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Abstract—This paper seeks to answer one important but
unexplored question for Entity Matching (EM): can we develop
a good machine learning pipeline automatically for the EM
task? If yes, to what extent the process can be automated? To
answer this question, we find that a general-purpose AutoML
tool cannot be directly applied to solve an EM problem, thus
propose AutoML-EM, an automated model pipeline development
solution tailored for EM. In reality, however, another bottleneck
of EM problem is the insufficient labeled data. To mitigate this
issue, active learning based solutions are widely adopted. Under
this setting, we propose AutoML-EM-Active, investigating how
to maximize the benefit of AutoML-EM with automatic data
labeling. We provide fundamental insights into our solutions and
conduct extensive experiments to examine their performance on
benchmark datasets. The results suggest that AutoML-EM not
only avoids human involvement in model development process
but also reaches or exceeds the state-of-the-art EM performance,
and AutoML-EM-Active improves the model performance under
the active learning setting effectively.

Index Terms—Entity Matching, AutoML, Data Integration,
Active Learning

I. INTRODUCTION

Entity matching (EM) [12] is the task of finding different
records that refer to the same real-world entity. For example,
consider two restaurant tables A and B in Figure 1. Although
record a1 and record b1 do not match exactly, they refer to
the same real-world restaurant. EM has numerous applications
in data science. Data scientists can clean a customer table
by detecting duplicate customers, to construct a 360-degree
view of customers by linking multiple customer tables, or to
conduct a market analysis by comparing the same product
across different websites.

EM can be viewed as a Machine Learning (ML) problem,
where the goal is to build an ML model which takes a record
pair as input and returns either a positive label (matching)
or a negative label (non-matching). However, building an ML
model that solves the problem well could take data scientists a
lot of time. They need to perform manual tuning and selection
at several steps, such as what features to include, how to
process the features, which model to select, and how to set
hyperparameters for the model. As will be shown in Section II,
each of these decisions could have a big impact on the final
results. There is a huge search space for data scientists to be
explored in order to find the optimal ML pipeline.

Automate Model Development for EM. Recently, the ML
community has put a significant amount of effort into au-
tomating ML model development, including automated feature
engineering, automated model selection, and automated hyper-
parameter tuning (see a recent book [20] for a comprehensive
survey). One crucial question but has not been answered yet

ID Name Address City Type
a1 arnie mortons of chicago 435 s. la cienega blv. los angeles american

a2 arts delicatessen 12224 ventura blvd. studio city american

a3 fenix 8358 sunset blvd. west hollywood american

a4 restaurant katsu 1972 n. hillhurst ave. los angeles asian

ID Name Address City Type
b1 arnie mortons of chicago 435 s. la cienega blvd. los angeles steakhouses

b2 arts deli 12224 ventura blvd. studio city delis

b3 fenix at the argyle 8358 sunset blvd. w. hollywood french (new)

b4 katsu 1972 hillhurst ave. los feliz japanese

Table A: Restaurants in Data Source A

Table B: Restaurants in Data Source B

Fig. 1: An EM example for restaurant data (4 matching record
pairs: (a1, b1), (a2, b2), (a3, b3), (a4, b4).

is whether AutoML can be used to automatically develop an
EM model which outperforms a human developed model.

We find that a general-purpose AutoML tool cannot be
directly applied to solve an EM problem because it requires the
input to be feature vectors rather than raw record pairs. We
explore the solution for extracting features and discuss how
to use AutoML techniques effectively for EM. We call our
approach AutoML-EM and compare the performance with two
state-of-the-art EM solutions, Magellan [31] and DeepMatcher
[28]. Our study leads to two surprising findings.
• Finding 1. AutoML-EM achieves an average improvement

of 5.8% in F1-score over human developed models on
a variety of benchmark datasets. This finding is derived
from the comparison with Magellan, the state-of-the-art
entity matching system. Both Magellan and AutoML-EM
are based on non-deep-learning models. The difference
between the two systems is that Magellan keeps humans
in the loop and provides detailed how-to guides to help
data scientists to build and tune an EM model step
by step, while AutoML-EM keeps humans out of the
loop and leverages cutting-edge AutoML techniques to
automatically finds an optimal ML pipeline for EM.
Finding 1 suggests that we need to rethink the role of
human in the EM model development stage.

• Finding 2. Non-deep-learning based EM models can
achieve comparable or even better performance than
deep-learning based EM models [9], [28]. This finding
is derived from the comparison between AutoML-EM and
DeepMatcher, a state-of-the-art deep learning based EM
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1 1 arts delicatessen arts deli ...
2 2 fenix fenix at the argyle ...
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... ... ... ... ...

ID_Left ID_Right Name_Space_Jaccard Name_ExactMatch label
1 1 0.333 0 ?
2 2 0.25 0 ?
3 3 0.5 0 ?
... ... ... ... ...

ID_Left ID_Right label
1 1 1
2 2 1
3 3 1
... ... ...

Output ResultsInput Data

ID Name Address ...
1 arts delicatessen 12224 ventura blvd. ...

2 fenix 8358 sunset blvd. ...
3 restaurant katsu 1972 n. Hillhurst ave. ...
... ... ... ...

Table A Table  B

ID Name Address ...
1 arts deli 12224 ventura blvd ...

2 fenix at the 
argyle 

8358 sunset blvd.,w. ...

3 katsu 1972 Hillhurst ave. ...
... ... ... ...

Fig. 2: An illustration of model development for entity matching.

system. As AutoML and deep learning technologies are
both continuously evolving at a fast pace in the machine
learning community, it is unclear how the comparison
result between the two will change in the future. But at
this point, data scientists should keep both of AutoML-EM
and DeepMatcher in their toolbox.

Automate Data Labeling under Active Learning. Even
if we know how to train a good model automatically, in
practice, another labor intensive part of EM is data labeling.
Data labeling has been known as a fundamental problem for
decades. In response, active learning is widely adopted in the
EM literature to select training examples and get effective
labels [5], [6], [10], [18], [26], [27], [32], [35]. Active learning
is an iterative data labeling framework. At each iteration, it
uses the current model to decide which record pair to label
next, asks humans to label it, and finally retrains the model
on the updated training data. End-to-end EM solutions, such
as Corleone [18], Magellan [31], and Dedupe [2], provide the
data labeling components and the associated example selectors
for effective labeling. Therefore, when building an AutoML
solution for the EM problem, it is critical to consider the
compatibility in the active learning setting.

A naive integration is to collect human labels via active
learning and run AutoML-EM directly on the human labels. Our
idea is to augment human labels with free machine-inferred
labels (short as machine labels) and then run AutoML-EM on a
mix of human and machine labels. The intuition is more labels
often lead to better models. We leverage self-training to collect
machine labels. We call this approach AutoML-EM-Active, a
framework that integrates active learning, self-training, and
AutoML in an EM machine learning pipeline. Self-training is
a simple semi-supervised learning approach that gives labels
for free. There are certainly other approaches that can be used
to infer labels, such as transitivity [39], labeling function [8],
[33], [38], clustering [11], and label propagation [43]. The
purpose of our study is to show the possibility of this hybrid
approach. Due to the ubiquitous use of active learning in EM,
we believe that it is promising to explore how to combine

active learning with other automated data labeling approaches
in the future.

To conclude, this paper makes the following contributions:
• We propose AutoML-EM, an AutoML-based approach

to automate model development for EM, and propose
AutoML-EM-Active, a new framework that integrates the
data labeling component to the AutoML-EM pipeline.

• We study in-depth how AutoML-EM helps users build an
ML pipeline effectively and automatically. We validate
that AutoML-EM-Active is promising to further improve
EM results in the active learning setting.

• We show that AutoML-EM can automatically develop
much better models than Magellan, and reach or exceed
the performance of DeepMatcher on a variety of EM
benchmark datasets.

The paper is organized as follows. Section II justifies why
AutoML is needed for EM. Section III describes how to cus-
tomize the general-purpose AutoML for EM, and Section IV
discusses our AutoML-EM-Active framework. Experiments are
presented in Section V, followed by related work (Section VI)
and conclusion (Section VII).

II. WHY AUTOML IS NEEDED FOR EM?

In this section, we introduce the background knowledge of
EM and then discuss the motivation in detail.

A. Entity Matching

The input of an entity matching problem is either one table
or two tables. The goal is to find all pairs of records in one
table or between two tables that refer to the same real-world
entity [12]. Entity matching consists of two phases:

Blocking. There are |A|×|B| pairs of records to be compared
potentially. To avoid the quadratic complexity of comparing
all pairs, the blocking phase aims to quickly remove obviously
non-matching pairs [29], and generate a small set of candidate
pairs for the matching phase. One common idea is to divide
data into a set of blocks and assume that the record pairs
between two different blocks are non-matching and thus can
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ΔF1 = 10.08%

(a) Tuning Random Forest

ΔF1 = 13.99%

(b) Tuning Feature Selection

ΔF1 = 1.17%

(c) Tuning Data Scaling

Fig. 3: The effect of tuning parameters for ML pipeline components.

be safely pruned. For example, we can put the restaurants with
the same city attribute into the same block, and generate the
candidate restaurant pairs by enumerating every pair of records
within each block.

Matching. The matching phase aims to develop the prediction
model, which takes a candidate pair as input and predicts
whether they are matching or non-matching. Figure 2 illus-
trates the model development process. Data scientists typically
need to go through four steps. First, they need to construct
a training dataset using active learning or random sampling.
In feature engineering, they need to extract features from a
record pair, perform data preprocessing like imputing missing
values, handling imbalanced data, and feature preprocessing
like feature selection, etc. In model selection, they need to
decide which model is most suitable for her EM task. And
finally, they need to tune hyper-parameters (e.g., the number
of trees in a random forest, the kernel in SVM) in order to
get the best model performance.

In this paper, we focus on the matching phase and treat
blocking as an orthogonal problem.

Evaluation Function. The evaluation function takes an ML
pipeline as input and outputs an evaluation score on the test
dataset. The higher the score, the better the pipeline. F1 Score
is a standard evaluation metric for EM. It is defined as the
harmonic mean of Precision and Recall:

F1 Score = 2 · Precision · Recall
Precision + Recall

,

where Precision is the ratio of correctly identified matches
to all identified matches and Recall is the ratio of correctly
identified matches to all true matches in the data. We use F1
Score for evaluation throughout the paper.

B. Why AutoML?

Finding a good ML pipeline is challenging due to the large
search space, i.e. the possible ways to assemble an ML pipeline.
For example, for the feature preprocessing component alone,
scikit-learn [30] provides tens of methods, where each has sev-
eral parameters to tune. On the other hand, a good selection of
methods and parameters can help improve prediction results.
In the following, we first examine whether parameter tuning
matters for EM scenario and then show that the search space
is too large for humans to tune manually, which justifies the
need of using AutoML for EM.

Parameter Tuning Matters for EM. We chose an EM bench-
mark dataset, called Abt-buy, which is a product matching
dataset described in Sec V. We trained with 4/5 data, evaluated
with the rest 1/5 data, and reported F1 Score. We use the same
input feature vectors for the three experiments, explained in
later sections.

• Tuning Random Forest. We trained a random forest
model using Scikit-learn [30]. We set other parameters to
the default value and tune the max features parameter,
which represents the maximum number of features to
check when searching for the best split. If it is set a
large (small) value, the model will have an overfitting
(underfitting) issue. We varied max features from 5
to 70, and computed the F1 Score of the model w.r,t,
each max features value. Figure 3a shows the result. We
can see that max features affects the model perfor-
mance a lot. The F1 Score difference between the best
max features and the worst max features is 10.08%.

• Tuning Feature Selection. We next examine how fea-
ture selection may affect model prediction accuracy. We
adopted the SelectPercentile function in scikit-learn
for tuning. This function ranks features based on the
ANOVA F-value score and selects the top features with
the highest scores. We varied the number of selected
features from 5 to 70, and computed the F1 Score of the
random forest model using default settings. The result is
shown in Figure 3b. Like the previous experiment, we
can see that the number of selected features had a big
impact on the F1 Score, resulting in a F1 Score gap as
high as 13.99%.

• Tuning Feature Scaling. Standardization, which rescales
features with statistics, is a common data preprocessing
step in machine learning. We chose the RobustScaler
function [3] in scikit-learn to scale data since it is robust
to outliers. It has a parameter called q min, representing
the first quantile in the interquartile range. Having a dif-
ferent q min value leads to a different distribution of the
rescaled feature. We varied q min for RobustScaler
from 0 to 50, and trained a random forest with rescaled
features. The result is shown in Figure 3c. While the
impact of this parameter is not as big as the previous
two, it can still lead to ∆F1 Score = 1.17%.

In practice, data scientists have to tune the model manually
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AutoML Components and Search Space

Data Preprocessing Feature Preprocessing Classification Models

compute_class_weight(...) SelectPercentile(...) AdaBoost(...)
SimpleImputer(...) SelectRates(...) DecisionTree(...)

OneHotEncoder(...) ExtraTreePreprocessing(...) RandomForest(...)

RobustScaler(...) pca(...) GradientBoosting(...)

MinMaxScaler(...) FeatureAgglomeration(...) KNeighborsClassifier(...)
... ... ...

Fig. 4: Search space of AutoML.
in order to achieve the best EM model.
Search Space is Too Large to Tune Manually. It is not
hard to understand that it is impossible to find out the optimal
pipeline manually given the huge number of possible pipelines
(i.e., the search space). Figure 3 only shows three components
with three parameters. It has already had a big search space,
i.e., |max features|∗|k|∗|q min| = 70∗70∗50 = 245000. If
we consider all the components in a typical AutoML system as
shown in Figure 4, the search space will get much bigger. For
example, there are nearly twenty functions in the single feature
preprocessing module. There are over ten different models in
the model selection module. Each model can be associated
with more than ten parameters. Tuning these parameters not
only requires high expertise for ML models, but also careful
examination through the model documentation and setting up
a parameter tuning algorithm like random search.

III. ENABLING AUTOML FOR EM
In this section, we present how to enable AutoML for the

EM problem. We starts with an introduction of the AutoML
process, and then discuss how to effectively extend AutoML
to solve the EM problem specifically. We call our approach
AutoML-EM.

A. AutoML Process

The key idea of AutoML is to treat model development as
a search problem. Given a training dataset and a validation
dataset, AutoML aims to automatically find an ML pipeline
that is executed on the training dataset and produces a model
that achieves the highest performance on the validation dataset.
To achieve this, AutoML first constructs a search space that
contains a large number of ML pipelines, then defines an
evaluation metric (e.g., F1 Score) to measure how good an
ML pipeline is, and finally applies a search algorithm to find
the best ML pipeline automatically.

Search Space. An ML pipeline is a set of steps of how
to process the data and train the model. For example, auto-
sklearn [1], [15] defines an ML pipeline as a sequence of
four parts: data preprocessing → feature preprocessing →
model selection → associated hyperparameter settings for the
selected methods. Figure 5 shows a toy auto-sklearn pipeline
example. We can see that two functions are applied in data
preprocessing, where the associated parameters are ‘weighting’
and ‘mean’, respectively.

Search Algorithm. Given a search space, an evaluation metric,
and a time budget, the goal of the search process is to find the
best pipeline (e.g., with the highest F1 Score on the validation
set) in the search space within the time budget.

'balancing:strategy': 'weighting',
'imputation:strategy': 'mean',......
'preprocessor:select_rates:mode': 'fdr',
'preprocessor:select_rates:score_func': 'chi2',...........
'classifier:__choice__': 'random_forest',...
'random_forest:bootstrap': false,
'random_forest:criterion': 'gini',
'random_forest:max_features': 0.377,
'random_forest:min_samples_leaf': 7,
'random_forest:min_samples_split': 17,
'random_forest:n_estimators': 100,

Example ML Pipeline

Data 
Preprocessing

ML Pipeline
Components

Feature 
Preprocessing

Model    
Selection

Hyperparameter 
Tuning

Fig. 5: An example ML pipeline generated by auto-sklearn.

The pipeline searching is the most challenging part of
AutoML. A lot of research efforts have been devoted to solving
this problem [7], [20], [40]. TPE [7] and SMAC [19] are
the state-of-the-art search algorithms. Their basic idea is to
iteratively build a surrogate model and use it to guide the
search process. For example, SMAC builds a random forest to
predict the F1 Score for a given ML pipeline. At each iteration,
it uses the random forest model to predict the F1 Scores for
a sample of pipelines and selects the most promising pipeline
(i.e., the one with the highest expected F1 Score). After that,
it executes the selected pipeline to get the actual F1 Score and
updates the surrogate model accordingly. This process will be
repeated until the time is used up.

B. AutoML-EM Feature Generation

We find that existing AutoML tools cannot be directly
applied to EM because they require the input to be numerical
feature vectors rather than textual record pairs.

Let r denote a record with m attributes A1, A2, · · · , Am.
Let r[Ai] denote the value of the record on attribute Ai. Given
a record pair (r1, r2), the goal is to convert it to a numerical
feature vector [f1, f2, · · · , fn]1. Magellan proposes an idea to
solve the problem (Table I). In the following, we will explain
how it works, then identify the issue of using it for AutoML,
and finally present our approach AutoML-EM.

Similarity Function. A similarity function quantifies the
similarity between two strings (or numbers or boolean values).
There are two types of similarity functions.

A token-based similarity function, denoted by (simfunc,
tokenizer), applies a tokenizer to split each string into a token
set and computes the similarity between the two token sets.
For example, consider a similarity function (Jaccard, space).
To compute the similarity between “new york” and “new york
city”, we split each string by space and get two token sets,
T1 = {new, york} and T2 = {new, york, city}. We then
compute their jaccard similarity as |T1∩T2|

|T1∪T2| = 2
3 .

A non-token-based similarity function, denoted by (simfunc,
N/A), directly computes the similarity between two strings,

1Similarity joins convert each record (rather than each record pair) to a
vector and then compute vector similarity to find matching record pairs.
However, as shown in prior work, they are not as effective as model-based
methods [22].
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ID Data Type Similarity Function
1

Single-Word String

(Levenshtein Distance, N/A)
2 (Levenshtein Similarity, N/A)
3 (Jaro Distance, N/A)
4 (Exact Match, N/A)
5 (Jaro-Winkler Distance, N/A)
6 (Jaccard Similarity, 3-gram)
7

1-to-5-Word String

(Levenshtein Distance, N/A)
8 (Levenshtein Similarity, N/A)
9 (Needleman-Wunsch Algorithm, N/A)
10 (Smith-Waterman Algorithm, N/A)
11 (Monge-Elkan Algorithm, N/A)
12 (Cosine Similarity, Space)
13 (Jaccard Similarity, Space)
14 (Jaccard Similarity, 3-gram)
15

5-to-10-Word String

(Levenshtein Distance, N/A)
16 (Levenshtein Similarity, N/A)
17 (Monge-Elkan Algorithm, N/A)
18 (Cosine Similarity, Space)
19 (Jaccard Similarity, 3-gram)
20 Long String (>10 words) (Cosine Similarity, Space)
21 (Jaccard Similarity, 3-gram)
22

Numeric
(Levenshtein Distance, N/A)

23 (Levenshtein Similarity, N/A)
24 (Exact Match, N/A)
25 (Absolute Norm, N/A)
26 Boolean (ExactMatch, N/A)

TABLE I: Magellan feature generation process.

thus it does not need a tokenizer. For example, consider a
similarity function (Levenshtein Distance, N/A). The Leven-
shtein distance between “new yrk” and “new york” is 1 since
it needs at least 1 edit (insertion, deletion, or substitution) to
transform from “new yrk” to “new york”.

Magellan Feature Generation. Now we present how the Mag-
ellan feature generation works. Magellan defines six data types
(see Table I). For example, an attribute is 1-to-5-Word String if
the average number of words of each string in that attribute is
within the range of (1, 5]. Given a record pair (r1, r2), for each
attribute Ai (i ∈ [1,m]), Magellan first checks Ai’s data type
and then gets a list of corresponding similarity functions from
Table I. Using each similarity function, Magellan computes the
similarity value between r1[Ai] and r2[Ai]. For example, if Ai

is a 1-to-5-Word String data type, there will be 8 corresponding
similarity functions to this data type, so in total, 8 features will
be generated w.r.t. Ai for (r1, r2).

Limitations of Rule-based Feature Selection. Magellan pre-
defines heuristic rules to generate features. However, these
rules have two limitations.

First, they choose similarity functions based on the average
number of words. For example, if an attribute has the average
number of words larger than 10, it will be marked as Long
String and can only use (Cosine Similarity, Space) and (Jaccard
Similarity, 3-gram) to generate two features. While these two
similarity functions are suitable for long strings, there could
be some short strings in the attribute for which other similarity
functions (e.g., (Levenshtein Distance, N/A)) are more suitable.

Second, these cut-off points are not adaptive to data context.
That is, no matter which dataset is given and how dirty it is,
the cut-off points are always the same. For example, maybe
for one dataset, the optimal cut-off should be (Single-Word,
1-to-5-Word, 5-to-10-Word, > 10 words), but for another, the

ID Data Type Similarity Function
1

String

(Levenshtein Distance, N/A)
2 (Levenshtein Similarity, N/A)
3 (Jaro Distance, N/A)
4 (Exact Match, N/A)
5 (Jaro-Winkler Distance, N/A)
6 (Needleman-Wunsch Algorithm, N/A)
7 (Smith-Waterman Algorithm, N/A)
8 (Monge-Elkan Algorithm, N/A)
9 (Overlap Coefficient, Space)

10 (Dice Similarity, Space)
11 (Cosine Similarity, Space)
12 (Jaccard Similarity, Space)
13 (Overlap Coefficient, 3-gram)
14 (Dice Similarity, 3-gram)
15 (Cosine Similarity, 3-gram)
16 (Jaccard Similarity, 3-gram)
17

Number

(Levenshtein Distance, N/A)
18 (Levenshtein Similarity, N/A)
19 (Exact Match, N/A)
20 (Absolute Norm, N/A)
21 Bool (ExactMatch, N/A)

TABLE II: AutoML-EM feature generation process.

optimal cutoff could be totally different, e.g., (1-to-2-Word,
2-to-8-Word, 8-to-15-Word, > 15 words).

AutoML-EM Feature Generation. To overcome these limi-
tations, we remove these pre-defined rules from our feature
generation process. Our philosophy is to generate as many
as possible features and then delegate the feature processing
part to AutoML. Table II shows how the AutoML-EM feature
generation process works. For Number and Bool, AutoML-EM
generates the same set of features as Magellan, but for String,
AutoML-EM always uses all of Magellan’s similarity functions
to generate features regardless of string length.

For example, given a record pair (r1, r2) with four attributes,
suppose their data types are Single-Word String, Single-Word
String, Long String, Long String. Magellan generates 6 + 6 +
2 + 2 = 14 features, while AutoML-EM generates 16 + 16 +
16 + 16 = 64 features. In the experiments, we run AutoML
on the feature vectors generated by AutoML-EM and Magellan,
respectively, and the results show that our approach performs
much better.

C. AutoML-EM Model Selection

In terms of model selection, Magellan provides several
popular models at hand such as decision tree, random forest,
SVM, and logistic regression, and allows users to train all
these models simultaneously with the default hyperparameter
settings. The user can compare the evaluation score of each
model on the validation dataset and select the model with the
highest evaluation score. The user needs to tune the parameters
manually. However, hyperparameter tuning often has a big
impact on model performance as we showed. The model that
performs the best with the default hyperparameter setting may
not perform the best after hyperparameter tuning.

In AutoML, model selection is coupled with hyperparameter
tuning. It aims to select the model that performs the best
with the optimal hyperparameter setting. A general-purpose
AutoML tool’s model repository includes tens of models,
which are included in the pipeline search space by default.
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Fig. 6: An illustration of self-training.

AutoML-EM is motivated by the consideration that not all the
available models are necessary to be equipped for solving the
EM problem. The more unnecessary models we include, the
more deceleration of the optimization speed. Should we only
include a few promising models to shrink search space and
accelerate convergence or include as many models as possible
for the best possible performance?

In our AutoML-EM solution, we only include the random
forest in the model repository. The reason is that random forest
has been consistently observed as the most performing one
for structured data [13]. We conduct an experimental study
to understand the effectiveness of this idea under different
settings. So far, we have customized an AutoML solution for
EM.

IV. ENABLING DATA LABELING FOR AUTOML-EM

In this section, we first illustrate why it is a good idea to
combine self-training and active learning for random forest
model, and then describe how AutoML-EM-Active works.
Self-Training. As mentioned previously, we consider how to
make the AutoML solution works better under active learning
and integrate the data labeling to the AutoML-EM pipeline as
well. Our idea is to get free labels with self-training. Self-
training is a semi-supervised learning algorithm. It leverages
both labeled and unlabeled data to train a model. The following
shows its procedures:
1) Train a model on labeled data
2) Use the model to predict unlabeled data
3) Add a sample of unlabeled data with high confidence to

the labeled data
4) Retrain a model on the new labeled data

Figure 6 illustrates an example. The left sub-figure shows
the initial model built using labeled data (a positive point and
a negative point). Self-training uses the model to predict each
unlabeled point. The right sub-figure shows that self-training
selects two new positive/negative points, respectively. Unlike
active learning which selects the points close to the decision
boundary, the points selected by self-training are far away from
the decision boundary to ensure high confidence. A new model
is retrained using a mix of two given labeled points and four
newly inferred labeled points.
Active Learning vs Self-Training. A random forest model
consists of a collection of decision trees, where each tree is
trained using a sample of training data and a sample of fea-
tures. To make a prediction on an unlabeled pair, the random

Fig. 7: An illustration of active learning vs self-training using
a random forest model.

Algorithm 1: AutoML-EM-Active
Input: Unlabeled record pairs U , labeling budget B
Output: A model M

1 T = Initial training data randomly drawn from U ;
2 Ask humans to label T and set b = |T |;
3 Remove T from U ;
4 M = Train a model on T ;
5 while b ≤ B and U 6= φ do
6 Apply M to each record pair in U and get the label

confidence score of each pair;
7 ac batch = Select a batch of record pairs from U with

the lowest label confidence scores;
8 Ask humans to label ac batch and set b + =

|ac batch|;
9 st batch = Select a batch of record pairs from U with

the highest label confidence scores and trust their
predicted labels;

10 Add ac batch and st batch to T ;
11 Remove ac batch and st batch from U ;
12 M = Retrain a model on T ;
13 return AutoML-EM model trained with collected labels

forest model first obtains the prediction of each decision tree
and then combines them (e.g., using majority vote) to get the
final prediction.

Figure 7(a) illustrates a simple random forest model, which
consists of two decision trees, Tree1 and Tree2. Given a
record pair, Tree1 (Tree2) predicts it as matching if the jaccard
similarity of their name (address) attribute values is larger
than 0.7 (0.8); otherwise, it is non-matching.

As shown in Figure 7(b), Tree1 and Tree2 divide all possible
record pairs into four regions. For each record pair,

• if it falls into R1 (f1 > 0.7 and f2 > 0.8), then Tree1

and Tree2 both predict it as matching;
• if it falls into R2 (f1 ≤ 0.7 and f2 > 0.8), then Tree1

(Tree2) predicts it as matching (non-matching);
• if it falls into R3 (f1 > 0.7 and f2 ≤ 0.8), then Tree1

(Tree2) predicts it as non-matching (matching);
• if it falls into R4 (f1 < 0.7 and f2 < 0.8), then Tree1

and Tree2 both predict is as non-matching.

R1 and R4 are high-confidence regions since Tree1 and
Tree2 make consistent decisions while R2 and R3 are low-
confidence regions since the decisions made by Tree1 and
Tree2 are inconsistent. Therefore, self-training selects unla-
beled record pairs from R1∪R4, while active learning selects
unlabeled record pairs from R2 ∪R3.
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Type Dataset Training Size Test Size # Attr.

Easy & Small
BeerAdvo-RateBeer 359 91 4

Fodors-Zagats 757 189 6
iTunes-Amazon 430 109 8

Easy & Large DBLP-ACM 9890 2473 4
DBLP-Scholar 22965 5742 4

Hard & Large
Amazon-Google 9167 2293 3
Walmart-Amazon 8193 2049 5

Abt-Buy 7659 1916 3

TABLE III: EM datasets.

AutoML-EM-Active. Algorithm 1 shows the pseudo-code of
our hybrid active learning and self-training approach. Initially,
AutoML-EM-Active asks humans to label a sample of record
pairs and trains an initial model. Then, it gets into the
iteration stage. At each iteration, AutoML-EM-Active applies
the current model to the unlabeled data and gets the label
confidence score of each unlabeled record pair. The larger the
score, the more confident the inferred label. Let |ac batch|
(|st batch|) denote the batch size of active learning (self-
training), respectively. Like active learning, AutoML-EM-Active
selects a set of |ac batch| unlabeled record pairs that have
the lowest confidence scores and asks humans to label them.
Like self-training, AutoML-EM-Active selects a set of |st batch|
unlabeled record pairs that have the highest confidence scores
and add these record pairs along with their inferred labels to
the training data. AutoML-EM-Active retrains a model using
the new training data. This iteration process repeats until the
budget is exhausted or the unlabeled data is empty.

Remarks. (1) AutoML-EM-Active is more general than active
learning. This is because active learning can be seen as a
special case of AutoML-EM-Active when the self-training batch
size is set to zero, i.e., |st batch| = 0. (2) Let α denote
the percentage of the number of matching pairs in the initial
training data T . To avoid the concept drift issue [17], we need
to ensure that α keeps roughly the same between before and
after adding st batch to T . This can be achieved by choosing
α · |st batch| matching pairs and (1 − α) · |st batch| non-
matching pairs at each iteration of self-training.

V. EXPERIMENTS

We conduct extensive experiments on real-world benchmark
EM datasets to evaluate the performance of AutoML-EM. In the
following, we first describe the datasets and settings in Sec-
tion V-A, followed by an end-to-end performance evaluation
in Section V-B and a detailed performance analysis of AutoML-
EM in Section V-C. In the end, we investigate whether AutoML-
EM-Active outperforms the case where the self-labeling process
is absent in Section V-D.

A. Datasets and Settings

Datasets. All of the benchmark datasets we use have been
evaluated in previous work [23], [28]. We categorize them
into three types: easy and small, easy and large, hard and large.
Following the setting of [28], we further split the training set to

4:1, using the 80% for training and the rest 20% for validation.
Table III shows a summary of the datasets.
• BeerAdvo-RateBeer is a beer dataset with 450 record

pairs (68 positive) and four attributes: beer name, brew
factory name, style, ABV (Alcohol by Volume).

• Fodors-Zagats is a restaurant dataset with 946 record
pairs (110 positive) and six attributes: name, address, city,
phone, type, and category code.

• iTunes-Amazon dataset includes 539 record pairs of
songs (132 positive) with song name, artist name, album
name, genre, price, copyright, time, released attributes.

• DBLP-ACM is a publication dataset with 12363 record
pairs (2220 positive), including paper title, author and
venue attributes.

• DBLP-Scholar is also a publication dataset with 28707
record pairs (5347 positive) and attributes: title, authors,
venue, and year.

• Amazon-Google is a software product dataset with 11460
record pairs (1167 positive) and three attributes: product
title, manufacturer, and price.

• Walmart-Amazon is an electronic product dataset with
10242 record (962 positive) and product name, category,
brand, model number, and price attributes.

• Abt-Buy is also a product dataset with 9575 record pairs
(1028 positive) and three attributes: product name, price,
and long text descriptions.

AutoML-EM is our AutoML solution customized for EM. It is
equipped with our feature generation approach (see Table II)
and random forest as the selected model. AutoML-EM is built
upon an existing general-purpose AutoML tool, which is
capable of searching for the optimized ML pipeline given a
search space. In our experiments, we use auto-sklearn [1], [16],
a popular open-sourced automated machine learning python
toolkit, as our default tool and for evaluating our techniques.
There are alternative tools written in other programming lan-
guages or based on other algorithms, such as Auto-Weka [36],
TPOT [4]. A data scientist can easily tailor these tools for
AutoML-EM configurations.

Experimental Settings. Our experiments were run on a
Ubuntu 16.04 server with Intel Xeon E7-4830 v4 (2.00GHz)
CPU and 960GB memory. For the training process, except
otherwise stated, we set the default running time of auto-
sklearn to 3600s. We use one hold-out method for model
validation. We choose F1 Score as the evaluation metric as
defined in Section II-B.

B. End-to-end Performance

We compare the end-to-end performance of AutoML-EM
with the state-of-the-art EM approaches.

Magellan [31] is the state-of-the-art learning-based end-to-
end EM system on structured data. It keeps the developer in
the loop in every step and provides guidance for developing
an end-to-end EM solution, including blocking algorithms,
feature manipulation, and matching models. As we focus on
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Dataset Magellan AutoML-EM ∆ F1 Score
BeerAdvo-RateBeer 78.8 82.3 +3.5

Fodors-Zagats 100 100 +0
iTunes-Amazon 91.2 96.3 +5.1

DBLP-ACM 98.4 98.4 +0
DBLP-Scholar 92.3 94.6 +2.3

Amazon-Google 49.1 66.4 +17.3
Walmart-Amazon 71.9 78.5 +6.6

Abt-Buy 43.6 59.2 +5.3
Average 78.1 83.9 +5.8

TABLE IV: An end-to-end comparison between Magellan and
AutoML-EM. The performance numbers of Magellan are copied
from [28].

the matching step, we assume that the blocking step is the
same for all methods and chose the matching benchmark
datasets to compare the matching components of different
methods.

DeepMatcher [28] is the state-of-the-art deep learning-based
solution customized for EM problem. It processes the text
content with NLP techniques like word embeddings and
summarizations, and trains RNN model for prediction. Due
to the use of deep learning, it performs better on textual data.

We compared the F1 Scores of AutoML-EM, Magellan, and
DeepMatcher on eight EM datasets. Our goal is to answer the
following two questions.

Can AutoML-EM beat human? To answer this question, we
compare the models generated by AutoML-EM with the ones
manually developed by Magellan. Table IV shows the result.
Note that the F1 Scores of Magellan was copied from [28].
We can see that AutoML-EM improved human-developed mod-
els by an average F1 Score of 5.7%. On some datasets,
the performance gain is quite significant. For example, the
∆F1 Scores between AutoML-EM and Magellan on iTunes-
Amazon, Amazon-Google, Abt-Buy datasets are 8.8%, 17.3%,
and 14%, respectively. The gain mainly comes from automated
feature engineering and hyper-parameter tuning. These results
validated the point that AutoML-EM can automatically develop
a much better model than the model developed by humans
using Magellan.

Can AutoML-EM beat deep learning? To answer this ques-
tion, we compare the models automatically generated by
AutoML-EM with the deep learning models generated by Deep-
Matcher. Figure 8 shows the result. Note that the F1 Scores of
DeepMatcher were copied from [28]. We can see that AutoML-
EM outperformed or was competitive with DeepMatcher on
datasets like BeerAdvo-RateBee, DBLP-ACM, DBLP-Scholar,
Fodors-Zagats, Walmart-Amazon, and iTunes-Amazon. These
results were consistent with the results in the previous pa-
per [28] that traditional machine learning models perform
better on structured data.

A surprising new finding is that AutoML-EM (with ran-
dom forest models) achieved comparable performance with
DeepMatcher (with deep learning models) on text data. For

0 20 40 60 80 100
F1 Score on Test Data (%)
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Fodors-Zagats

iTunes-Amazon

DBLP-ACM

DBLP-Scholar

Amazon-Google

Walmart-Amazon

Abt-Buy

72.7

100.0

88.0

98.4

94.7

69.3

66.9

62.8

80.9

100.0

95.7

98.1

94.6

63.8

79.9

58.1 DeepMatcher
AutoML-EM

Fig. 8: Comparison of AutoML-EM with DeepMatcher. The
performance numbers of DeepMatcher are copied from [28].

example, Amazon-Google and Abt-Buy are product datasets
that contain very long text description attributes. Unlike Mag-
ellan which performed much worse on these two datasets,
we can see that AutoML-EM performed only slightly worse
than DeepMatcher even if DeepMatcher used complex NLP
models and captured semantic synonyms. It is worth noting
that AutoML-EM had this major improvement over Magellan
on textual data because it produced more features for long
strings (please compare Table I and Table II) and then leverage
AutoML techniques to process and select features.

Takeaways. AutoML-EM can beat human-developed models
by an average F1 Score of 5.7% and reach or exceed the
performance of deep learning models not only on structured
data but also on textual data.

C. AutoML-EM Analysis
In this section, we decompose and analyze the benefits of

AutoML-EM by answering three questions:
• Does the AutoML-EM feature generation approach lead to

better results? (§V-C1)
• Does AutoML-EM with the random forest model selected

produce comparable results with all models selected?
(§V-C2)

• In the resulting pipeline of AutoML-EM, does module,
such as data preprocessing and feature preprocessing,
contribute to the improved models? (§V-C3)

1) Effectiveness of Feature Vector Generation: We com-
pared our feature generation process against the features gen-
erated by Magellan library, i.e., Table I vs Table II. Specifically,
we leveraged Magellan and AutoML-EM to convert record pairs
to feature vectors, respectively, and then ran AutoML (no
model selection) on both feature-vector tables and compared
the results.

Figure 9 shows the number of generated features, F1 Score
on test data, and the improvement achieved by the AutoML-
EM feature generation approach. We can see that the AutoML-
EM feature generation approach performed better on all the
datasets. The reason is that the AutoML-EM feature genera-
tion approach conveyed more information and its AutoML
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Dataset
Magellan AutoML-EM ΔF1 

Score# Feature Fscore #Feature Fscore

BeerAdvo-RateBeer 36 81.3 87 82.3 +1.0

Fodors-Zagats 37 100 123 100 +0

iTunes-Amazon 30 88.1 155 96.3 +8.2

DBLP-ACM 18 98.3 89 98.4 +0.1

DBLP-Scholar 18 92.6 89 94.6 +2.0

Amazon-Google 21 62.9 72 66.4 +3.5

Walmart-Amazon 32 66.2 106 78.5 +2.3

Abt-Buy 15 48.1 72 59.2 +11.1

Fig. 9: Comparing the F1 Scores of AutoML with Magellan
vs AutoML-EM feature generation methods.

component can automatically select good features and process
them in a reasonable way. It is worth noting that Magellan’s
performance got improved after applying AutoML by compar-
ing with Table IV. Thus, there is no need to use Magellan’s
manually pre-defined rules for these datasets.
Takeaways. It is recommended to use all similarity functions
(rather than manually select them based on string length) to
generate feature vectors.

2) Effectiveness of Model Selection: Our second idea of
optimizing a general-purpose AutoML tool for EM is to shrink
the model selection space. We hope to accelerate convergence
speed and consequently allow the search algorithm to find
a good ML pipeline in a shorter time. For comparison, we
run two methods. i) all-model represents AutoML with the
original model repository provided by the library. Auto-sklearn
builds in tens of common models such as AdaBoost, Naive
Bayes, and Decision Trees. ii) Random Forest represents
AutoML with only the random forest model selected.

Figure 10 shows how both validation and test scores
changed as the time constraint increased. To compare all-model
and random forest, our main focus is on the validation score
because this is what AutoML tries to optimize. The test score
is shown for reference purpose only.

We have the following observations. 1) For all the datasets
and both methods, the longer the running time, the better
the validation score (there were small variations due to the
randomness of auto-sklearn over different trials). For example,
for the Amazon-Google dataset, AutoML-EM only has an F1
Score of 56.1% when running for 60s, but achieved 62% with
2400s running time. 2) random forest converged faster and
achieved better validation scores when time constraints were
shorter. For example, for the Abt-Buy dataset, including all-
models takes 6000s to achieve 62% F1 Score but it only takes
1200s to achieve 62% F1 Score for AutoML-EM with random
forest model. all-model ended up with higher validation scores
because of the larger search space. This indicated that there
were other better models for each dataset. For example,
Takeaways. The model selection customization should be

considered if the model is not running hours long, otherwise
AutoML with full model space is preferable.

3) AutoML-EM Pipeline Ablation Analysis: It is well rec-
ognized that hyperparameter tuning is an effective way to
improve the model performance. Thus, in this experiment, we
put our focus on the other two modules (data preprocessing
and feature preprocessing).

To verify whether a module truly contributes to the final
result, we did ablation experiments on the resulting pipeline
of AutoML-EM. We selected the two most difficult datasets
because there is a big performance gap between using and
not using AutoML techniques. We followed the same setting
as before: 3/5 for training, 1/5 for validation, and 1/5 for
testing, and trained AutoML-EM for one hour to get a resulting
pipeline. We reported the F1 score on the validation set after
disabling data preprocessing and feature processing for the
random forest model, respectively.

For example, consider an example pipeline gener-
ated by AutoML-EM in Figure 11. To disable its pre-
processing module, we set rescaling:__choice__,
balancing:strategy to none. Similarly, we can set
preprocessor:__choice__ to no_preprocessing
to disable data preprocessing module.

Figure 12 shows the result. We can see that AutoML-EM with
all modules performed the best on both datasets. Excluding
data preprocessing and feature preprocessing modules leads
to model performance degrading. For example, after excluding
data preprocessing, the F1 Score dropped from 63.7 to 60.1
on the Amazon-Google dataset, and dropped from 63.9 to
56 on the Abt-Buy dataset. This result indicates that data
preprocessing is an effective module for the two datasets.
The F1 Score continued to drop after excluding the feature
preprocessing module but not as dramatic as excluding data
preprocessing. Please note that the purpose of this experiment
is not to show that data preprocessing is more effective than
feature preprocessing. We are sure that there will be cases
where feature preprocessing plays a more important role.
Takeaways. In the resulting pipeline of AutoML-EM, both data
preprocessing and feature preprocessing modules contribute to
the improved models.

D. AutoML-EM-Active Evaluation

In this section, we aim to validate if AutoML-EM-Active is
effective in the active learning setting for EM. Specifically, we
compare the case where self-training is added as described in
V-D2 and the case where only active learning is performed. We
compare the two approaches under different parameter settings
as described below. AutoML-EM-Active targets to improve
model performance by labeling more data points with no extra
human cost.

1) Parameters: Initial training data size: Initial training
data is a random sample from the whole dataset. It is essential
to have a good initial model for both active learning and self-
training. We experiment on three values for initial data size,
i.e., 30, 100, and 500, standing for small, medium, and large
initial training data.
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Dataset Model Space Validation Score on Time Constraint Test Score on Time Constraint
60 300 600 1200 2400 3600 6000 8400 60 300 600 1200 2400 3600 6000 8400

BeerAdvo-RateBeer
all-model 93.6 95.9 97.2 97.9 100 100 100 100 80 80.3 76.5 80.8 72.8 79.3 77.5 78.8

random forest 92.9 98.6 98.6 99.3 100 100 100 100 78.8 81.4 81.5 78.3 79.5 80.9 79.8 78.9

Fodors-Zagats
all-model 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

random forest 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

iTunes-Amazon
all-model 96.4 96 99.2 100 100 100 100 100 96 96.1 97.9 94.9 95.1 96.4 96.5 94.5

random forest 97.2 98.4 99.2 100 100 100 100 100 95.3 95.5 94.9 96.9 96.5 95.7 96.4 97.8

DBLP-ACM
all-model 98.5 98.5 98.6 98.7 98.9 98.9 98.9 98.9 98.4 98.4 98.4 98.4 98.5 98.4 98.5 98.4

random forest 98.7 98.7 98.7 98.7 98.9 98.8 99 99 98 98.2 97.9 98.1 98.3 98.1 98.2 97.9

DBLP-Scholar
all-model 94.5 94.5 94.6 95 95.1 95.2 95.4 95.5 94.2 94.2 94.4 94.8 95 95 95.3 95.2

random forest 94.5 94.6 94.6 94.7 94.9 94.9 94.9 95.0 94.2 94.3 94.5 94.3 94.6 94.6 94.4 94.5

Amazon-Google
all-model 56.0 56.3 56.3 57.4 61.5 60.2 62.2 63.4 60.4 60.7 58.1 60.0 64.0 63.2 63.6 63.4

random forest 56.1 57.1 59.7 61.7 62 61.8 62.6 63.1 60.1 61.5 61.9 65 64.9 63.8 64.7 64.6

Walmart-Amazon
all-model 78.2 78.2 78.8 79.2 82.1 83.5 83.6 83.9 78.2 78.2 78.6 77.2 79.1 78.6 79.8 80

random forest 78.2 78.9 79.2 79.3 81.4 80.3 80.5 81.3 78.2 79.2 78.6 78.6 79 79.9 78.9 79.6

Abt-Buy
all-model 53.9 54.2 55.2 58 60.5 60.9 62.1 61.8 54.6 54.6 55.3 57.5 59 56.5 57.7 58.5

random forest 55 59.1 60.8 62.2 62.8 62.6 63.5 63.2 55.9 56.1 56.9 58.9 58.8 58.1 58.7 57.8

Fig. 10: Model Selection for AutoML-EM. The darker the cell color, the higher the F1 Score.

Pipeline{
 'balancing:strategy': 'weighting', 
    'rescaling:__choice__': 'robust_scaler',
    'rescaling:robust_scaler:q_min': 
        0.19454891546620004,

'rescaling:robust_scaler:q_max': 
        0.9194022794180152,

    'preprocessor:__choice__': 
        'select_percentile_classification', 
    'preprocessor:select_percentile_classification:percentile': 
        55.84285592896699,
    'preprocessor:select_percentile_classification:score_func': 
        'f_classif',
    
    'classifier:__choice__': 'random_forest',
    'classifier:random_forest:bootstrap': 'True', 
    'classifier:random_forest:criterion': 'gini', 
    'classifier:random_forest:max_depth': 'None',
    'classifier:random_forest:max_features': 
        0.9008519355763185,
    'classifier:random_forest:max_leaf_nodes': 'None',
    'classifier:random_forest:min_impurity_decrease': 0.0,
    'classifier:random_forest:min_samples_leaf': 2,
    'classifier:random_forest:min_samples_split': 6,
    'classifier:random_forest:min_weight_fraction_leaf': 0.0,
   'classifier:random_forest:n_estimators': 100,
    }

Fig. 11: Example AutoML-EM pipeline.

Dataset AutoML-EM 
(Excluding DP and FP)

AutoML-EM 
(Excluding DP) AutoML-EM

Amazon-Google 59.3 60.1 63.7

Abt-Buy 55.7 56.0 63.9

Fig. 12: AutoML-EM validation F1 Score by excluding modules
(DP = Data Preprocessing, FP = Feature Preprocessing).

Dataset Method
# of Active Learning Labels

40 160 400

Amazon-Google
AC + AutoML-EM 32.8 41.6 48.3

AutoML-EM-Active 50.1 56.5 54.8

Abt-Buy
AC + AutoML-EM 34.0 39.7 45.2

AutoML-EM-Active 42.8 45.1 52.9

Fig. 13: Comparing the test F1 Score between AutoML-EM and
AC + AutoML-EM under different labeling budgets (init = 500
and st batch = 200)

Active-learning batch size (ac batch): Active learning batch
size is the uncertain examples labeled at each iteration. This
is the only human cost. We experiment on three values: 2, 8,
and 20.
Self-training batch size (st batch): We select a fixed batch
of confident data examples for label inference. We experiment
on four values: 0, 20, 50, and 200. Note that when st batch
is 0, it is equivalent to AC. We run both approaches for 20
iterations. A data scientist can customize the cut-off condition
based on the labeling budget.

2) Evaluations: Recall that there are three types of datasets
here: easy & small, easy & large, hard & large. For the
easy datasets, a few iterations of active learning can already
return a very good model. We show the evaluation on the two
most difficult datasets (Amazon-Google and Abt-Buy). Our
approach AutoML-EM-Active runs AutoML-EM on both active
learning and self-training labels. We call the baseline approach
AC + AutoML-EM, which is to run AutoML-EM on the active
learning labels only.

We first examine how effective self-training is to AutoML-
EM. We varied the number of active learning labels and com-
pared the test F1 Score between AutoML-EM-Active and AC +
AutoML-EM (init = 500 and st batch = 200). Figure 13 shows
the comparison results. We can see that AutoML-EM-Active
significantly outperformed AC + AutoML-EM. For instance,
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Dataset Method init = 30 Init = 100 init = 500

Amazon-Google
AC + AutoML-EM 47.6 48.1 48.3

AutoML-EM-Active 32.3 53.5 54.8

Abt-Buy
AC + AutoML-EM 48.2 43.2 45.2

AutoML-EM-Active 45.2 53.1 52.9

Fig. 14: Comparing the test F1 Score between AutoML-EM
and AC + AutoML-EM under different initial training data size
(ac batch = 20 and st batch = 200).

Dataset AC + AutoML-EM
AutoML-EM-Active

st_batch = 20 st_batch = 50 st_batch = 200

Amazon-Google 48.3 48.7 53.6 54.8

Abt-Buy 45.2 45.2 46.8 52.9

Fig. 15: Comparing the test F1 Score between AutoML-EM and
AC + AutoML-EM under the self-training batch size (st batch)
(init = 500 and ac batch = 2).

when the number of active learning labels is 160, AutoML-
EM-Active had an F1 Score of 56.5 while AC + AutoML-EM’s
F1 Score is 41.6. This result validated the effectiveness of
self-training.

We next examine the impact of the initial training size
(init) on AutoML-EM-Active’s performance. We varied init and
compared the test F1 Score between AutoML-EM-Active and
AC + AutoML-EM. The results are shown in Figure 14. We
can see that when the initial training data size is large (i.e.,
init = 100 and 500), the label inference accuracy is high, so
that AutoML-EM-Active helped to improve the active learning
process effectively. When init = 30, the initial model is of
very low quality. In this situation, self-training should not be
applied since it will infer many wrong labels.

Finally, we explore how the number of inferred labels
affect the results. We evaluated the test F1 Score of AutoML-
EM-Active by varying the self-training batch size (st batch).
Figure 15 shows the result. Note that when st batch = 0,
since there is no labels inferred in this situation, AutoML-
EM-Active (st batch = 0) is equivalent to AC + AutoML-EM.
We can see that as st batch increased, AutoML-EM-Active’s
performance got improved, but the improvement could get
less and less. For example, on the Amazon-Google dataset, F1
Score was increased by 53.6% - 48.7% = 4.9% when st batch
was increased from 20 to 50 but it only increased by 54.8% -
53.6% = 1.2% after increasing from st batch = 50 to 200.
Takeaways. Self-training effectively improves AutoML-EM in
the active learning setting if the initial training size is not very
small (e.g., init > 100).

VI. RELATED WORK

ML model development for EM: In addition to Magellan [31]
and DeepMatcher [28], there are some other recent efforts to
study how to develop an ML model for EM. For example,
DeepER [14] proposed an end-to-end deep learning solution
for EM. As shown in [28], it is subsumed by the deep

learning design space used by DeepMatcher. Auto-EM [41]
leverages transfer learning to reduce data labeling cost, which
is orthogonal to our work. To the best of our knowledge, we
the first to study how to automatically build an ML model for
EM using AutoML.
Active learning for EM: There is a long history [5], [26],
[32], [35] of applying active learning to the EM problem to
reduce the human labeling cost. The focus is to get a good
model with as few labels as possible. While we also use active
learning, our focus is not to invent a better query strategy
for active learning, but to explore how promising to combine
active learning with self-training for EM.
Semi-supervised learning for EM: Semi-supervised learning
falls between supervised learning and unsupervised learning,
targeting at the scenario where only a small amount of labeled
data and a large amount of unlabeled data are available.
It enlarges the labeled dataset given the unlabeled dataset.
There are many algorithms have been developed in the ML
community [42]. To the best of our knowledge, there is only
one paper [21] that studied applying self-training for EM.
But we have seen that self-training alone is hard to get a
competitive model for hard EM datasets. Our point here is to
strengthen active learning with self-training. We leave studying
other label inference approaches as future work.
Data labeling with weak supervision: Weak supervision
approaches proposed to adopt labeling functions (specified by
the user [33] or iteratively learned from data [38]) to construct
a noisy training dataset, and then train a noise-tolerant model.
Unlike these works, we study how to combine self-training
and active learning for EM.

VII. CONCLUSION AND FUTURE WORK

We studied how to automate entity matching model devel-
opment with AutoML. We justified why AutoML is needed
for EM, and proposed AutoML-EM, a customized AutoML
solution for EM. We studied how to integrate AutoML-EM into
the active learning setting and proposed AutoML-EM-Active,
a hybrid framework to combine active learning and self-
training for AutoML-EM. The results showed that i) AutoML-EM
outperformed human-developed models by a large margin; ii)
AutoML-EM reached or exceeded deep learning models even
on textual data; iii) AutoML-EM-Active is a more effective
framework than AC + AutoML-EM when the initial training size
is not very small.

Despite the results, AutoML-EM has limitations. For ex-
ample, DeepMatcher is better at handling long text data
inherently due to the benefits of adopting NLP techniques. A
concurrent work [24] brings the state-of-the-art using the pre-
trained deep learning model. There are many interesting future
research directions to be further explored. First, AutoML-EM
may produce a model that is hard to explain. We would like
to explore how to leverage recent ML explanation tools (e.g.,
Shap [25] and Lime [34]) to help data scientists to understand
a complex EM model. Second, AutoML-EM could take a long
time to find the very best model in the large search space.
Meta-learning [37], which learns how to design a model from
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historical ML tasks, is a promising idea. We plan to investigate
whether it can be applied to speed up AutoML-EM. Third,
AutoML-EM-Active is a general idea to combine active learning
and self-training for AutoML-EM. This paper shows the great
potential of this idea. We would like to extend it to other
active learning algorithms, such as query by committee and
maximum margin, in the future.
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