞 , ∃𝑔(𝑒𝑞) = (𝑣′,𝑣) ∈ 𝐸 : (𝑢′, 𝑣′) ∈ 𝑆 ∧
𝐿𝑞�𝑒𝑞� = 𝐿(𝑔(𝑒𝑞)) ; moreover, for any two such edges
𝑒𝑞

(1) and 𝑒𝑞
(2) in 𝐸𝑞: 𝑒𝑞

(1) ≠ 𝑒𝑞
(2) → 𝑔(𝑒𝑞

(1)) ≠ 𝑔(𝑒𝑞
(2)).

The binary match relation 𝑆 in Definition 1 describes how ver-
tices in 𝒬 are matched with vertices in 𝒢 . Condition (1) above
requires that two such matching vertices have the same label.
Condition (2a) says that every vertex in 𝒬 has a matching vertex
in 𝒢. Condition (2b) further stipulates that each outgoing edge 𝑒𝑞
from 𝑢 in 𝒬 has a matching edge 𝑓(𝑒𝑞) in 𝒢 (with the same label
and matching endpoints), where 𝑓(⋅) is a function. Moreover,
𝑓(𝑒𝑞) is distinct – two different outgoing edges must have differ-
ent matching edges. Similarly, condition (2c) says the same about
incoming edges to 𝑢. Informally, for a pair of matching vertices 𝑢
and 𝑣 , conditions (2bc) ensure 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒(𝑢) ≤ 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)
and 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒(𝑢) ≤ 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒(𝑣), hence the name degree-
preserving, which is the only additional constraint beyond dual
simulation [17]. That is, simulation is simply conditions (1), (2a),
and (2b) except the last distinctness constraint in (2b), while dual
simulation also includes (2c) except the distinctness constraint.

Preliminaries on match graphs [17]. Consider a match relation
𝑆 ⊆ 𝑉𝑞 × 𝑉. The match graph w.r.t. 𝑆 is a subgraph 𝐺(𝑉𝑠 ,𝐸𝑠) of 𝒢,
in which (1) a node 𝑣 ∈ 𝑉𝑠 iff it is in 𝑆, and (2) an edge (𝑣,𝑣′) ∈
𝐸𝑠 iff there exists an edge (𝑢,𝑢′) in 𝒬 and (𝑣, 𝑣′) is its matching
edge. Theorem 2 in [17] proves that any connected component 𝐺𝑐
of the match graph of a dual simulation is itself a match graph
between 𝒬 and 𝐺𝑐. In other words, each connected component of a
match graph contains at least one match instance of 𝒬.

Since DDS implies dual simulation, and its only extra require-
ment is for each connected component independently (i.e., on the
number of matching edges incident to a vertex), it follows that a
match graph of DDS also consists of one or more connected com-
ponents, each of which contains at least one match instance of 𝒬.
We call each of these connected components a match component.

(a) (b)

Fig. 3. A query graph 𝓠 (a) and its match graph (b) within 𝓖
in detecting community [23] in the periphery nodes using the
Phone dataset [7].

Here is a simple example. Fig. 3(a) shows a query graph 𝒬 on
the phone-call network data in the MIT Reality Mining dataset [7].
There are two types of vertices, the core and the periphery (la-
beled 𝐶 and 𝑃, resp.). The majority of phone calls in the dataset
are between a core node and a periphery node. A directed edge
indicates “who called whom”, with a label such as 𝐿 (for a long
duration – at least 15 minutes) or 𝑆 (short). The edge labels in 𝒬
are all 𝐿. 𝒬 is used for community detection in the periphery nodes,
an interesting problem studied in various networks (e.g., friend-

415

ship, collaboration, transportation, and voting) [23]. Intuitively,
people in the periphery who have close interactions with the same
set of core people (at least 2 long calls in both directions) tend to
be in the same community. Fig. 3(b) shows a match component as
a subgraph of the graph stream 𝒢 via DDS. In Definition 1, the
three 𝑃 nodes in 𝒬 are matched with the three 𝑃 nodes in Fig. 3(b),
while the first (second, resp.) two 𝐶 nodes in 𝒬 are both matched
with the first (second, resp.) 𝐶 node in Fig. 3(b). It is easy to veri-
fy that the degree-preservation requirements are satisfied too.

Note that such a match cannot be found via subgraph isomor-
phism (e.g., [1, 11]). However, it is clear that this match is desira-
ble for community detection because any number of people in the
core may be involved, and we are interested in finding a maxi-
mum set of people in the periphery who are in the same communi-
ty (which could be more than three). Subgraph isomorphism (SI)
is too restrictive to find such interesting matches. This is also
observed in previous work on simulation [9] and dual/strong sim-
ulation [17]. Many more query examples are given there, includ-
ing drug trafficking and social matching [9, 17] – there is an in-
creasing need to characterize and find certain “communities” in
many arising applications such as social networks.

DDS strikes a balance between semantics flexibility and query
graph topology preservation. Dual/strong simulation [17] already
preserves query graph properties such as child-relationship, par-
ent-relationship, connectivity, and cycles. DDS additionally pre-
serves matching vertex degrees (the cardinality of matching edg-
es), which intuitively indicates the intensity of a relationship, and
is necessary for almost all the applications that we observe. For
instance, in Fig. 3(a), the degree at a 𝑃 nodes indicates many (at
least 4) calls. Likewise, in Fig. 1(a), without degree preservation,
roads 𝐶𝐴 (𝐷𝐶, resp.) and 𝐸𝐴 (𝐹𝐸, resp.) could match to the same
road in 𝒢 – resulting in only one branch of congested roads, which
is clearly not the intended match. In Fig. 2(a), without degree
preservation, a matching instance might only contain companies
with small node degrees, which makes the result meaningless. In
Fig. 2(b), the fan-out values 𝑓1 and 𝑓2 in 𝒬 are also not necessarily
observed in a matching instance in 𝒢 with just dual simulation.

Furthermore, the SI problem is NP-complete, while simulation-
based algorithms are much more efficient (cubic-time) [9, 17].
This is especially important for online graph stream matching to
meet real-time requirements. As reported in [17], 70%-80%
matches found by dual/strong simulation are those found by SI.
Thus, even if (in rare occasions) SI were required, DDS would be
an effective preprocessing filter. Finally, DDS (or dual simulation)
presents result as a succinct match graph. SI may result in an ex-
ponential number of subgraph matches [9, 17], difficult to exam-
ine and use. We now add timing constraints to the semantics.
Definition 2. (Degree-preserving Dual Simulation with Timing
Constraints – DDST). A graph stream 𝒢 matches a query graph
𝒬 via DDST if, in addition to the matching conditions in DDS, (1)
for any edge 𝑒 in a match component in 𝒢, there exists a set of
edges in the same match component such that they together
(based on their timestamps) conform to all timing constraints ≺ in
𝒬, and (2) the timestamps of all edges in a match component must
be within a window of size 𝑤. Finally, all match instances must be
reported in the match graph.

Without loss of generality, we assume the window is time-
based (count-based window is equivalent to having timestamps as
natural numbers). Consider a time window [𝑡 − 𝑤, 𝑡], where 𝑡 is
the current time. We say that edge 𝑒 expires or leaves the window
if its timestamp 𝑇(𝑒) < 𝑡 − 𝑤. Note that it is straightforward to
add the locality property to matching semantics, making it a de-
gree-preserving strong simulation [17]. One just needs to run the

same matching algorithm over each ball in the graph to ensure the
locality [17]. Moreover, locality is a lesser concern since we have
window constraints (which restrict the scale of a matching in-
stance), and since it is easy to filter out any unwanted match in-
stance within a connected component. Therefore, we focus on the
core technical challenge DDST, and our goal is to report matches
as soon as they appear, in an online manner.

3. NUMBER THEORETIC SIGNATURES
We start with devising a baseline solution. Then we propose a

more efficient method based on some basic number theory.

3.1 Baseline Solution
We first look at the partial order timing constraints, which can

be modeled by a timing graph 𝒯 of the query graph 𝒬 as follows:
Each edge 𝑒 of 𝒬 corresponds to a vertex 𝑣(𝑒) in 𝒯 . For each
timing relation 𝑒1 ≺ 𝑒2 (where 𝑒1 and 𝑒2 are edges) in 𝒬, there is
a directed edge from 𝑣(𝑒1) to 𝑣(𝑒2) in 𝒯.
Example 4. Fig. 1(b) is the timing graph for the query graph in
Fig. 1(a). Each edge in Fig. 1(a) (e.g., 𝐴𝐵) maps to a vertex (e.g.,
𝐴𝐵) in Fig. 1(b). A directed edge from vertices 𝐴𝐵 to 𝐶𝐴 in Fig.
1(b) indicates that, in Fig. 1(a), edge 𝐴𝐵 must be matched before
edge 𝐶𝐴. Likewise, other edges in Fig. 1(b) correspond to other
strict partial order relationship (precedence) in Fig. 1(a).

The basic idea of the baseline algorithm below is to first call the
dual simulation algorithm in previous work [17], which gives us a
starting point. We then repeatedly remove edges that violate tim-
ing constraints with the aid of the timing graph as described above,
and remove matching edges that do not preserve the degrees of
vertices in 𝒬, until we get a stable set of matching edges.

Algorithm DDST (𝒢,𝒬,𝑤)
Input: 𝒢: graph stream, 𝒬: query graph, 𝑤: window size
Output: match graphs of 𝒬 in 𝒢
1. for each time window 𝐺 of size 𝑤 in 𝒢 do
2. 𝑆 ← DualSim(𝒬, 𝐺) //call dual simulation method in [17]
3. if 𝑆 = ∅ then continue //𝑆 is the vertex match relation
4. Construct edge match relation 𝑆𝑒 & match graph 𝐺𝑚 from 𝑆
5. while there are changes do
6. //remove match edges that violate time constraints
7. for each connected component 𝐶𝑚 in 𝐺𝑚 do
8. // Let 𝒯 be the timing graph of 𝒬
9. for each node 𝑣 of 𝒯 in topological sort order do
10. 𝑒𝑞 ← the edge in 𝒬 that corresponds to 𝑣
11. 𝐸𝑚 ← set of edges in 𝐶𝑚 that matches 𝑒𝑞
12. 𝑡𝑠(𝑣) ← min𝑒∈𝐸𝑚 && 𝑡𝑠(𝑒)>𝑡𝑠(𝑢),∀𝑢∈𝑝𝑟𝑒(𝑣) 𝑡𝑠(𝑒)
13. Remove (𝑒𝑞 ,𝑒) from 𝑆𝑒 for 𝑒 ∈ 𝐸𝑚, 𝑡𝑠(𝑒) < 𝑡𝑠(𝑣)
14. for each node 𝑣 of 𝒯 in reverse topological order do
15. 𝑒𝑞 ← the edge in 𝒬 that corresponds to 𝑣
16. 𝐸𝑚 ← set of edges in 𝐶𝑚 that matches 𝑒𝑞
17. 𝑡𝑠(𝑣) ← max𝑒∈𝐸𝑚 && 𝑡𝑠(𝑒)<𝑡𝑠(𝑢),∀𝑢∈𝑝𝑜𝑠𝑡(𝑣) 𝑡𝑠(𝑒)
18. Remove (𝑒𝑞 ,𝑒) from 𝑆𝑒 for 𝑒 ∈ 𝐸𝑚, 𝑡𝑠(𝑒) > 𝑡𝑠(𝑣)
19. //check degree preservation
20. for each connected component 𝐶𝑚 in 𝐺𝑚 do
21. for each vertex 𝑢 in 𝒬 do
22. for each vertex 𝑣 ∈ 𝑠𝑖𝑚(𝑢) ∩ 𝐶𝑚 do
23. if each edge incident to 𝑢 in 𝒬 corresponds to
 a distinct edge incident to 𝑣 in 𝐶𝑚
24. then continue
25. else 𝑠𝑖𝑚(𝑢) ← 𝑠𝑖𝑚(𝑢) − {𝑣}
26. update 𝑆𝑒 and 𝐺𝑚
27. return 𝐺𝑚 and 𝑆𝑒 if nonempty

416

In line 2, DDST calls the dual simulation method DualSim in
[17] with a minor modification where we also check edge label
match (as the graph model in [17] only has vertex labels). Du-
alSim returns a match relation 𝑆 between vertices in 𝒬 and verti-
ces in 𝒢. Following the definition of a match graph in Sec. 2, it is
easy to construct the match graph and edge match relation in line
4. Analogous to 𝑆, an edge match relation is 𝑆𝑒 ⊆ 𝐸𝑞 × 𝐸, a set of
matching pairs between a 𝒬 edge and a 𝒢 edge. Note that, as Du-
alSim, the match graph contains all match instances.

In lines 6-18, DDST removes the edges that violate the timing
order constraints. In particular, the timing graph in line 8 is de-
scribed earlier (Example 4). In general, more than one edge in the
match graph may match an edge in 𝒬; thus lines 10-11 get a set
𝐸𝑚. From the timestamps of the edges in 𝐸𝑚, line 12 picks a min-
imum one to assign it to node 𝑣 in the timing graph (𝑡𝑠(𝑣)) with-
out violating the order constraints. Here 𝑝𝑟𝑒(𝑣) denotes the set of
vertices 𝑢 where (𝑢, 𝑣) is an edge in the timing graph. Intuitively,
all nodes in 𝑝𝑟𝑒(𝑣) must have an earlier timestamp than 𝑣. Hence,
we can safely remove all edges in 𝐸𝑚 whose timestamp is earlier
than this minimum possible value from the edge match relation 𝑆𝑒
(line 13). The 𝑝𝑜𝑠𝑡(𝑣) in line 17 is analogously defined, and lines
14-18 remove from 𝑆𝑒 for all edges with too large timestamps.
Note that an edge is entirely removed from 𝐶𝑚 and the match
graph if all its entries in 𝑆𝑒 are removed.
Example 5. Let us take a small piece of the timing graph in Fig-
ure 1(b) – three nodes AB, CA, DC are a subsequence of any top-
ological sort order. Suppose AB matches three edges in the match
component and their timestamps are {30, 40, 90} , CA matches
three edges with timestamps {2, 45, 100}, and DC matches two
edges with timestamps {50, 95}. For illustration, we ignore other
nodes. In lines 9-13, 𝑡𝑠�𝐴𝐵� = 30, 𝑡𝑠�𝐶𝐴� = 45 since it has to
be greater than its predecessor AB. Thus the possible match edge
“2” of CA is removed from 𝑆𝑒. Then 𝑡𝑠�𝐷𝐶� = 50. Lines 14-18
proceed in the reverse order. 𝑡𝑠�𝐷𝐶� = 95 and 𝑡𝑠�𝐶𝐴� = 45 ;
thus the match edge “100” of CA is removed from 𝑆𝑒. Finally,
𝑡𝑠�𝐴𝐵� = 40, and edge “90” of AB is removed from 𝑆𝑒.

Lines 19-26 ensure degree preservation. 𝑠𝑖𝑚(𝑢) in line 22 de-
notes the set of vertices in the match graph that match 𝑢 in 𝒬,
based on the match relation 𝑆 (line 2). Finally, line 27 returns the
match graph and edge match relation if they are not empty.

Theorem 1. Algorithm DDST correctly finds the match graph
and match relation that exactly contain all match instances.
Proof sketch. The algorithm first finds the vertex match relation
𝑆 based on dual simulation as proved in [17]. By the definition of
strict partial order relation [24] (transitivity and irreflexivity), the
timing graph must be a directed acyclic graph (DAG). Thus, a
topological sort order is valid in lines 9 and 14. As shown above,
lines 9-13 (resp. lines 14-18) remove matches where the
timestamps of the matching edges are too small (resp. too large),
and lines 20-26 remove matches where the node degrees are not
preserved. These need to be repeated until no more removals (the
while loop between lines 5 and 26) since the removal of edges
might trigger more removals. Finally, the returned match graph
must satisfy all constraints in Definition 2 and the algorithm also
does not miss any matches. □

As shown in [17], the dual simulation has a cost 𝑂(��𝑉𝑞� +
�𝐸𝑞��(|𝑉| + |𝐸|)) time. Since 𝒬 is connected and we only consid-
er a vertex in the window if it is an endpoint of an edge in the
window, this is the same as 𝑂(�𝐸𝑞� ∙ |𝐸𝑤|) , where |𝐸𝑤| is the
number of edges in a window. Constructing 𝑆𝑒 and 𝐺𝑚 in line 4

also takes no more than 𝑂(�𝐸𝑞� ∙ |𝐸𝑤|). Finally, the while loop in
lines 5-26 has a worst case cost of 𝑂(|𝑆𝑒|2), where 𝑆𝑒 is the edge
match relation after dual simulation, since each loop (except the
last one) at least removes one entry from 𝑆𝑒 and each loop costs
𝑂(|𝑆𝑒|) . Thus, the overall cost of algorithm DDST is (�𝐸𝑞� ∙
|𝐸𝑤| + |𝑆𝑒|2) per window (i.e., per item in the stream).

3.2 Number Theoretic Signature Method
We present a more efficient method based on number theoretic

signatures. The main idea is that we try to encode the structure of
query graph 𝒬 into a concise signature 𝜎. Intuitively, 𝜎 is the mul-
tiplication product of some factors. Each factor contains infor-
mation of nodes, or edges, or node degrees of 𝒬. Given 𝒬, 𝜎 can
be pre-computed offline.

When each edge in 𝒢 arrives online, we also compute a signa-
ture 𝑠 for the current 𝒢 in the same manner. As a result, if 𝒬 has a
match in 𝒢, then 𝜎 must divide 𝑠 (i.e., all the factors of 𝜎 are also
in 𝑠), which we call a signature match. The key is that the signa-
ture computation and divisibility tests must be efficient. Hence,
the algorithm saves costs by using the signature tests as a filter.

While the basic idea above is simple, there are some subtle de-
tails. For example: (1) What do we use as the factors? (2) Since
graphs are large, a signature 𝑠 or 𝜎 (as a product) can be a very
large number, which makes the divisibility tests and multiplica-
tions slow. For issue (1), there are two types of factors: edge fac-
tors and degree factors. Since an edge match requires label match
of the edge and two endpoints, an edge factor encodes these three
labels. The degree factors are designed for degree preservation.
For example, a vertex 𝑣 that has an in-degree 5 and an out-degree
3 will produce 8 degree factors (𝑟 + 1)(𝑟 + 2) … (𝑟 + 5)(𝑟 −
1)(𝑟 − 2)(𝑟 − 3), where 𝑟 is a random value assigned to the label
of 𝑣. As each edge of 𝒢 streams in, the in-degree and out-degree
of 𝑣 will increase by one at a time. Thus each time we only multi-
ply a factor 𝑟 + 𝑖 (𝑟 − 𝑖, resp.) into the product (i.e., signature 𝑠),
if 𝑣’s in-degree (out-degree, resp.) is just changed to 𝑖. In this way,
only when the degree of 𝑣 in 𝒢 is at least as large as its matching
vertex 𝑢 in 𝒬 (i.e., degree preserving), could 𝜎 possibly divide 𝑠
(signature match).

For issue (2) above, we first make each factor be in a finite field
𝐺𝐹(𝑝) (i.e., mod a prime number 𝑝) [16], which, as we show later,
ensures a low collision probability. Secondly, we break 𝒬’s signa-
ture 𝜎 (which could be very large) into several small values
𝜎[0], … ,𝜎[𝑐] (each is an integer) in such a way that 𝒢’s signature
𝑠 is divisible by 𝜎 implies that 𝑠 is divisible by 𝜎[𝑖] each. For this
reason, we also do not need to maintain a large 𝑠 value online, but
only 𝑠[0], … , 𝑠[𝑐], and always do 𝑠[𝑖] 𝑚𝑜𝑑 𝜎[𝑖]. Note that, when
there is a signature match, it is still possible that 𝒬 does not really
have a match in 𝒢; thus we need to verify if it is a true match.

The algorithm, DDST-SIGNATURE as shown below, has an
offline part and an online part. The offline part preprocesses the
query graph 𝒬 and produces a small number of integer signatures
𝜎[0], … ,𝜎[𝑐]. Then the online part will process each incoming
edge and check if there is a match with the signatures from 𝒬.

The offline algorithm first assigns a random integer in [0,𝑝) to
each distinct edge and vertex label value (lines 1-2). We will dis-
cuss the choice of 𝑝 near the end of this section. In a nutshell, a
wide range of 𝑝 values (e.g., from 97 to 997) will work well. The
offline algorithm iterates through each edge in 𝒬 and calculates
the “edge factor” (line 5). If the current signature value is within
the size of an integer, the new edge factor is multiplied into it;
otherwise a new signature integer value is initiated (lines 6-7).
Similarly, the algorithm goes through each vertex and calculates
the degree factors (lines 8-12). For clarity, we omit the step in

417

lines 10 and 12 that checks if 𝜎[𝑐] exceeds the size of an integer
and starts a new integer if so (same as in lines 6-7). The offline
algorithm produces signature values 𝜎[0], … ,𝜎[𝑐]. Note that the
signature value is really ∏ 𝜎[𝑖]𝑐

𝑖=0 (denoted as 𝜎�), a very large
number; we break 𝜎� down to 𝜎[0], … ,𝜎[𝑐] for arithmetic opera-
tion efficiency as seen below.

Algorithm DDST-SIGNATURE (𝒢,𝒬,𝑤)
Input: 𝒢: graph stream, 𝒬: query graph, 𝑤: window size
Output: match graphs of 𝒬 in 𝒢
Offline: //compute 𝒬’s signature and store it into 𝜎[∙]
1. for each vertex and edge label value 𝑙 appearing in 𝒬 do
2. 𝑟[𝑙] ← 𝑟𝑎𝑛𝑑(0,𝑝) //assign a random value in [0, 𝑝)
3. 𝑐 ← 0; 𝜎[𝑐] ← 1 //start to compute 𝒬’s signature 𝜎[∙]
4. for each edge 𝑒𝑞 = (𝑢,𝑣) in 𝒬 do //multiply all edge factors
5. 𝜎𝑒 ← �𝑟�𝐿𝑞(𝑢)� − 𝑟�𝐿𝑞(𝑣)� + 𝑟�𝐿𝑞�𝑒𝑞��� 𝑚𝑜𝑑 𝑝
6. if 𝜎[𝑐] ∗ 𝜎𝑒 within an integer size then 𝜎[𝑐] ← 𝜎[𝑐] ∗ 𝜎𝑒
7. else 𝑐 ← 𝑐 + 1; 𝜎[𝑐] ← 𝜎𝑒 //start a new integer
8. for each vertex 𝑣 in 𝒬 do //multiply all degree factors
9. for each 𝑖 ← 1 𝑡𝑜 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) do
10. 𝜎[𝑐] ← 𝜎[𝑐] ∗ ��𝑟�𝐿𝑞(𝑣)�+ 𝑖� 𝑚𝑜𝑑 𝑝�
11. for each 𝑖 ← 1 𝑡𝑜 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) do
12. 𝜎[𝑐] ← 𝜎[𝑐] ∗ ��𝑟�𝐿𝑞(𝑣)� − 𝑖� 𝑚𝑜𝑑 𝑝�
Online: //as each edge comes in, compute 𝒢’s signature mod 𝜎[∙]
1. for each 𝑖 ← 0 𝑡𝑜 𝑐 do 𝑠[𝑖] ← 1 //𝑠[∙] is 𝒢’s signature
2. for each new edge 𝑒 = (𝑢,𝑣) in 𝒢 do
3. 𝜎𝑒 ← (𝑟[𝐿(𝑢)] − 𝑟[𝐿(𝑣)] + 𝑟[𝐿(𝑒)]) 𝑚𝑜𝑑 𝑝 //edge factor
4. 𝜎𝑢 ← �𝑟[𝐿(𝑢)] − 𝑜𝑢𝑡𝑁𝑢𝑚(𝑢, 𝑒)� 𝑚𝑜𝑑 𝑝 //degree factors
5. 𝜎𝑣 ← �𝑟[𝐿(𝑣)] + 𝑖𝑛𝑁𝑢𝑚(𝑣, 𝑒)� 𝑚𝑜𝑑 𝑝
6. for each 𝑖 ← 0 𝑡𝑜 𝑐 do
7. 𝑠[𝑖] ← (𝑠[𝑖] ∗ 𝜎𝑒 ∗ 𝜎𝑢 ∗ 𝜎𝑣) 𝑚𝑜𝑑 𝜎[𝑖] //so 𝑠[𝑖] ≤ 𝜎[𝑖]
8. if 𝑠[0. . 𝑐] = 0�⃑ then //i.e., all 𝑠[𝑖] = 0, signature match
9. Run DDST for the last window
10. Recompute 𝑠[0. . 𝑐] from match position or last window

The online algorithm tries to collect the edge factors and degree
factors incrementally from stream. As a new edge arrives, it calcu-
lates the two types of factors in lines 3-5. Let 𝑆 be the product of
all the factors in 𝒢 produced in lines 2-5 (a very large number). If
there is a match of 𝒬, then 𝒬’s signature 𝜎� (from above) must be a
divisor of 𝑆. But since 𝜎� and 𝑆 are both large numbers (e.g., thou-
sands of bits) and operations on them are very slow, we decom-
pose 𝑆 into 𝑐 + 1 components 𝑠[0] , …, 𝑠[𝑐] , where 𝑠[𝑖] =
𝑆 𝑚𝑜𝑑 𝜎[𝑖] (line 7). If 𝜎� is a divisor of 𝑆, then 𝑠[𝑖]’s are all 0.
Thus, if 𝑠[𝑖]’s are all 0, it is a signature match (line 8), for which
we need to run the slow algorithm DDST (presented earlier), but
for the most recent window only (line 9).

Note that we only need to deal with incoming edges, but not
the edges leaving the current window (as division will not work in
general after 𝑚𝑜𝑑 𝜎[𝑖]). When we do find a signature match (line
8), we retrieve only the last window of edges, and verify if there is
indeed a true match (so the result is still correct). Whether or not it
is a true match, we need to resume the signature computation in
line 10. Let the edges in the last window be 𝑒1, … , 𝑒𝑤 in time or-
der. If it is a true match, during verification, we have identified
the earliest edge in the last window that contributes to the match
graph; let it be 𝑒𝑖 . Then we resume the signature computation
from 𝑒𝑖+1. If it is not a true match, we resume the signature com-
putation from 𝑒2. As in the baseline algorithm, all match instances
will be found (Theorem 3 below).
Example 6. Suppose Fig. 4(a) is the query graph 𝒬 and Fig. 4(b)
shows the graph stream 𝒢. Each number at a vertex is the vertex
label, while each underlined number is an edge label. Fig. 4(c)

shows the random values (𝑟) chosen for each vertex and edge
labels (𝐿) where 𝑝 = 17. First look at the offline algorithm that
calculates the signature of 𝒬. It goes through each edge and gets:
(9 − 3 + 16)(6− 9 + 16)(9 − 14 + 7) = 130. Note that it ap-
plies 𝑚𝑜𝑑 17 to each of the three factors and gets the product
130. It then gets the degree factors (9 + 1)(9 − 1)(9 − 2) = 560.
Finally, the signature has only one value 𝜎[0] = 130 × 560 =
72800 since it is within the size of an integer (i.e., 𝑐 = 0). Sup-
pose the edges in 𝒢 arrive in this order: (0, 2), (3, 2), (3, 0) with
label 2, (3, 0) with label 1, and (0, 1). When (0, 2) arrives, the
online algorithm computes [0] = (9 − 14 + 7)(9 − 1)(14 +
1) = 240 (𝑚𝑜𝑑 72800). It continues for each incoming edge.
After each of the other four edges, 𝑠[0] becomes 16000, 12000,
52000, and 0, respectively. Now there is a signature match (note
𝑐 = 0). Line 9 will find that it is a true match of 𝒬.

 (a) (b) (c)
Fig. 4. The signature algorithm with query graph (a), graph
stream (b), and the random values (𝒓) for each vertex and
edge label (𝑳), shown in (c). 0-3 are vertex labels while 1 and 2
are edge labels.

We first show the effectiveness of the signatures.

Theorem 2. We have the following: (1) If two edges are different
in at least one endpoint label or the edge label, then the probabil-
ity that they have the same edge factor is 1/𝑝. (2) The probability
that a degree factor happens to be the same as an edge factor is
1/𝑝. (3) The probability that two degree factors out of two verti-
ces with different labels happen to be the same is 1/𝑝.
Proof. For an edge 𝑒1 = (𝑢1, 𝑣1), the edge factor is 𝑓1 = 𝑟(𝑢1) −
𝑟(𝑣1) + 𝑟(𝑒1) , where 𝑟(∙) denotes the random integer value in
[0, 𝑝 − 1] chosen for the vertex or edge. Similarly, for 𝑒2 =
(𝑢2,𝑣2), 𝑓2 = 𝑟(𝑢2) − 𝑟(𝑣2) + 𝑟(𝑒2). Since the sum or the dif-
ference (𝑚𝑜𝑑 𝑝) of two independent values that are chosen uni-
formly at random from [0, 𝑝 − 1] is also a value chosen uniformly
at random from [0,𝑝 − 1] , it follows that
Pr[𝑓1 = 𝑓2 | 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡] = 1/𝑝, proving (1).

In (2), a degree factor is 𝑓1 = 𝑟(𝑢1) + 𝑖 (1 ≤ 𝑖 ≤ 𝑑𝑖) for an in-
degree 𝑑𝑖 (out-degree is similar), while an edge factor is 𝑓2 =
𝑟(𝑢2) − 𝑟(𝑣2) + 𝑟(𝑒2). Thus, due to the same reason as the proof
of (1), and in addition, a random value plus/minus a constant
(𝑚𝑜𝑑 𝑝) is also a uniformly random value, (2) must be true. It is
easy to see that (3) must also be true for the same reason. □

In addition to Theorem 2, for two vertices with the same label
but different in-degrees (resp. out-degrees), the one with greater
in-degree (resp. out-degree) will have extra degree factors. We
have the following theorem for the correctness of the algorithm.

Theorem 3. Algorithm DDST-SIGNATURE is correct: whenever
there are matches of the query graph following the DDST defini-
tion in the most recent window, the condition in line 8 of the
online algorithm will be true, and the DDST baseline algorithm
will be run for the last window only, to report all match instances.
Proof. The offline algorithm generates an edge factor for each
edge in 𝒬 , and 𝑑𝑖 + 𝑑𝑜 degree factors for each vertex with in-
degree 𝑑𝑖 and out-degree 𝑑𝑜 in 𝒬. The product of these factors is
spread into 𝑐 + 1 integers 𝜎[0], … ,𝜎[𝑐] . The online algorithm
similarly computes the product of the edge factors as each edge
streams in, as well as the degree factors. Note that the degree fac-

418

tors will be all accounted for when the in-degree and out-degree
of a vertex in 𝒢 is at least as great as the matched vertex in 𝒬. The
product of these factors in 𝒢 is reduced down with modular arith-
metic into 𝑐 + 1 values 𝑠[0], … , 𝑠[𝑐] (by 𝜎[0], … ,𝜎[𝑐] , resp.).
Therefore, 𝑠[0], … , 𝑠[𝑐] must all be 0 (line 8) when all the factors
in 𝒬 are present, which is the case when a true match instance
following DDST semantics has occurred. □

As discussed above, a salient advantage of reducing down an
otherwise very large factor product value in 𝒢 into 𝑐 + 1 integer
values 𝑠[0], … , 𝑠[𝑐] through modular arithmetic is the efficiency.
Let us now study the efficiency of the online algorithm, and in
particular, the connection between the parameter 𝑝 and the num-
ber of signature values 𝑐 + 1. We have the following result.

Theorem 4. The number of integer signature values satisfies:
𝑐 + 1 ≤ 3log 𝑝

𝑠𝑖𝑧𝑒−log 𝑝
|𝐸𝑞|, where |𝐸𝑞| is the number of edges in the

query graph, and 𝑠𝑖𝑧𝑒 is the number of bits of an integer (or a
machine word that allows efficient arithmetic operations).
Proof. The offline algorithm shows that each of the |𝐸𝑞| edges
produces a factor, and that each vertex produces a number of fac-
tors same as its degree. Since the sum of the degrees of all vertices
is 2|𝐸𝑞|, it follows that there are all together 3|𝐸𝑞| factors from 𝒬,
each of which is a random integer value in [0,𝑝 − 1]. Hence:
 𝑝3�𝐸𝑞� ≥ ∏ 𝜎[𝑖]𝑐

𝑖=0 (1)
Moreover, each of the 𝜎[𝑖] values would exceed the capacity of

an integer/word if multiplying an additional factor (lines 6-7 of
offline). Hence:

 𝜎[𝑖] ≥ 2𝑠𝑖𝑧𝑒

𝑝
 (2)

Combining (1) and (2) gives 𝑝3�𝐸𝑞� ≥ �2
𝑠𝑖𝑧𝑒

𝑝
�
𝑐+1

. Taking the log of
both sides of this inequality gives the result in the theorem. □

From Theorem 4, the cost of the major part of the online algo-
rithm is 𝑂(�𝐸𝑞�), except for the slow verification using baseline in
line 9 when signature matches. Typically a query graph is not very
large in practice, and word 𝑠𝑖𝑧𝑒 may be 32 or greater; hence the
number of signature values 𝑐 + 1 is small. Theorem 2 shows that
a greater 𝑝 value makes factor collision less likely (hence signa-
ture filtering more effective), but may also make 𝑐 + 1 greater.
Our experiments (Section 5) show that a wide range of 𝑝 values
(e.g., from 97 to 997) will work almost equally well.

4. COLORING ALGORITHM
We present a different efficient algorithm for online DDST

matching. The algorithm proceeds by coloring the edges in graph
stream into black or red. The high level idea is that an incoming
edge 𝑒 is first colored black if it matches some edge in 𝒬. Edge 𝑒
is further colored red if it not only matches an edge 𝑒𝑞 in 𝒬, but
all 𝑒𝑞’s adjacent edges (in 𝒬) also have matches in 𝒢 next to 𝑒. By
doing this, when we have a red edge component that contains all
edges in 𝒬, we verify if we have a true match. Intuitively, it is not
easy for an edge to be red, because that requires the match of all
its neighbors as well (preserving the degrees of its two endpoints).
Thus, except for true matches, red edges caused by “chance”
should be relatively rare. Furthermore, the coloring is incremental,
since the impact of a new edge 𝑒 is only “local”. That is, we only
check if we need to color 𝑒, or any of its adjacent edges (which
could turn from black to red due to the newly matched 𝑒). Any
edges farther away are not touched, which keeps the cost down.

When should we verify if a connected component of red edges
(called red component) truly contains a match instance or not? We
do so when the red component is large enough and at least con-

tains a match for every edge in 𝒬. Thus, we maintain some simple
statistics of a red component in a data structure called countMap.
A countMap has a counter for each edge 𝑒𝑞 in 𝒬, which records
how many red edges in the component match 𝑒𝑞. The counter is
updated as edges come and go. When all |𝐸𝑞| counters are greater
than 0, we verify if the red component has a true match.

The final point is that we need to efficiently maintain each red
component and its countMap. Two red components may be
merged into one, as their red edges become connected. In this case,
their countMaps need to be merged too. Where should we put the
countMaps for each red component so that operations on them are
efficient as each edge streams in? The idea is that each red com-
ponent has one red edge called the master edge, which stores the
countMap. Every other red edge in that component has an edge
pointer. The pointer may not directly point to the master, but
through a chain of edges (a linked list via the pointers) it must
reach the master. Clearly it would be costly to follow a long chain.
The trick is that, whenever we follow a chain to reach the master,
we modify all pointers in the chain to directly point to the master.
We prove that the amortized cost per incoming edge is only 𝑂(1).
We are now ready to present algorithm COLOR-EDGE below.

Algorithm COLOR-EDGE (𝒢,𝒬,𝑤)
Input: 𝒢: graph stream, 𝒬: query graph, 𝑤: window size
Output: none
1. upon an incoming edge 𝑒 = (𝑢,𝑣) in 𝒢 do
2. 𝑀𝑒 ← set of edges in 𝒬 that 𝑒 matches (on 𝑢,𝑣, 𝑒’s labels)
3. if 𝑀𝑒 = ∅ then continue //𝑒 has no match; do nothing
4. Color 𝑒 black
5. for each 𝑒𝑞 = (𝑠, 𝑡) ∈ 𝑀𝑒 do //for each edge 𝑒 matches
6. if all edges incident to 𝑠 or 𝑡 in 𝒬 have a match in 𝒢
 then //color 𝑒 red, & find master edge for countMap
7. if 𝑢 has red edges incident to it then //find the master
8. 𝐸𝑢 ← chain of edges to master edge 𝑒𝑢
9. if 𝑣 has red edges incident to it then //find the master
10. 𝐸𝑣 ← chain of edges to master edge 𝑒𝑣
11. if 𝑒𝑢 & 𝑒𝑣 both exist and are different then //merge
12. Pick any one of them as the new master
13. Union 𝑒𝑢 & 𝑒𝑣’s countMap for the new master
14. Update all 𝑒 ∈ 𝐸𝑢 ∪ 𝐸𝑣 to point to new master
15. if only one of 𝑒𝑢, 𝑒𝑣 exists or they are the same then
16. Update all edges in its chain to directly point to it
17. if neither 𝑒𝑢 nor 𝑒𝑣 exists then //start new component
18. Make 𝑒 as the master with an empty countMap
19. Add 𝑒𝑞 to the master’s countMap
20. Color 𝑒 red and add 𝑒𝑞 to its match set
21. for each black edge 𝑒𝑏 adjacent to 𝑒 do //check neighbors
22. if 𝑒𝑏 can be upgraded to red due to addition of 𝑒 then
23. Do the same to 𝑒𝑏 as in lines 6-20 to 𝑒

Line 4 first colors the new edge black as it matches at least one
edge in 𝒬. Then for each edge that it matches, if its adjacent edges
are also all matched (line 6), we color this new edge red. But we
also need to maintain the red connected components and their
countMaps. There are three cases: (1) This new red edge starts its
own red component (no adjacent red edges); (2) Only one end-
point contains red edges, or both endpoints have red edges but
they are in the same component – then the new red edge should
join that component; (3) Both endpoints have red edges and they
are in two components – then we merge them. Lines 7-10 follow
the red edges until reaching their masters where the countMap
resides. Line 11 corresponds to case (3) above. In lines 12-14 we
pick any one of the previous two masters as the new master, and
have other accessed edges directly point to this master. Line 15

419

corresponds to cases (2), and line 17 corresponds to case (1). In
line 20, the match set for edge 𝑒 is a set of edges in 𝒬 that 𝑒
matches. This will be used in the VERIFY-MATCH below. Final-
ly, we need to check the adjacent edges of the new edge 𝑒 in 𝒢 to
see if it can be upgraded from black to red (lines 21-23).

Upon departure of an edge 𝑒 from the current window, the pro-
cess is analogous but much simpler. We only check each red edge
adjacent to 𝑒 to see if its match set is reduced due to the exit of 𝑒
(reverse of line 20). If any red edge is changed, we trace the chain
to find its master edge and update the countMap. If 𝑒 itself is a red
edge, we only logically mark it as deleted as it may still be part of
a chain that carries forwarding address to the master. We omit the
edge departure part from COLOR-EDGE for clarity.
Example 7. Fig. 5 shows an example. Fig. 5(a) is the 𝒬 to be
matched, while Fig. 5 (b), (c), and (d) show three snapshots of 𝒢.
A letter at a vertex indicates its vertex label, and an underlined
number at an edge is its edge label. In (b), (c), (d), a number in
parentheses (to the right of an edge label) signifies the edge
timestamp; we also use it as edge ID. For instance, (b) shows that
at time 3, edge 3 (with endpoints A, C and a label 2) arrives. Fig.
5(b) shows the snapshot at time 5. Edges 1, 3, and 4 are marked
black since they match edges in 𝒬. Edges 2 and 5, however, do not
match any edges and remain their original color (dashed blue).
Fig. 5(c) shows the situation after edges 6, 7, 8 arrive. We now
have two black edges and four red edges (in bold). A black edge
can be colored red when all adjacent edges at its two endpoints
(in 𝒬) are matched (black or red). For instance, edge 4 (AD) in
Fig. 5(c) is colored red because edge AD’s neighboring edges in
𝒬 – AE (outgoing) and AA (incoming) are both matched in Fig.
5(c). There are two red components, each of which has a master
edge (say, edges 8 and 1) with a countMap indicating the two
edges therein. Finally, in Fig. 5(d), edge 9 arrives, which is col-
ored red and which connects two red components. Lines 11-14 of
COLOR-EDGE arbitrarily pick edge 8 or 1 as the new master
edge of the merged component, and all other edges will point to
the new master edge. The countMap now contains all edges in 𝒬.

Fig. 5. Illustrating COLOR-EDGE. (a) is the query graph, and
(b), (c), (d) are three snapshots of the graph stream.

As discussed earlier, when the countMap of a component con-
tains all edges in 𝒬, we verify if there is a true match. The key
idea is that the adjacent edges of any red edge (which made this
edge red) must all be red edges. In other words, 𝒬 must be
matched by red edges only. VERIFY-MATCH is shown below.
Algorithm VERIFY-MATCH (𝒞,𝒬)
Input: 𝒞: a red component, 𝒬: query graph
Output: match graph of 𝒬 in 𝒞
1. while there are changes do
2. Do time constraint edge filtering as in lines 8-18 of DDST
3. while there are changes do
4. for each edge 𝑒𝑞 in the match sets of red edges in 𝒞 do
5. 𝐸𝑎 ← 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝑒𝑞 𝑖𝑛 𝒬
6. if 𝐸𝑎 do not all match to distinct red edges in 𝒞 then
7. Remove 𝑒𝑞 from this match set
8. if all match sets of red edges are empty then
9. return ∅
10. return subgraph of all edges in 𝒞 with nonempty match sets

In line 2, we do partial order time constraints checking in the
same way as in the DDST baseline. Then in lines 3-7, we check to
see if “the neighbors of red edges are all red” as discussed earlier.
This check recursively starts from any red edge. If it fails at some
red edge, we remove an element from its match set, and backtrack
to possibly remove from other red edges, until there are no chang-
es. We repeat these until there are no changes. Thus, the inner
while loop has a cost of 𝑂(|𝒞|) where |𝒞| is the total size of the
match sets of the red edges in the red component, and VERIFY-
MATCH has a cost of 𝑂(|𝒞|2), as each outer loop (except the last
one) at least removes one element from the match sets. Intuitively,
this verification should be called rarely; the major cost analysis
should be on COLOR-EDGE, which will be done shortly.

When the condition in line 6 is true, there is at least one edge
𝑒𝑄 in 𝒬, the absence of whose match in 𝒢 has caused a missing
red edge. We set one bit in the needMap bit array (which has one
bit for each edge in 𝒬). Thus, when VERIFY-MATCH does not
find a true match, it needs to be run again only if there is a new
match for an edge in needMap. The needMap structure is located
together with countMap. We first show the correctness.

Theorem 5. The coloring algorithm finds exactly all match in-
stances following the semantics of DDST.
Proof. We first prove an invariant that COLOR-EDGE finds all
red edge connected components, each of which has a single mas-
ter edge that holds the countMap, and every other red edge in the
component has a pointer that goes through a chain of red edges to
reach the master. Moreover, countMap correctly maintains the
counts of matching edges for each edge in 𝒬.

This invariant can be proved by induction. For the very first
red edge in a red component, lines 17-19 of COLOR-EDGE are
executed – we have a single edge new red component which is
also the master edge; the invariant is initially true. Thereafter,
when a new red edge 𝑒 appears (that does not initiate a new com-
ponent), there are following possibilities: (a) both endpoints of 𝑒
have incident red edges in a single red component; (b) both end-
points of 𝑒 have red edges belonging to more than one component;
and (c) only one endpoint of 𝑒 has red edges. For cases (a) and (c),
from induction assumption, the invariant holds for that component,
and lines 15-16, 19-20 add 𝑒 to that component and keep the in-
variant true. For case (b), since all red edges incident to the same
endpoint of 𝑒 are connected, from the induction assumption, they
must all belong to the same red component. Thus, there are exact-
ly two red components in case (b). Lines 11-14, 19-20 pick one
master, merge the two components, add 𝑒, and the invariant still
holds. Hence, the invariant is proved.

When a new edge 𝑒 arrives, a new red edge may only appear at
𝑒 or its adjacent edges. Thus, the red edges are maintained cor-
rectly. Finally, from the result of VERIFY-MATCH, we can con-
struct a vertex match relation 𝑆 agreeing to the definition of
DDST. We simply add the two endpoints of every remaining red
edge to 𝑆, based on its match set. Such match relation tuples must
satisfy the conditions in DDST as checked in the algorithm. Since
𝒬 is connected, eventually all vertices in 𝒬 must be in 𝑆. □

For each new edge we may only color it or its neighbors; the
only potentially costly part is to follow a long chain (worst case
window size) to get to master edges. But we use an amortized
analysis [5] to show that it is still a constant cost:

Theorem 6. Assuming a vertex in 𝒢 has no more than a constant
degree within a time window and that an edge in 𝒢 matches at
most a constant number of edges in 𝒬 , the amortized cost of
COLOR-EDGE per incoming edge is 𝑂(1).

420

Proof. It is easy to see that we only need to show the amortized
cost of accessing a chain of edges that lead to the master edge is
𝑂(1) per incoming edge. We use the potential method of an amor-
tized analysis [5] and show that, with 𝑛 incoming edges, the total
cost of accessing edge chains to reach the master edges is 𝑂(𝑛),
assuming the cost of accessing each edge in a chain is 𝑂(1). Thus,
the amortized cost for handling each incoming edge is 𝑂(1).

Define the potential function Φ(𝐷𝑖) to be the total distance of
each red edge in the system to their respective masters, where 𝐷𝑖
denotes the overall state of the data structure after the 𝑖’th incom-
ing edge. The “distance” is the number of intermediate edges to
be accessed to reach the master. Thus, Φ(𝐷0) = 0 and Φ(𝐷𝑛) −
Φ(𝐷0) ≥ 0. Let the actual cost for 𝑖’th incoming edge be 𝑐𝑖, and
the amortized cost be 𝑐𝚤� = 𝑐𝑖 + Φ(𝐷𝑖) −Φ(𝐷𝑖−1) . We have
∑ 𝑐𝚤�𝑛
𝑖=1 = ∑ (𝑐𝑖 + Φ(𝐷𝑖) −Φ(𝐷𝑖−1))𝑛

𝑖=1 = ∑ 𝑐𝑖𝑛
𝑖=1 + Φ(𝐷𝑛) −

Φ(𝐷0) ≥ ∑ 𝑐𝑖𝑛
𝑖=1 . Hence, to get an upper bound of the total actual

cost ∑ 𝑐𝑖𝑛
𝑖=1 , we just need to get an upper bound of ∑ 𝑐𝚤�𝑛

𝑖=1 .
 Actual

cost 𝒄𝒊
𝚽(𝑫𝒊)−𝚽(𝑫𝒊−𝟏) Amortized

cost 𝒄𝒊�
New
component

1 0 1

1 side red
edges

𝛼 𝛼 −
𝛼(𝛼 − 1)

2
𝛼(5− 𝛼)

2

2 sides red
edges

𝛼 + 𝛽
≤ 𝛼 + 𝛽 −

𝛼(𝛼 − 1)
2

−
𝛽(𝛽 − 1)

2

≤
𝛼(5− 𝛼)

2
+
𝛽(5− 𝛽)

2

There are three cases: (1) the new red edge 𝑒 starts a new com-
ponent; (2) only one side of 𝑒 has red edges; and (3) both sides do.
They correspond to the three rows of the above table. In case (1),
the actual cost is 1 while the new red edge is itself a master, hence
causing no change to the potential function. In case (2), we follow
a chain of edges of length 𝛼 with the last one being the master.
Thus, 𝑐𝑖 = 𝛼. We have Φ(𝐷𝑖) = 𝛼 since, after this operation, all
𝛼 edges (including the new one) directly point to the master edge.
Φ(𝐷𝑖−1) = 1 + 2 + ⋯+ (𝛼 − 1) = 𝛼(𝛼−1)

2
 for the edge chain.

Case (3) is similar except that we have another chain of length 𝛽.
The “≤” in ∆Φ is because case (3) combines two subcases (i.e.,
whether the two chains share a master) and we use an upper
bound. Since 𝛼 ≥ 1 , 𝛽 ≥ 1 , we have 𝛼(5−𝛼)

2
≤ 3 and 𝛼(5−𝛼)

2
+

𝛽(5−𝛽)
2

≤ 6. Thus, 𝑐𝚤� ≤ 6 and ∑ 𝑐𝑖𝑛
𝑖=1 ≤ ∑ 𝑐𝚤�𝑛

𝑖=1 ≤ 6𝑛. The amor-
tized cost of each incoming edge is 𝑂(1). □

Following a similar argument as in Theorem 6, it is easy to
show that each edge departure from the current window also has
an amortized cost of 𝑂(1).

Fig. 6. Statistics on the datasets.

5. EXPERIMENTS
5.1 Datasets and Setup

We use the following real-world datasets:
Road data: the real-time traffic speed map of the roads in

Hong Kong [34]. This graph stream is in XML format, where
each observation of a road segment, a piece of XML structure,
corresponds to an incoming graph edge. This contains observation
time, the vertex IDs of the two ends of the road, region, road type,
road saturation level, and traffic speed.

Phone data: the MIT Reality Mining dataset [7]. The Reality
Mining project was conducted from 2004-2005 at the MIT Media
Lab. The study followed 94 subjects using mobile phones pre-
installed with several pieces of software that recorded and sent the
researcher data about call logs, Bluetooth devices in proximity of
approximately five meters, cell tower IDs, application usage, and
phone status. Each item of the graph stream (i.e., edge) contains
caller ID, receiver ID, time of the call, and duration of the call.

Patent data: the NBER U.S. Patent Citations data [20]. These
data comprise detail information on almost 3 million U.S. patents
granted between January 1963 and December 1999, all citations
made to these patents between 1975 and 1999 (over 16 million).
Each vertex of the graph is a patent and an edge item of the graph
stream indicates patent A cites patent B. Various information of a
patent includes grant date and country of first inventor, etc.

Twitter data. We use the Twitter Stream API [29] implement-
ed by twitter4j [36] to retrieve real-time Twitter streams, using
twenty most common words [37] as keywords (which results in a
much higher rate than the random sample provided in [36]). Ver-
tices have two labels (types), user and message. An edge from a
user to a message is created when the user sends a message; edges
from a user/message to a reply (retweet, resp.) user/message are
also created when a reply (retweet, resp.) is performed. These
edges have different labels based on types. We download the real-
time stream for two weeks, resulting in a total size of about 24 GB.

Fig. 6 shows some statistics on the datasets, including maxi-
mum out/in-degrees, average edge inter-arrival times, and the
numbers of edges and nodes. We implement all the algorithms in
the paper in Java. In addition, we implement the dominated set
cover algorithm (DSC) based on node-neighbor trees (NNT) in [3].
As shown in the experiments in [3], DSC performs better or about
the same as the other main algorithm (skyline) in [3]. Thus we
only need to compare with DSC. As discussed in Sec. 1.1, [3] has
a fundamentally different model than ours. It does not consider
event sequence patterns in a window, but can only do structure
matching over snapshots; it requires connected graphs; it is based
on subgraph isomorphism and is inapplicable to our work due to
false negatives. However, we remove any timing constraints from
our queries, do not consider its result’s correctness (due to false
negatives and disconnected graphs), treat each window as a snap-
shot, and merely compare its speed with our algorithms. All ex-
periments are performed on a machine with an Intel Core i7 2.50
GHz processor and an 8GB memory.

5.2 Experimental Results
In the first experiment, we use the Road data to study the per-

formance of the three algorithms (baseline, signature, and coloring)
under different window size parameter values. The query graph is
to detect road congestion propagation as described in Example 1,
and is similar to Fig. 1 (abc). The first query we use has one con-
gested road followed by two lines of roads each of which has at
least two congested roads (in the subsequent experiments we may
add more edges/roads to this query). There are edge labels to indi-
cate traffic “good”, “average”, and “bad” from the dataset.

The system throughput result is shown in Figure 9. We set the
window size parameter (𝑤) from a few minutes all the way up to
120 minutes, and compare the three algorithms. Figure 7 shows
the numbers of true matches in 10,000 incoming edges for all the
queries in this section (grouped by experiment figure). For the
current experiment (Fig. 9), the number of matches ranges from
46 (when 𝑤 = 5 minutes) to 431 (when 𝑤 = 120 minutes). A
true match within a smaller window size is clearly also a true
match when the window size is larger. We first verify the correct-
ness of the outputs of our three algorithms, and then examine the

421

system throughputs when answering the pattern queries (in num-
ber of edges that can be handled per second).

Fig. 7. The number of true matches in 10,000 incoming edges
for each experiment figure.

We can see from Fig. 9 that, in general, the number theoretic
signature and the coloring algorithms are much faster than the
baseline algorithm (about two orders of magnitude faster). The
performance of the baseline drops precipitously when 𝑤 increases
in the range below 10 minutes. This is because the cost of the
baseline is sensitive to the number of vertices and edges in the
dynamic graph in a window, which considerably increases as 𝑤
increases in the range below 10 minutes. The size of the dynamic
graph and hence the cost of the baseline algorithm stabilize when
𝑤 is large, because the number of vertices reaches its maximum in
the dataset, and more edges added to a window, if any, are redun-
dant parallel edges which do not affect the cost significantly.

By contrast, the signature algorithm is less sensitive to the 𝑤
increase in that small region while the coloring algorithm is al-
most completely insensitive. This is because, as analyzed in Sec-
tions 3 and 4, the major parts of the signature and coloring algo-
rithms have a low cost per incoming edge; the signature algorithm
is somewhat penalized by graph size since it calls the baseline
algorithm on the last window upon a signature match. For the
same reason, while the signature algorithm is faster than the color-
ing algorithm when 𝑤 is small, the latter is about twice as fast as
the former when 𝑤 is large. Finally, the NNT-based (DSC) algo-
rithm [3] is about the same or even slower than our baseline algo-
rithm alone. This is due to its high overhead in maintaining its
data structures – dimensions, domination counters and position
counters for each vertex, etc. Whenever the filter algorithm finds a
match, it also needs to run our baseline algorithm for verification.
Thus, the total overhead can be greater than our baseline alone.

In the experiments we use throughput to measure performance.
This is equivalent to informing the time taken for a given amount
of data. Let the throughput be 𝜏 edges per second (for processing
𝒢). If a certain dataset contains 𝑟 edges, then it takes 𝑟/𝜏 seconds
to answer the graph event query over the dataset. Note that this is
only for processing one query. A real system will probably need
to process a great number of monitoring queries in real-time. In
addition, resources in a real system are usually shared among
many concurrent processes. Thus, the higher the throughput is, the
more robust and scalable the system is. For instance, if the whole
system is completely devoted to one graph event query, it only
takes about 10 seconds using the coloring algorithm on a 1000-
minute Road dataset. Using throughput as a metric provides a
normalized and uniform measure of performance over any da-
tasets and algorithms.

In the next experiment, we use the Phone dataset and a query
graph shown in Fig. 8(a). This is for community detection in the
periphery nodes as discussed in Sec. 2. We first run using a small

part of the query graph with only two 𝑃 nodes and one 𝐶 node (in
subsequent experiments we will scale up the query graph). Figure
10 shows the system throughputs. For this query, it is reasonable
to vary the time window size 𝑤 between 24 hours and 120 hours.
We can see from Figure 10 that, when 𝑤 is small, the graph in a
window is very sparse and the baseline algorithm is not signifi-
cantly slower than the other two algorithms. As 𝑤 increases and
the graph in a window involves more vertices and becomes denser,
the cost of the baseline algorithm increases much faster than the
other two algorithms, and its throughput decreases to about two
orders of magnitude smaller. As in the previous experiment, NNT
algorithm is about the same or slower than baseline. In fact, the
experiments in [3] happen to use the Phone dataset also, and their
performance results for NNT are similar to what we get.

We next experiment with the Patent data, and the query graph
is in Fig. 8(c). The query is to detect close interactions among the
inventors of three countries US, JP, and DE in a particular sensi-
tive technology area. The technology interaction is through patent
citations within a time window. The vertex labels in Fig. 8(c) are
based on the country of the first inventor of a patent. This is a
binary tree, and the partial timing order is that an edge at the low-
er level must precede an edge at the upper level. The window size
varies from 90 days to 720 days. Fig. 11 shows the result. The
throughputs are generally higher here due to a relatively low se-
lectivity compared to a high number of edges (3 to 12 matches in
10,000 edges). We see the similar trend that the performance of
signature and coloring algorithms is much more robust to window
size increase than the baseline algorithm. For this dataset we also
see that NNT performance is close to baseline, and is much slower
than our two algorithms. This is because our algorithms have very
little overhead per edge in graph streams, as shown in our analysis.
We obtain similar NNT comparison result in subsequent experi-
ments; hence we omit it from the figures for clarity.

Comparing Figures 9-11, an interesting phenomenon is that,
for the Phone dataset (Fig. 10), the throughput of coloring algo-
rithm decreases as query window size increases, which is not the
case with the Road and Patent datasets. This is still consistent with
our analysis in Theorem 6, which states that the amortized cost is
𝑂(1) per edge assuming that a vertex has a constant degree within
a window. One specialty about the Phone dataset is that it is from
a relatively small-scale academic lab project with only 94 subjects
(core nodes) – a call involves at least one core node. Thus, as time
window increases up to 120 hours, the number of vertices remains

 (a) (b) (c)
Fig. 8. Three query graphs: (a) community detection in the
periphery, (b) detecting unsuccessful urgent calls, and (c) de-
tecting close interactions among inventors of three countries.

 Fig 9 Varying 𝒘 (Road) Fig 10 Varying 𝒘 (Phone) Fig 11 Varying 𝒘 (Patent) Fig 12 Various settings (Twitter)

0 50 100 150
10

2

10
3

10
4

10
5

Window size (minutes)

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
NNT
Signature
Coloring

0 50 100 150
10

3

10
4

10
5

10
6

Window size (hours)

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
NNT
Signature
Coloring

0 200 400 600 800
10

2

10
3

10
4

10
5

10
6

Window size (days)

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
NNT
Signature
Coloring

0 20 40 60 80
10

-2

10
0

10
2

10
4

10
6

Window size (hours)

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
Sig-recomp
Signature
Col-recomp
Coloring

422

the same while vertex degrees increase significantly (the number
of phone calls a person makes likely increases over time). In other
words, for a larger window, the “constant” in the constant degree
(in Theorem 6) is greater, giving a lower throughput. In practice,
we always consider a query with bounded window size, for which
vertex degrees are no more than a constant.

We now use the Twitter dataset and the query graph is similar
to Fig. 2(b), where we look for influential people whose messages
are retweeted by multiple people, who are subsequently retweeted
by multiple people. The result is shown in Fig. 12, where we vary
the window size from 12 hours to 72 hours and use fan-out pa-
rameters 𝑓1 = 5,𝑓2 = 4 for the query. To see the effect of incre-
mental computing in our algorithms, we also run a modified ver-
sion of the signature and coloring algorithms (marked Sig-recomp
and Col-recomp in Fig. 12), where we re-compute the signatures
or coloring from scratch for each window. One observation is that
the difference between the baseline and the signature and coloring
algorithms are even more significant (about 4 orders of magnitude)
than other datasets. This is because this dataset has a higher data
rate and windows with much more edges, which considerably
penalize the baseline algorithm as it does expensive computation
for each window. The difference between Sig-recomp and signa-
ture is about 3 times, while the difference between Col-recomp
and coloring is about 10 to 20 times. This is because the signature
filter itself is faster than the coloring filter (which plays a more
significant role compared to the incremental version), although
the verification part of coloring is more efficient. This character-
izes the tradeoff between the signature and coloring. Both Sig-
recomp and Col-recomp are still much faster than the baseline,
demonstrating the effectiveness of the filtering. The system
throughputs of the signature and coloring algorithms are one to
two orders of magnitude higher than the actual stream rate. This
experiment again shows their good scalability.

We then study the behavior of our algorithms as we scale up
the query graphs. First let us increase the vertex degrees. We run a
query graph as shown in Fig. 8(b) for the Phone data. Since the
majority of phone calls in the dataset are between a core node and
a periphery node, we monitor if any of the 94 subjects (a 𝐶 node)
makes multiple (≥ 4) very short call attempts (with edge label 𝑆 –
denoting calls with duration no more than 30 seconds) to at least
two contacts. This could indicate that the person is eager but un-

successful in reaching a contact. Fig. 8(b) already has a maximum
degree of 8 for the 𝐶 node. We experiment with query graphs that
have this maximum degree ranging from 8 to 16, by increasing the
number of parallel edges between the 𝐶 node and the 𝑃 nodes (𝑤
is fixed at 48 hours). Figure 13 shows the result. We can see that
the increase in node degrees only penalizes the baseline algorithm
because it is not used for filtering, but adds to the overhead of the
algorithm. The signature algorithm is faster than coloring here
because the query graph has higher vertex degrees than most part
of the graph stream, which makes the filtering more effective and
the signature algorithm is penalized less by the verification part
(while its filtering is faster). This again verifies the tradeoff be-
tween the two algorithms. The query graph node degree increase
helps the coloring algorithm’s performance since it will have few-
er red edges, lowering the chance of verifying matches.

We next use the Patent dataset and examine the effect of high
node degrees. The query graph is a simple star shape where a US
patent cites (i.e., has outgoing edges to) a number of patents in-
cluding at least one JP patent and one DE patent. We vary this
node degree from 3 to 11 (while fixing 𝑤 at 180 days), and meas-
ure the system throughputs, the result of which is shown in Fig. 14.
As the node degree goes from relatively low to high, the signature
and coloring algorithms gain a slight increase or stay about the
same in performance, while the baseline algorithm slows down
slightly due to the extra overhead of comparison and checking.
We get a similar result with the Road data and omit its plot.

We next use the Twitter data and vary the node degrees and
edge count in the query graph of Fig. 2(b). By setting (𝑓1, 𝑓2)
values to (3, 2), (4, 3), (5, 4), (6, 4), (8, 4), respectively, we get
edge counts ranging from 9 to 40. Fig. 15 shows the execution
time breakdown for 50,000 incoming messages for these query
edge counts while fixing window size at 48 hours. The execution
time of signature/coloring consists of two parts: filtering and veri-
fication. We measure the total execution times of the first part
only (marked as Sig-filter and Col-filter, resp.), as well as the total.
We find that the two filters have about the same selectivity. Fig.
15 again shows the interesting tradeoff between the signature and
coloring algorithms as observed before. The Sig-filter is generally
more efficient than Col-filter, but its cost increases with query
graph size (as analyzed in Theorem 4) while Col-filter has a near-
ly constant cost. Signature calls baseline for verification and is

Fig 13 Varying degrees (Phone) Fig 14 Varying degrees (Patent) Fig 15 Time breakdown (Twitter) Fig 16 Varying # edges (Road)

 Fig 17 Varying # edges (Phone) Fig 18 Varying # edges (Patent) Fig 19 Varying 𝒑 in sig. (Road) Fig 20 Varying 𝒑 in sig. (Phone)

8 10 12 14 16
10

3

10
4

10
5

Maximum degree

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
Signature
Coloring

0 5 10 15
10

3

10
4

10
5

10
6

Maximum degree

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
Signature
Coloring

0 10 20 30 40
0

2

4

6

8

10

Number of edges

Ti
m

e
(s

ec
)

Sig-f ilter
Signature
Col-f ilter
Coloring

0 5 10 15
10

2

10
3

10
4

10
5

Number of edges

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
Signature
Coloring

0 10 20

10
4.1

10
4.3

10
4.5

10
4.7

Number of edges

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
Signature
Coloring

0 10 20 30
10

3

10
4

10
5

10
6

Number of edges

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
Signature
Coloring

0 500 1000
10

2

10
3

10
4

10
5

p

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
Signature
Coloring

0 500 1000
10

4.2

10
4.4

10
4.6

10
4.8

p

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Baseline
Signature
Coloring

423

more expensive than coloring’s verification. As query graph size
increases, it becomes more selective, which lowers the penalty for
signature’s verification cost. Overall, for this dataset, coloring is
more efficient. The total cost comparison depends on the aggre-
gate effect of the two parts of the cost.

We continue examining the effect of scaling up the number of
edges in a query graph. For the Road dataset, we use a query
graph like Figure 1, but vary the number of edges in the two paral-
lel horizontal paths. Fixing 𝑤 at 10 minutes, the number of edges
ranges from 3 to 11. Figure 16 shows the result. We can see that
the signature and coloring algorithms benefit from the decrease of
true matching instances as the number of edges (congested roads)
increases. The cost of the baseline algorithm, on the other hand,
increases as the query graph gets larger.

We then use the Phone data and run a query graph in Figure
8(a). Fixing 𝑤 at 48 hours, we have the total number of edges in
the query graph as 4, 8, 12, 16, and 20 respectively, following the
extension illustrated in Figure 8(a). The result is shown in Figure
17. We see that the signature and coloring algorithms’ perfor-
mance is insensitive to this edge increase, while the baseline’s
performance drops greatly. In addition, the Patent data also veri-
fies this trend, as shown in Figure 18. Here we use a query graph
that generalizes the one in Figure 8(c) with trees of fan-out value
of a node being 1, 2, 3, 4, and 5 respectively, which corresponds
to an increase in the total number of edges of the query graph.

Recall that the signature algorithm has a parameter 𝑝. In the
last set of experiments, we examine the impact of the choice of
this parameter. We first use the Road data, running a query graph
same as the one used in the experiment in Fig. 9. In Fig. 19, we
vary 𝑝 between 31 and 997, and show the throughput of the signa-
ture algorithm, along with the other two algorithms for compari-
son (which have constant throughputs since 𝑝 is not a parameter
there). We see that the signature algorithm’s performance stays
about the same when 𝑝 is not too small. Any value between 97
and 997 would be a good choice. This fact is again verified in the
Phone data using a query graph as in Fig. 8(a) with 8 edges; Fig.
20 shows its result. The reason is that, when 𝑝 is in this range, the
small variation of the number of signature values does not affect
the online performance much. When 𝑝 is too small, however, the
likelihood of a spurious hit (i.e., false positive) increases, incur-
ring a cost of calling the baseline algorithm for a full verification.
Summary. The signature and coloring algorithms perform much
better than the baseline algorithm and the NNT filter in [3], often
by 2-4 orders of magnitude. This is consistent with our analyses
that the major parts of the two algorithms have a very small cost
per incoming edge. There is a tradeoff between the two algorithms.
Signature is generally faster in filtering but slower in verification,
as it relies on the baseline for verification. In most cases, the col-
oring algorithm is faster than the signature algorithm. Unlike the
baseline, both signature and coloring algorithms scale up nicely
with the query graph – their performance is nearly insensitive to
the query graph growth in degree and number of edges. The
choice of parameter 𝑝 in the signature algorithm does not have a
significant impact on the performance when it is a prime number
in a wide range that we identify.

6. CONCLUSION
Event pattern matching over graph streams is an important

problem with many applications. We propose the semantics, a
baseline algorithm, a number theoretic signature algorithm, and an
algorithm based on coloring edges. We analyze the correctness
and prove the complexity with an amortized analysis. Experi-
ments over datasets from different domains verify our approaches.

Acknowledgments. This work was supported by the NSF
grants IIS-1149417, IIS-1239176, IIS-1319600 (first two authors),
and CNS-1331632, CNS-1247875, CNS-1018422 (Jie Wang).

7. REFERENCES
[1] C. Aggarwal, H. Wang. Managing and Mining Graph Data. Spring-

er, 2010.
[2] J. Agrawal, Y. Diao, D. Gyllstrom, N. Immerman. Efficient Pattern

Matching over Event Streams. In SIGMOD, 2008.
[3] L. Chen, C. Wang. Continuous Subgraph Pattern Search over Certain

and Uncertain Graph Streams. In TKDE, 2010.
[4] J. Cheng, X. Zeng, J. X. Yu. Top-k Graph Pattern Matching over

Large Graphs. In ICDE, 2013.
[5] T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to

Algorithms (Third Edition). The MIT Press, 2009.
[6] G. Cormode and S. Muthukrishnan. Space Efficient Mining of Mul-

tigraph Streams. In PODS, 2005.
[7] N. Eagle, A. Pentland. Reality mining: sensing complex social sys-

tems. In J. Personal and Ubiquitous Computing, 2006.
[8] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Adding regular expressions to

graph reachability and pattern queries. In ICDE, 2011.
[9] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, Y. Wu. Graph pattern match-

ing: From intractable to polynomial time. In VLDB, 2010.
[10] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang. On

graph problems in a semi-streaming model. In TCS, 348, 2, 2005.
[11] B. Gallagher. Matching structure and semantics: A survey on graph-

based pattern matching. AAAI FS., 2006.
[12] K. Gouda, M. Hassaan. Compressed Feature-based Filtering and

Verification Approach for Subgraph Search. In EDBT, 2013.
[13] M. R. Henzinger, T. Henzinger, and P. Kopke. Computing simula-

tions on finite and infinite graphs. In FOCS, 1995.
[14] A. Khan, Y. Wu, C. C. Aggarwal, X. Yan. NeMa: Fast Graph Search

with Label Similarity. In VLDB, 2013.
[15] J. Lee, W. Han, R. Kasperovics, J. Lee. An in-depth comparison of

subgraph isomorphism algorithms in graph databases. VLDB, 2013.
[16] R. Lidl, H. Niederreiter. Finite Fields, Cambridge Univ. Press, 1997.
[17] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing topology in

graph pattern matching. In VLDB, 2011.
[18] A. McGregor. Finding graph matchings in data streams. In AP-

PROX/RANDOM, 2005.
[19] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[20] NBER Patent Citations Data. http://www.nber.org/patents/.
[21] Oracle Complex Event Processing: Lightweight Modular Applica-

tion Event Stream Processing in the Real World. White Paper, 2009.
[22] V. Qazvinian, E. Rosengren, D. Radev, Q. Mei. Rumor has it: Identi-

fying Misinformation in Microblogs. In EMNLP, 2011.
[23] M. Rombach, M. Porter, J. Fowler, P. Mucha. Core-Periphery Struc-

ture in Networks. In CoRR, abs/1202.2684, 2012.
[24] B. Schröder. Ordered Sets: An Introduction. Birkhäuser, 2003.
[25] H. Situngkir. Spread of hoax in Social Media. In BFI Working Paper

Series, 2011.
[26] Z. Sun, H. Wang, H. Wang, B. Shao, J. Li. Efficient Subgraph

Matching on Billion Node Graphs. In VLDB, 2012.
[27] Y. Tian and J. M. Patel. Tale: A tool for approximate large graph

matching. In ICDE, 2008.
[28] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast best-

effort pattern matching in large attributed graphs. In KDD, 2007.
[29] Twitter Streaming APIs. https://dev.twitter.com/docs/streaming-

apis/streams/public.
[30] L. Woods, J. Teubner, G. Alonso. Complex Event Detection at Wire

Speed with FPGAs. In VLDB, 2010.
[31] Y. Yuan, G. Wang, L. Chen, H. Wang. Efficient Subgraph Similarity

Search on Large Probabilistic Graph Databases. In VLDB, 2012.
[32] G. Zhu, X. Lin, K. Zhu, W. Zhang, J. X. Yu. TreeSpan: Efficiently

Computing Similarity All-Matching. In SIGMOD, 2012.
[33] L. Zou, L. Chen, and M. T. Ozsu. Distance-join: Pattern match query

in a large graph database. PVLDB, 2(1), 2009.
[34] Hong Kong real-time traffic data. http://www.gov.hk/en/theme/psi/

datadownload/traffic.htm.
[35] LinkedIn Stream APIs. http://developer.linkedin.com/apis.
[36] http://twitter4j.org/en/index.html.
[37] http://en.wikipedia.org/wiki/Most_common_words_in_English.

424

