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Abstract
Embedding-based entity alignment represents dif-
ferent knowledge graphs (KGs) as low-dimensional
embeddings and finds entity alignment by measur-
ing the similarities between entity embeddings. Ex-
isting approaches have achieved promising results,
however, they are still challenged by the lack of
enough prior alignment as labeled training data. In
this paper, we propose a bootstrapping approach
to embedding-based entity alignment. It iteratively
labels likely entity alignment as training data for
learning alignment-oriented KG embeddings. Fur-
thermore, it employs an alignment editing method
to reduce error accumulation during iterations. Our
experiments on real-world datasets showed that the
proposed approach significantly outperformed the
state-of-the-art embedding-based ones for entity
alignment. The proposed alignment-oriented KG
embedding, bootstrapping process and alignment
editing method all contributed to the performance
improvement.

1 Introduction
Recently, knowledge graphs (KGs) attract increasing atten-
tions and are being widely used in AI-related applications,
such as question answering, semantic search and knowledge
reasoning. KGs contain a great amount of structured knowl-
edge. A common representation of knowledge in KGs is in
the form of triple, denoted by (h, r, t), indicating that there
exists a relation r between its head entity h and tail entity
t. To help capture the semantics hidden in KGs, a lot of
research efforts have been devoted to KG embedding. Its
key idea is to represent elements, such as entities and rela-
tions, in a KG as low-dimensional vectors (called embed-
dings) while preserving the inherent KG semantics. As an
early work, TransE [Bordes et al., 2013] interprets a relation
as the translation from its head entity to its tail entity. It ex-
pects ~v(h) +~v(r) ≈ ~v(t) if (h, r, t) holds, where ~v(·) denotes
the embedding for a given element. TransE has demonstrated
promising performance for KG completion. It is further im-
proved by many works, such as TransH [Wang et al., 2014],
∗Corresponding author

TransR [Lin et al., 2015b] and PTransE [Lin et al., 2015a].
Most existing KG embedding models focus on modeling

a single KG. However, as applications that use KGs present
themselves with more diversity, oftentimes a single KG can
hardly satisfy various knowledge needs. An effective way to
solve this problem is by integrating heterogeneous knowledge
among different KGs via entity alignment. A few works study
the problem of embedding different KGs towards entity align-
ment. MTransE [Chen et al., 2017] performs cross-lingual
entity alignment by spatially transforming monolingual KG
embedding spaces. IPTransE [Zhu et al., 2017] represents
different KGs into a unified embedding space by configuring
parameter sharing on existing alignment. JAPE [Sun et al.,
2017] refines KG embeddings for entity alignment by lever-
aging both relation and attribute embeddings.

Generally, the embedding-based approaches can provide
several advantages compared with the conventional ones for
entity alignment. They exploit inherent semantics, which is
independent of the heterogeneity among KGs, such as differ-
ent naming conventions, logical expressions and natural lan-
guages. On the contrary, the conventional approaches are not
always effective because the symbolic nature of triples makes
KGs hard to align. However, there still exist several chal-
lenges to embedding-based entity alignment. First, although
the embedding models for a single KG have been extensively
studied in the past few years, alignment-oriented KG embed-
ding remains largely unexplored. Second, embedding-based
entity alignment usually relies on existing entity alignment
(called prior alignment in this paper) as training data. How-
ever, as argued in [Chen et al., 2017], the accessible prior
alignment usually accounts for a small proportion. The lim-
ited training data would prevent the embedding-based ap-
proaches from learning accurate embeddings for entity align-
ment. Thus, they often suffer from low precision.

To tackle the above challenges, we propose a bootstrapping
approach for entity alignment in this paper. Bootstrapping is a
widely-used semi-supervised learning technique [Yarowsky,
1995; Abney, 2004]. It iteratively trains a classifier by boot-
strapping from both labeled and unlabeled data. Inspired by
this idea, we iteratively label likely entity alignment as train-
ing data and leverage it for learning alignment-oriented em-
beddings. We summarize the main contributions of this paper
as follows:

• We model entity alignment as a classification problem,
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which seeks to maximize alignment likelihood over all
labeled and unlabeled entities based on KG embeddings.
(Section 3)

• For alignment-oriented KG embedding, we propose
a limit-based objective function, which expects lower
scores for positive triples while higher scores for neg-
ative triples. To sample less-distinguishable negative
triples, we propose an ε-truncated uniform negative sam-
pling method. We also swap aligned entities between the
triples of different KGs to calibrate the embeddings in a
unified space. (Section 4.1)

• To overcome the lack of enough training data, we pro-
pose a bootstrapping process, which updates alignment-
oriented embeddings by labeling likely alignment and
adding it into training data iteratively. It labels likely
alignment based on a global optimal goal to guarantee
the accuracy, and employs an alignment editing method
to reduce error accumulation. (Section 4.2)

• We evaluated the proposed approach on three cross-
lingual and two large-scale datasets. The experimental
results showed that the proposed approach significantly
outperformed three state-of-the-art approaches for entity
alignment. Furthermore, the bootstrapping process can
lead to 13%–18% improvement on precision. We also
conducted analysis of key parameters and the accuracy
of labeled likely alignment. The results showed that the
proposed negative sampling, likely alignment labeling
and editing methods all contributed to the performance
improvement. (Section 5)

2 Related Work
2.1 KG Embedding
Learning embeddings for KGs has demonstrated its effective-
ness in modeling the semantic information of KGs. TransE
[Bordes et al., 2013] interprets a relation as the translation
from its head entity to its tail entity. This translation-based
KG embedding model has shown its feasibility for KG com-
pletion and later is improved by many following studies. For
example, TransH [Wang et al., 2014] and TransR [Lin et al.,
2015b] extend TransE on modeling multi-mapping relations
(e.g., one-to-many relations). Also, there exist quite a num-
ber of non-translational models for KG embedding, such as
[Nickel et al., 2011; Socher et al., 2013; Yang et al., 2017;
Dettmers et al., 2018].

Moreover, extra knowledge in KGs is leveraged by a few
works for improving embedding. PTransE [Lin et al., 2015a]
incorporates reverse triples and relation paths. KR-EAR
[Lin et al., 2016] introduces categorical attributes (e.g., gen-
der). Besides, type information, local structure of entities
and global patterns are explored in [Krompaßet al., 2015;
Ristoski and Paulheim, 2016; Cochez et al., 2017].

2.2 Entity Alignment
Automated entity alignment approaches leverage various fea-
tures of KGs, such as the semantics of OWL properties [Hu
et al., 2011], compatible neighbors and attribute values of en-
tities [Suchanek et al., 2012] and structural information of re-

lations [Lacoste-Julien et al., 2013]. To overcome the hetero-
geneity between different KGs, a few approaches also make
use of external lexicons, machine translation, Wikipedia links
[Suchanek et al., 2012; Wang et al., 2013], etc. Unlike them,
our approach is based on KG embeddings and independent of
extra resources.

Recently, several embedding-based approaches for entity
alignment were proposed. MTransE [Chen et al., 2017] uses
TransE to represent different KGs as independent embed-
dings, and learns transformation between KGs via five align-
ment models. IPTransE [Zhu et al., 2017] employs PTransE
[Lin et al., 2015a] to embed a single KG and integrates three
modules (translation-based, linear transformation and param-
eter sharing) for jointly embedding different KGs. It also
uses newly-aligned entities to update embeddings iteratively.
However, newly-aligned entities are found based on a local
optimal distance measure, which relies heavily on the align-
ment precision. As it is difficult to guarantee the precision
when priori alignment is limited, errors would accumulate
during iterations. Thus, IPTransE expects relation alignment
and a large portion of entity alignment to be known ahead of
time to guarantee the accuracy of embeddings. JAPE [Sun
et al., 2017] learns embeddings for entities and relations of
different KGs in a unified embedding space. It also embeds
attributes and leverages attribute correlations to refine entity
embeddings. However, when the attributes are heterogeneous
and correlations are vague between KGs, the effectiveness of
attribute embeddings would greatly reduce.

3 Problem Formulation
Let X be the entity set of KG1 and Y be the entity set of KG2.
Entity alignment aims to find A = {(x, y) ∈ X×Y|x ∼R y}
for which an equivalence relation∼R holds between x and y.
In some cases, a subset A′ of A is already known, which can
be used as prior alignment (training data). Let X′ ⊆ X and
Y′ ⊆ Y denote the unaligned entities that we aim to align.

We model entity alignment as a classification problem of
using entities in Y to label entities in X. By convention, we
consider the so-called one-to-one entity alignment: an entity
can be associated with at most one label, and a label can be
assigned to at most one entity [Lacoste-Julien et al., 2013;
Zhang et al., 2015]. This one-to-one constraint sets our prob-
lem apart from the common classification problem. Let Θ
denote the embeddings of KG1 and KG2, we define the prob-
ability of assigning label y ∈ Y to entity x ∈ X w.r.t. Θ,
denoted by π(y|x; Θ), as follows:

π(y|x; Θ) = σ
(
sim(~v(x), ~v(y))

)
, (1)

where σ(·) is the sigmoid function, and sim(·, ·) is a similarity
measure. In this paper, we simply use cosine similarity mea-
sure, i.e., sim(~v(x), ~v(y)) = ~v(x)·~v(y)

||~v(x)||2||~v(y)||2 . The maximum-

likelihood criterion guides us to choose the optimal Θ̂ that
achieves the highest alignment likelihood:

Θ̂ = arg max
Θ

∑
x∈X

log π(Lx|x; Θ)

= arg max
Θ

∑
x∈X

∑
y∈Y

1[y=Lx] log π(y|x; Θ),
(2)
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where Lx denotes the true label (aligned counterpart) of entity
x, and 1[·] is an indicator function that denotes the truth value
(1 or 0) of the given proposition.

Solving Eq. (2) to parameterize Θ is not easy. Let us con-
sider a situation in which we force aligned entities to share
the same embedding, i.e., ~v(Lx) = ~v(x), in the initializa-
tion process. In this way, the initialized embeddings achieve
the highest alignment likelihood over labeled entities without
any training. But this does not work for entity alignment, as
it fails to preserve any information of unlabeled entities. For
embedding-based entity alignment, both the inherent seman-
tics of each KG and the common semantics shared by dif-
ferent KGs are useful information [Sun et al., 2017]. Thus,
the embeddings should not only capture the alignment likeli-
hood, but also model the semantics of KGs. Furthermore, due
to the inadequacy of prior alignment, it is insufficient to only
observe the likelihood of labeled entities. A better solution
may be labeling unlabeled entities to expand the training data
and observing the alignment likelihood over all the entities.

4 Methodology

4.1 Alignment-Oriented KG Embedding
Our alignment-oriented KG embedding model aims to encode
different KGs into a unified embedding space, such that the
alignment likelihood between entities can be directly mea-
sured via their embeddings. It captures the semantics hidden
in KGs and is free of symbolic heterogeneity.

In a single KG, the diversified relations between entities
characterize its semantics. The translation-based models have
shown their success in modeling KG semantics. They define
score function f(τ) = ‖~v(h) + ~v(r)− ~v(t)‖22 to measure the
plausibility of triple τ = (h, r, t). They optimize the margin-
based ranking loss to make the scores of positive triples lower
than those of negative ones. However, as studied in [Zhou et
al., 2017], this loss function cannot ensure that the scores of
positive triples are absolutely low to fulfill the translation. For
entity alignment, absolutely low scores of positive triples help
reduce the drift of embeddings in the unified space and better
capture the common semantics of different KGs. Therefore,
we propose a new objective function, denoted by Oe, based
on the limit-based loss [Zhou et al., 2017]:

Oe =
∑
τ∈T+

[f(τ)− γ1]+ + µ1

∑
τ ′∈T−

[γ2 − f(τ ′)]+, (3)

where [·]+ = max(·, 0). γ1, γ2 > 0 are two hyper-parameters
and µ1 > 0 is a balance hyper-parameter. T+ and T− denote
the sets of positive and negative triples, respectively.

The proposed objective function has two desirable proper-
ties. First, positive triples are expected to have low scores
while negative triples are expected to have high scores, i.e.,
f(τ) ≤ γ1 and f(τ ′) ≥ γ2. Thus, we can directly control the
absolute scores of positive and negative triples as needed. In
practice, we set γ2 > γ1 and γ1 is a small positive value. Sec-
ond, we have f(τ ′)−f(τ) ≥ γ2−γ1, which indicates that the
proposed objective function still preserves the characteristic
of the margin-based ranking loss.

ε-Truncated Uniform Negative Sampling
A widely-used sampling method to generate negative triples
T− is by the uniform negative sampling [Bordes et al., 2013;
Lin et al., 2015a; Chen et al., 2017; Zhu et al., 2017;
Sun et al., 2017]. Given a triple (h, r, t) ∈ T+, it replaces
either h or t with an arbitrary entity. However, the replac-
ers sampled in this way may be easily distinguished from
their originals. For example, if we sample a negative triple
(Tim Berners-Lee, capital of, USA) for (Washington DC, cap-
ital of, USA), we can find that replacer Tim Berners-Lee and
its original Washington DC are totally orthogonal, so that it
would contribute little to embedding learning. Instead, New
York may be a good replacer for Washington DC. Then, our
alignment-oriented KG embedding model is expected to be
capable of distinguishing the two similar (but one positive
and one negative) triples.

Given entity x to be replaced, unlike the uniform nega-
tive sampling method that samples its replacer from all en-
tities, we limit the sampling scope to a group of candidates.
Specifically, we choose its s-nearest neighbors in the embed-
ding space as candidates, where s = d(1 − ε)Ne, ε ∈ [0, 1)
is a proportion, N is the number of entities in the KG, and
d·e is the ceiling function. In this way, other entities having
low similarities with x are truncated and would not be sam-
pled; while less-distinguishable replacers with similar fea-
tures (e.g., types, relations) are kept. Here, we use the cosine
similarity between embeddings to search for x’s neighbors.

Parameter Swapping
To leverage prior alignment A′ for bridging different KGs,
we swap aligned entities in their triples to calibrate the em-
beddings of KG1 and KG2 in the unified embedding space.
Given an aligned entity pair (x, y) ∈ A′, we generate the
following supervised triples:

Ts
(x,y) ={(y, r, t)|(x, r, t) ∈ T+

1 } ∪ {(h, r, y)|(h, r, x) ∈ T+
1 }

∪ {(x, r, t)|(y, r, t) ∈ T+
2 } ∪ {(h, r, x)|(h, r, y) ∈ T+

2 },
(4)

where T+
1 and T+

2 denote the positive triple sets of KG1 and
KG2, respectively. In total, we have T+ = T+

1 ∪ T+
2 ∪ Ts

in Eq. (3), where Ts =
⋃

(x,y)∈A′ Ts(x,y). Then, we sample
negative triples T− for T+.

4.2 Bootstrapping Alignment
The embedding-based entity alignment often suffers from in-
adequate prior alignment. To cope with this, we leverage the
bootstrapping idea. Specifically, we iteratively label likely
alignment as training data and use it to further improve entity
embeddings and alignment.

Likely Alignment Labeling and Editing
Conventional bootstrapping methods usually choose the most
confident label to label instances. At the t-th iteration, they
set ŷ = arg maxy π(y|x; Θ(t)) such that π(y|x; Θ(t)) > γ3,
and label x as ŷ. γ3 is a threshold in [0, 1). However, since the
labeled training data is limited, these methods usually cannot
provide predictions with high confidence. Thus, the labeling
process may be error-prone.

Towards our objective of maximizing alignment likelihood
and obeying the one-to-one alignment constraint, we choose
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to label alignment at the t-th iteration by solving the follow-
ing optimization problem:

max
∑
x∈X′

∑
y∈Y′x

π(y|x; Θ(t)) · ψ(t)(x, y),

s.t.
∑

x′∈X′
ψ(t)(x′, y) ≤ 1,

∑
y′∈Y′x

ψ(t)(x, y′) ≤ 1, ∀x, y
(5)

where Θ(t) denotes the entity embeddings at the t-th itera-
tion. Y′x = {y|y ∈ Y′ and π(y|x; Θ(t)) > γ3} denotes
the candidate labels of x. ψ(t)(·) is an indicator function
that we seek to solve. ψ(t)(x, y) = 1 if x is labeled as y
at the t-th iteration, and 0 otherwise. The two constraints
guarantee the one-to-one labeling. After solving Eq. (5), we
get the newly-labeled alignment at the t-th iteration A(t) =
{(x, y) ∈ X′×Y′|ψ(t)(x, y) = 1}. We use the newly-labeled
alignment in an incremental manner and leverage it to guide
the subsequent training.

Although the alignment is expected to improve over time,
the labeling process may still create erroneous labels, which
would misguide the subsequent training. Furthermore, label-
ing conflicts are inevitable when we accumulate the newly-
labeled alignment of different iterations. In order to improve
the labeling quality and satisfy the one-to-one alignment con-
straint, in our bootstrapping process, an entity once labeled
can be relabeled or become unlabeled in the subsequent iter-
ations. We employ a simple but effective editing technique to
achieve this manner.

During bootstrapping, the newly-labeled alignment would
be checked to see whether it leads to conflicts. For example,
let us consider the case where one entity has conflict labels
in different iterations. Assume that we have two candidate
labels y and y′ for entity x, we would like to choose the one
that provides more alignment likelihood to label x. Formally,
we calculate the following likelihood difference:

∆
(t)
(x,y,y′) = π(y|x; Θ(t))− π(y′|x; Θ(t)). (6)

∆
(t)
(x,y,y′) > 0 indicates labeling x as y gives more alignment

likelihood than y′. Hence, we choose y to label x. The con-
flict where one label is assigned to multiple entities can be
solved in the same way.

Learning from Holistic Perspective
To obtain a holistic observation of both labeled and unlabeled
entities, we define a probability distribution φx to describe all
the labeling possibilities of x [Abney, 2004]. Specifically,
if x is labeled as ŷ, the labeling distribution φx has all of its
mass concentrated on ŷ, while if x is unlabeled, φx is the
uniform distribution. For entity x in the prior alignment, we
have ŷ = Lx. Formally, we have:

φx(y) =

{
1[y=ŷ] if x is labeled as ŷ

1
|Y′| if x is unlabeled

. (7)

Given this probability distribution, we minimize the fol-
lowing negative log-likelihood function to obtain the optimal
embeddings Θ with the highest alignment likelihood:

Oa = −
∑
x∈X

∑
y∈Y

φx(y) log π(y|x; Θ). (8)

Datasets # Ent. # Rel. # Attr. # Rel tr. # Attr tr.

DBP-WD DBpedia 100,000 330 351 463,294 381,166
Wikidata 100,000 220 729 448,774 789,815

DBP-YG DBpedia 100,000 302 334 428,952 451,646
YAGO3 100,000 31 23 502,563 118,376

Table 1: Statistical data of DWY100K

Recall that embeddings Θ should not only capture the
alignment likelihood, but also model the semantics of KGs.
Thus, we define the joint objective function as follows:

O = Oe + µ2 · Oa, (9)

where µ2 is a hyper-parameter for balance.

4.3 Implementation Details
We initialize the embeddings of KGs based on the normal dis-
tribution, and use the gradient descent optimization algorithm
Ada-Grad [Duchi et al., 2011] to optimize Eq. (9). The length
of all embeddings is restrained to 1 to avoid trivially optimiz-
ing the objective by increasing the norm of embeddings.

Solving Eq. (5) can be transformed to the max-weighted
matching problem on bipartite graphs. We first pick (x, y)
pairs satisfying their likelihood π(y|x; Θ(t)) > γ3, and then
build a bipartite graph whose nodes denote entities and edges
have weights representing the alignment likelihood between
nodes. Therefore, labeling likely alignment with the maxi-
mum likelihood can be solved by finding disjoint edges with
the maximum total weight in the bipartite graph.

For the complexity of our approach, the number of param-
eters is DM , where D denotes the dimension of embeddings
and M denotes the number of all the entities and relations in
two KGs. For ε-truncated uniform negative sampling, search-
ing for the s-nearest neighbors for one entity averagely takes
linear time using the quick select algorithm. The time com-
plexity of solving Eq. (5) can be reduced to linear time using
the heuristic algorithm in [Hendrickson and Leland, 1995].

5 Experiments
We used Tensorflow to develop our approach, called BootEA.
Our experiments were conducted on a personal workstation
with an Intel Xeon E3 3.3 GHz CPU, a NVIDIA GeForce
GTX 1080 Ti GPU and 128 GB memory. Our source code,
datasets and experimental results are available online1.

5.1 Datasets
In order to evaluate BootEA on various entity alignment sce-
narios, we used the following datasets in our experiments:
• DBP15K [Sun et al., 2017] contains three cross-lingual

datasets built from the multilingual versions of DBpedia:
DBPZH-EN (Chinese to English), DBPJA-EN (Japanese to
English) and DBPFR-EN (French to English). Each data-
set contains 15 thousand reference entity alignment.
• DWY100K contains two large-scale datasets extracted

from DBpedia, Wikidata and YAGO3, denoted by DBP-
WD and DBP-YG. Each dataset has 100 thousand refer-
ence entity alignment. The extraction method followed

1https://github.com/nju-websoft/BootEA
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Approaches DBPZH-EN DBPJA-EN DBPFR-EN DBP-WD DBP-YG

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 30.83 61.41 0.364* 27.86 57.45 0.349* 24.41 55.55 0.335* 28.12 51.95 0.363 25.15 49.29 0.334
IPTransE 40.59 73.47 0.516 36.69 69.26 0.474 33.30 68.54 0.451 34.85 63.84 0.447 29.74 55.76 0.386
JAPE 41.18 74.46 0.490* 36.25 68.50 0.476* 32.39 66.68 0.430* 31.84 58.88 0.411 23.57 48.41 0.320
AlignE 47.18 79.19 0.581 44.76 78.89 0.563 48.12 82.43 0.599 56.55 82.70 0.655 63.29 84.76 0.707
BootEA 62.94 84.75 0.703 62.23 85.39 0.701 65.30 87.44 0.731 74.79 89.84 0.801 76.10 89.44 0.808
“*” denotes the unreported metrics in their papers. We reproduced the results using their source code.

Table 2: Result comparison on entity alignment

41.34 43.01 44.76
47.18

57.67 59.39 61.19 62.94

30

40

50

60

70

80

0.00 0.50 0.70 0.90

H
it
s@
1

(A) DBPZH-EN

38.36 39.96 41.85
44.76

56.37
58.69 59.29

62.23

0.00 0.50 0.70 0.90

(B) DBPJA-EN

39.10 41.91 43.51
48.12

58.10 59.97 61.60
65.30

0.00 0.50 0.70 0.90

(C) DBPFR-EN

47.00

52.86 54.25
56.55

61.83

69.02 70.75
74.79

0.00 0.82 0.90 0.98

(D) DBP-WD

42.14

47.57
50.55

63.29

52.92
58.92

62.49

76.10

0.00 0.82 0.90 0.98

(E) DBP-YG

AlignE

BootEA

Figure 1: Hits@1 on entity alignment w.r.t. ε-truncated uniform negative sampling

that for DBP15K. Taking DBP-WD for example, we
first randomly extracted 100 thousand reference entity
alignment from the English version of DBpedia to Wiki-
data. Each entity must be involved in at least one rela-
tion triple. We then extracted all the triples that only in-
volve the entities in the alignment. The statistical data of
DWY100K is listed in Table 1. Note that DBP-YG has
imbalanced relation numbers, which would bring more
challenges to embedding-based entity alignment.

5.2 Experiment Settings
For comparison, we chose three state-of-the-art embedding-
based approaches to entity alignment, which have been dis-
cussed in Section 2. The following is their implementation
details in our experiments.
• MTransE [Chen et al., 2017] integrates five variants in

its alignment model, where the fourth performs best ac-
cording to its authors. We chose it to represent MTransE.
• IPTransE [Zhu et al., 2017] is an iterative approach. We

selected its best variant with parameter sharing and iter-
ative alignment.
• JAPE [Sun et al., 2017] combines relation and attribute

embeddings for entity alignment. We used its full model.
For BootEA, we used the configuration below: γ1 = 0.01,

γ2 = 2.0, γ3 = 0.7, µ1 = 0.2 and µ2 = 0.1. Also, ε = 0.9
for DBP15K and ε = 0.98 for DWY100K. 10 negative triples
were sampled for each positive triple. The learning rate was
set to 0.01 and the training spent 500 epochs. One iteration of
bootstrapping was conducted when training 10 epochs of em-
beddings. Thus, the iteration number of bootstrapping is 50.
In our negative sampling, we generate the s-nearest candi-
dates for each entity once every 5 epochs. Parameter settings
for the comparative approaches followed their papers. For all
the approaches, the embedding dimensions were set to 75 for
a fair comparison.

By convention, we chose Hits@k and mean reciprocal rank
(MRR) as our metrics. Hits@k measures the percentage of
correct alignment ranked at top k. MRR is the average of the
reciprocal ranks of results. Note that Hits@1 equates to preci-
sion. Higher Hits@k and MRR indicate better performance.

Following JAPE [Sun et al., 2017], we used 30% of the
reference entity alignment as prior alignment and left the re-
maining as testing data. For an ablation study, we separated
a variant, called AlignE, from BootEA. AlignE is the imple-
mentation of our alignment-oriented KG embedding model
with ε-truncated uniform negative sampling and parameter
swapping. It optimizes Eq. (3) without bootstrapping. We
ran AlignE and BootEA five times and reported the average.

5.3 Entity Alignment
Table 2 lists the results of entity alignment on DBP15K and
DWY100K. We observed that AlignE clearly outperformed
MTransE, IPTransE and JAPE, due to its alignment-oriented
embedding. For MTransE, information loss happened when
it learned the transformation between different embedding
spaces. IPTransE and JAPE got better results than MTranE,
because they leveraged relation paths and entity attributes, re-
spectively. On large-scale datasets DBP-WD and DBP-YG,
AlignE performed even better than on DBP15K, due to large-
scale datasets provide richer semantics.

BootEA considerably improved the results of AlignE after
employing bootstrapping, especially on Hits@1. For exam-
ple, Hits@1 on DBP-WD was raised from 56.55% to 74.79%,
which demonstrated the real precision of our approach. The
good performance of bootstrapping is due to its capability of
accurately labeling likely alignment as training data. We be-
lieve that our bootstrapping process can be a general enhance-
ment for the embedding-based alignment approaches.

5.4 Analysis
Effectiveness of ε-Truncated Uniform Negative Sampling
To evaluate our negative sampling method, we tested ε among
{0, 0.5, 0.7, 0.9} for DBP15K and {0, 0.82, 0.9, 0.98} for
DWY100K. When ε = 0, it is the uniform negative sampling.

From the results shown in Figure 1, we found that AlignE
with the uniform negative sampling still obtained superior re-
sults compared to MTransE, IPTransE and JAPE (see the re-
sults in Table 2). Furthermore, the ε-truncated uniform nega-
tive sampling method brought large improvement for AlignE,
which demonstrated that this sampling method worked well
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Figure 2: Precision, recall and F1-score of likely alignment w.r.t. different labeling methods
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Figure 4: F1-score w.r.t. triple numbers

for entity alignment. Particularly, it greatly improved both
AlignE and BootEA on DBP-YG. We believe that this is due
to the small number of relations (31) in YAGO3. Having such
a small number of relations but vast relation triples (502, 563)
indicates that YAGO3 contains plenty of multi-mapping rela-
tions (73.8%), which are hard for the translation-based mod-
els [Wang et al., 2014; Lin et al., 2015b]. Our method sam-
pled less-distinguishable negative triples for AlignE, which
helped model multi-mapping relations. Also, we found that
different ε values made different contributions. Generally, a
relatively large value is recommended, e.g., 0.9 for DBP15K
and 0.98 for DWY100K. For large-scale KGs, it is also better
to use a large ε due to the large cardinal number of entities.

Accuracy of Likely Alignment
To evaluate the accuracy of final labeled likely alignment,
we compared three different labeling methods. S1 denotes
the method used by conventional bootstrapping approaches
and IPTransE. It firstly sets ŷ = arg maxy π(y|x; Θ(t))

s.t. π(y|x; Θ(t)) > γ3, and then labels x as ŷ. S2 labels align-
ment by solving Eq. (5). It is not a cumulative process and
does not use alignment editing. S3 accumulates the results of
S2 with editing. It is the labeling method used in BootEA.

The comparison results are illustrated in Figure 2. We can
see that our labeling method S3 performed best. The conven-
tional labeling method S1 failed to achieve promising results.
For example, its F1-score on DBPJA-EN only reached 0.4558.
This is due to the poor robustness of S1. As it finds newly-
aligned entities based on a local optimal measure, it would
introduce many noisy labels when KG embeddings are not
well trained or have low precision (Hits@1) for entity align-
ment. By labeling with a global optimal goal and imposing
the one-to-one constraint, S2 improved largely, which was
further enhanced with our editing method. These results ver-
ified that our method can guarantee the safeness for the use
of unlabeled data. For the running time, the labeling per it-
eration averagely spent 9.273s on DBP15K and 48.852s on
DWY100K. The editing took 0.035s and 0.231s, respectively.

Sensitivity to Proportion of Prior Alignment
To analyze whether BootEA is sensitive to the proportion of
initial prior alignment, we tested the proportion from 10% to
40% with step 10%. Figure 3 depicts the changes of Hits@k

with different values. As expected, the results on all the five
datasets became better with the increase of the proportion, be-
cause more prior alignment can provide more information to
align two KGs. When only using 10% of the gold standard
as the prior alignment, BootEA still achieved satisfactory re-
sults. For example, Hits@10 on the five datasets are 72.81%,
70.66%, 76.59%, 77.88% and 82.34%, respectively. The re-
sults showed the robustness of BootEA.

F1-score w.r.t. Distribution of Relation Triple Numbers
For an entity, the number of its relation triples represents the
richness of its content. Intuitively, it should be easier to align
entities with rich content. In this analysis, we divided entity
links in testing data into several intervals based on the number
of their relation triples. For a testing entity link, we took the
average number of relation triples of the two involved entities
as its triple number. The performance was assessed by F1-
score within a certain interval. Due to lack of space, we only
reported the results on DBP-WD in Figure 4.

We found that BootEA outperformed MTransE, IPTransE
and JAPE on all the intervals, which again confirmed the ef-
fectiveness of BootEA. In line with our expectations, the F1-
score of all the approaches increased with the growth of rela-
tion triple numbers. However, the performance gap between
BootEA and other approaches on sparse entities is larger than
dense ones. For example, in interval [1, 6), the difference
between BootEA and IPTransE is 0.4103, while in interval
[21,∞), the gap is 0.2246. This analysis demonstrated that
BootEA can achieve promising results on sparse data, indi-
cating its practical use for real KGs.

6 Conclusion and Future Work
The main contributions of this paper are threefold: (1) we in-
troduced a KG embedding model to learn alignment-oriented
embeddings across different KGs. It employs an ε-truncated
uniform negative sampling method to improve alignment per-
formance; (2) we conducted entity alignment in a bootstrap-
ping process. It labels likely alignment as training data and
edits alignment during iterations; and (3) our experiment re-
sults showed that the proposed approach significantly outper-
formed three state-of-the-art embedding-based ones, on three
cross-lingual datasets and two new large-scale datasets con-
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structed from DBpedia, Wikidata and YAGO3. For future
work, we plan to study the cross-lingual word embeddings
for attribute values. Also, we want to leverage the recurrent
neural networks for modeling the complex semantics of KGs.
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