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ABSTRACT
Entity matching (EM) refers to the problem of identifying pairs of
data records in one or more relational tables that refer to the same
entity in the real world. Supervised machine learning (ML) models
currently achieve state-of-the-art matching performance; however,
they require a large number of labeled examples, which are often
expensive or infeasible to obtain. This has inspired us to approach
data labeling for EM using weak supervision. In particular, we use
the labeling function abstraction popularized by Snorkel, where
each labeling function (LF) is a user-provided program that can
generate many noisy match/non-match labels quickly and cheaply.
Given a set of user-written LFs, the quality of data labeling depends
on a labeling model to accurately infer the ground-truth labels. In
this work, we first propose a simple but powerful labeling model
for general weak supervision tasks. Then, we tailor the labeling
model specifically to the task of entity matching by considering the
EM-specific transitivity property.

The general form of our labeling model is simple while substan-
tially outperforming the best existing method across ten general
weak supervision datasets. To tailor the labeling model for EM,
we formulate an approach to ensure that the final predictions of
the labeling model satisfy the transitivity property required in EM,
utilizing an exact solution where possible and an ML-based approx-
imation in remaining cases. On two single-table and nine two-table
real-world EM datasets, we show that our labeling model results
in a 9% higher F1 score on average than the best existing method.
We also show that a deep learning EM end model (DeepMatcher)
trained on labels generated from our weak supervision approach
is comparable to an end model trained using tens of thousands of
ground-truth labels, demonstrating that our approach can signifi-
cantly reduce the labeling efforts required in EM.
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1 INTRODUCTION
Entity matching (EM) refers to the process of determining if a
pair of records from two data sources refer to the same real-world
entity. EM has many applications, for example, in matching prod-
uct listings for competitive pricing [2] and in building knowledge
graphs [29]. As a long-standing problem, EM has been extensively
studied (e.g., see surveys [19, 30, 31, 35, 37, 77]).
The Need for Weak Supervision in EM. The most important
requirement for EM solutions is high matching quality as it directly
affects downstream application performance. State-of-the-art EM
solutions that report the highest matching quality [30, 51, 60, 61] are
supervised machine learning (ML) approaches that train a binary
classifier to predict the label (match or non-match) for any tuple
pair. However, these models require large numbers of labeled tuple
pairs, which are often not available or costly to obtain [30]. The
high human cost in data labeling has become a main bottleneck in
adopting high-quality EM solutions in practice.

To meet the needs of data-hungry supervised ML models, ML
practitioners have increasingly turned to weak supervisionmethods,
in which a larger volume of cheaply generated, but often noisier,
labeled examples is used in lieu of hand-labeled examples. Different
forms of weak supervision have been investigated, including the
use of non-expert crowd workers [34], pretrained models [25], and
rules/patterns/heuristics [76].

To unify different forms of supervision, the data programming
paradigm [70] has been proposed, in which users write labeling
functions (LFs) to programmatically label training data, rather than
manually labeling each example by hand. Each LF is a small user-
provided program (e.g., in Python) that leverages noisy signals in
the data or domain knowledge to provide a label (or abstain) for an
input example. In binary classification tasks such as EM, the output
of each LF is +1 (positive class), -1 (negative class), or 0 (abstain). The
data programming approach was first implemented in Snorkel [67],
a weakly supervised data labeling system. Snorkel allows users to
write LFs and then uses a generative model to combine all LFs to
produce probabilistic labels. The data programming approach has
been widely adopted in various ML tasks [32, 33, 54, 55, 74, 82, 86].
Example Labeling Functions. The LFs shown in Figure 1 are
two user-written LFs developed using an existing tool [85] for
matching electronic products [1]. The first LF, "name_overlap",
encodes the intuition that matching products should have similar
"name" attributes. Specifically, pairs of products with sufficiently
high/low word overlap in their names are predicted as matches
(+1)/non-matches (-1). When the amount of word overlap does not
provide conclusive evidence either way, the LF abstains (0). The
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second LF, "size_unmatch", uses a regular expression to search the
screen size in patterns like "... Samsung 40’ LCD ...". When the
screen sizes of a pair of products are different, the LF predicts the
pair to be non-match (-1); otherwise, the LF abstains (0).

Figure 1: Two user-written LFs for the abt-buy dataset [1].
The predictions of multiple LFs can then be used to construct

a labeling matrix 𝑋 , where each row corresponds to a tuple pair,
and each column corresponds to predictions of one LF for all tuple
pairs. After constructing the labeling matrix, a labeling model is
used to consolidate the labeling function predictions into a final
label for each tuple pair. Figure 2 shows one instance of a labeling
matrix with votes from LFs (LF1, LF2, ...) and inferred labels from
a naive labeling model (+1 for match, -1 for non-match) as well as
the unknown ground truth (GT) labels for each tuple pair.

Figure 2: Example of a labeling matrix

Given a set of user-written LFs, the quality of data labeling de-
pends on the labeling model that infers the ground-truth labels from
the LFs. In this paper, we first present an embarrassingly simple yet
highly effective labeling model (SIMPLE) for general weak supervi-
sion tasks. We then specialize the labeling model (SIMPLE-EM) for
the task of EM by considering the transitivity property.
(1) Labeling Model for General Weak Supervision Tasks: Existing
methods are mostly generative models, i.e., they model the
process of generating the predictions of each LF from the hidden
ground-truth labels [27, 33, 53, 69]. Under an assumed generative
process, one could measure the likelihood of observing all LFs (i.e.,
the labeling matrix) and an estimation of the ground-truth labels
can be obtained by maximizing the likelihood [27, 33, 53, 69]. A
fundamental limitation of these approaches is the need to assume
that the generative process takes certain simplified forms for ease
of modeling or to make the model mathematically solvable. Such
assumptions include the Markov assumption [27, 33, 69] and the
mixture of independent sub-types assumption [53]. Evidently,
these assumptions can often break in practice. Recent benchmark
studies [87] suggest that the best existing labeling model for
general weak supervision tasks is only 1.5% better than majority
vote, and the second best method is already worse than majority
vote. In addition, even with these various assumptions to simplify
the generative process, the existing approaches are typically quite
complicated and difficult to implement.

We take a fundamentally different approach that is a significant
departure from the conventional wisdom that generative models

should be used in labeling models. The core intuition of our method
is that labeling models are functions. Conceptually, every labeling
model takes in the labeling matrix 𝑋 and predicts the label vector �̂�.
For example, 𝑋 could be the sub-matrix in Figure 2 with columns
of all LFs and �̂� could be the naive inferred label column in Figure 2.
Designing a labeling model is to design a function𝐺 parameterized
by Θ, and �̂� = 𝐺 (𝑋,Θ) would be the predicted labels of the model.
The prediction of the whole matrix𝑋 can be made by independently
predicting each individual row/data point; i.e., 𝑦𝑖 = 𝑔(𝑋 [𝑖, :], \ )
where \ is the parameter of 𝑔. Different designs of existing labeling
models can be seen as the function 𝑔 taking different forms.

As discussed, existing labeling models typically build compli-
cated models (e.g., probabilistic graphical models [28, 42, 56] and
matrix completion models [39, 68]) by making various assumptions
to handcraft 𝑔. In this paper, we ask a fundamental question that is
contrary to the conventional wisdom: Can we use a generic classifier
(e.g., random forest) as 𝑔 to be the labeling model and avoid all the
complicated designs in the existing approaches? We provide an af-
firmative answer to this question by presenting an embarrassingly
simple method (in Section 3) that achieves better performance than
the existing approaches across ten datasets.
(2) EM-specific Labeling Model with Transitivity: The transitivity
property of EM states that for any three tuples 𝑡𝑖 , 𝑡 𝑗 , and 𝑡𝑘 , if
𝑡𝑖 matches 𝑡 𝑗 and also matches 𝑡𝑘 , then 𝑡 𝑗 has to match 𝑡𝑘 . Con-
cretely, consider the scenario in Figure 2 – a naive model would
likely predict the tuple pair (𝑡2, 𝑡4) as non-match, despite strong
evidence that both (𝑡1, 𝑡2) and (𝑡1, 𝑡4) should be matches, which
results in inconsistent label assignments that violate transitivity.
Our goal is to explicitly model transitivity using constraints, so that
matching decisions can be made in a holistic manner.

A naive approach to enforce transitivity is to apply it as a post-
processing step, which is sub-optimal. Intuitively, the additional
signals from the transitivity constraints should be made an integral
part of the labeling model to improve its accuracy. We thus attempt
to incorporate transitivity directly in the labeling model. However,
this makes the labeling model complex and difficult to solve.

To tackle this challenge, we first consider a simplified yet com-
mon scenario in two-table EM, where at least one table is “duplicate-
free” (this has been shown to hold for many real-world datasets [49]
which we further verify in Section 5.5). In this scenario, we can
derive an exact solution incorporating transitivity in the labeling
model. In the more general setting where neither table is duplicate-
free or in single-table EM, we propose an ML-based approach (in
Section 4) that produces an approximate solution with transitivity
incorporated into the labeling model. We highlight that our ML
model can be trained offline once and then used for any new EM
datasets without needing any form of update.
Contributions. In this work, we make the following contributions:

(1) A generic view of labeling models. We present a generic view
of labeling models as functions (or classifiers). Different existing
methods are simply various instantiations of this generic view.
(2) A simple and powerful labeling model. Based on the generic view,
we study a fundamental question: Is it possible to use a generic
classifier as the labeling model? We provide an affirmative answer
by proposing a simple yet powerful labelingmodel based on random
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forest. Our method achieves better results than existing approaches
across ten general weak supervision datasets.
(3) Exact solution for transitivity. We adapt our proposed labeling
model to the task of two-table entity matching by considering the
transitivity property. We present an exact solution to transitivity
when at least one table is duplicate-free for two-table EM.
(4) ML-based solution for transitivity.We adapt our proposed labeling
model to the task of single-table entity matching by considering the
transitivity property. We propose an ML-based approach based on
the observation that, in an optimization step of the labeling model,
the optimal matching probabilities under the transitivity constraint
depend only on the optimal probabilities without considering the
transitivity constraint. We further design a novel architecture for
the ML model by considering task-specific properties. Our ML
model trained once offline can be applied to any new EM datasets
without needing any adaptation.

2 PROBLEM DEFINITION
Given𝑚 labeling functions (LFs) and 𝑛 data points to be labeled, the
labeling matrix 𝑋 ∈ {+1,−1, 0}𝑛×𝑚 is obtained by applying all LFs
to all data points. Since LFs are noisy and may have dependencies
(leading to overlaps and conflicts in 𝑋 ), our goal is to design and
implement a labeling model to optimally combine the LF labels in
𝑋 to obtain accurate final labeling results.

For the task of entity matching, each data point is a tuple pair
(𝑡𝑖 , 𝑡 𝑗 ) and the predicted label is denoted as 𝑦 (𝑖, 𝑗) ∈ {−1, +1}. The
final predictions must satisfy the transitivity constraint that if𝑦 (𝑖, 𝑗)

and 𝑦 (𝑖,𝑘) are both equal to +1 (denoting matches), then 𝑦 ( 𝑗,𝑘) must
also be +1. This form of the transitivity constraint applies to single-
table EM; for two-table EM, the matching probabilities of tuple
pairs from the same table are typically not available, so in practice
transitivity relies on one or both tables being duplicate-free.

3 PROPOSED LABELING MODEL
In this section, we introduce the general form of our proposed
labeling model for general weak supervision tasks.

3.1 A Generic View of Labeling Models
Every labeling model (also referred to as truth inference method)
takes in the labeling matrix 𝑋 and predicts the label vector �̂�. At a
high level, we can think of a truth inference algorithm as a function
𝐺 parameterized by Θ such that �̂� = 𝐺 (𝑋,Θ). In most tasks, the
data points are independent, so the predictions of their labels are
also made independently. Therefore, the function 𝐺 that makes
predictions for the whole labeling matrix can be expressed with a
function 𝑔 that makes a prediction for each individual data point.
When predicting the 𝑖𝑡ℎ data point, the function 𝑔 takes in the
𝑖𝑡ℎ weak label vector (i.e., the 𝑖𝑡ℎ row in matrix 𝑋 ) 𝑥𝑖 = 𝑋 [𝑖, :] as
features and predicts the probability of being in the positive class 𝛾𝑖 ,
i.e. 𝑔(𝑥𝑖 , \ ) where \ is the parameter of 𝑔. The label 𝑦𝑖 is obtained as
𝑦𝑖 = 1 if𝑔(𝑥𝑖 , \ ) ≥ 0.5 and𝑦𝑖 = 0 otherwise. In this formulation,𝑔 is
essentially a classifier that takes in a feature vector 𝑥𝑖 and predicts
a soft label. In principle, 𝑔 could be any classifier, and the challenge
is how to learn its parameter \ without labeled data.
Expectation-Maximization Algorithm. Most labeling models
(or truth inference methods) adopt the Expectation-Maximization
algorithm (or extensions of it) to learn the model parameter \ . The

objective function is the negative log data likelihood function:

𝐿(\, 𝑋,𝜸 ) = −Σ𝑁𝑖=1
(
𝛾𝑖 log(𝑔(𝑥𝑖 , \ )) + (1−𝛾𝑖 ) log(1−𝑔(𝑥𝑖 , \ ))

)
(1)

where𝜸 = {𝛾1, . . . } is the hidden ground-truth label. Note we use𝜸
to denote the soft labels (the matching probabilities) and �̂� to denote
the hard labels. Minimizing the negative log data likelihood function
translates to maximizing the likelihood of observing the labeling
matrix 𝑋 . Since both the parameter \ and label 𝜸 are unknown,
the Expectation-Maximization algorithm iteratively estimates \
by minimizing the objective function with 𝜸 fixed as the current
estimation and then computes 𝜸 using the current estimated \ .
Specifically, the learning workflow of Expectation-Maximization
algorithm is as follows:
(1) Obtain an initial estimation of the hidden ground-truth label 𝜸

by majority vote, as this works well in practice [87].
(2) M-step: Estimate the model parameter \ by minimizing Equa-

tion 1 with respect to \ while keeping the labels 𝜸 fixed as the
current estimation. This uses the current estimated labels to
learn the model parameters.

(3) E-step: Update the estimated labels 𝜸 as the predicted matching
probabilities 𝛾𝑖 = 𝑔(𝑥𝑖 , \ ), ∀𝑖 using the model parameter \
obtained in the M-step.

(4) Repeat steps (2) and (3) until convergence.
It can be easily shown (by taking derivative and setting it equal

to zero) that in the M-step, the global minimum of Equation 1 with
respect to \ is achieved when𝑔(𝑥𝑖 , \ ) = 𝛾𝑖 . This means the objective
function measures the difference/loss between the model prediction
and the current soft label, and thus one can replace the objective
function in M-step to be any loss function 𝐷 (𝛾𝑖 , 𝑔(𝑥𝑖 , \ )) which
also has a minimum at 𝑔(𝑥𝑖 , \ ) = 𝛾𝑖 to achieve similar results. In
other words, in the M-step, we can update the model parameter
\ by minimizing 1

𝑁

∑𝑁
𝑖=1 𝐷 (𝛾𝑖 , 𝑔(𝑥𝑖 , \ )) where 𝑁 is the number of

examples. Since some classifiers require specific forms for their loss
functions (e.g., SVM and random forest), the possibility to substitute
the objective functionwith any loss functionwhile achieving similar
results in the M-step enables us to instantiate 𝑔 to be any classifier.
Instantiation as Different Labeling Models. By choosing dif-
ferent forms of 𝑔(𝑥𝑖 , \ ), the Expectation-Maximization algorithm
is instantiated as different existing labeling models. The existing
methods design 𝑔(𝑥𝑖 , \ ) by making different assumptions.

One common assumption is that the noisy labels of each LF are
only dependent on the ground-truth labels, so the noise can be
modeled by the joint probability table (the confusion matrix) of the
LF and the hidden ground-truth. Based on this, a family of truth in-
ference methods [27, 71, 80] has been developed. These models can
be obtained by instantiating 𝑔(𝑥𝑖 , \ ) as the probability distribution
of the class labels derived based on the confusion matrix.

Another common assumption is the Markov assumption. This is
the core assumption in probabilistic graphical models (PGM) [43].
With this assumption, the truth inference problem can be formu-
lated as a PGM with hidden variables. A rich family of truth infer-
ence methods has been developed using PGMs. Such models can be
obtained if we represent 𝑔(𝑥𝑖 , \ ) with a PGM. Different methods in
this family differentiate from each other by adopting different pri-
ors [28], or by replacing the Expectation-Maximization algorithm
with its extension (Variational Bayes [21]) [42, 56].
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3.2 The SIMPLE Algorithm.
In principle, 𝑔 can be any classifier. Our intuition for choosing a
proper𝑔 is that the capacity (also referred to as complexity or size of
the hypothesis space in the literature) of 𝑔 should not be too large,
otherwise 𝑔 will learn a trivial solution (the prediction of majority
vote) in the M-step of the first iteration. On the other hand, the
capacity of 𝑔 should not be too small as we need 𝑔 to capture the
interaction and dependency of different LFs (features).

In fact, different existing methods can be viewed as restricting
the capacity of 𝑔 in different ways through different intuitions or
assumptions. Specifically, by designing 𝑔 based on the assump-
tions (e.g., conditional independence), these methods implicitly
restrict the space of 𝑔 to only include functions that observe the
assumptions, so the model avoids learning the trivial solution (the
initialized labels, e.g., by majority vote) and can generalize well.

From this view, one natural question is the following: Is it really
necessary to handcraft complicated models with various assump-
tions to limit capacity? Or can we directly use a generic classifier
as 𝑔 and explicitly limit its capacity to achieve similar results? The
answer to this latter question turns out to be yes. We show that
we can actually use a generic classifier (random forest) as 𝑔 and
achieve better performance by explicitly restricting its capacity.

To use a generic classifier as 𝑔, a straightforward choice is to
use a simple linear classifier (i.e., logistic regression). This reduces
to the weighted majority vote method. In other words, logistic
regression assigns a weight for each LF and then combines all LFs
using the weights to get the final label. The limitation of logistic
regression is that it is not able to capture more complex interactions
or dependencies between different features (LFs).

To choose a proper classifier, our intuition is that we want a
classifier (1) that is able to express the interaction of different LFs,
and (2) for which we can easily restrict its capacity. Tree-based
approaches naturally model the interaction of different features
(LFs). For example, in a decision tree, the model makes decisions
based on different features at different levels of the tree, so the tree
as a whole naturally considers the interactions of different features
(LFs). Tree-based approaches also work very well on structured
data in practice. In fact, a recent survey reveals that tree-based
methods are still the most common winning solutions in ML com-
petitions on structured data [64]. Therefore, we choose the random
forest classifier, a classic tree-based method, for our task. Note that
we can easily restrict the capacity of a random forest classifier by
setting its hyper-parameters. The first parameter is the maximum
tree depth 𝑑max. With a smaller maximum depth, the random forest
classifier has smaller capacity. Another parameter that controls the
overall capacity/complexity of the trees is the complexity param-
eter: ccp_alpha. Following the common practice, we select both
parameters 𝑑max and ccp_alpha using cross validation. Note cross
validation is done with the current estimated labels at each M-step
where we train the classifier and no ground-truth labels are used.

Restricting the capacity of a classifier is also known as regulariza-
tion. In our method, regularization is done as in typical ML tasks –
in a way that is explicit and data-driven through cross validation. In
contrast, in existing truth inference methods, regularization is done
implicitly through manually restricting the hypothesis space (e.g.,
the form of function 𝑔) based on various assumptions or heuristics.

With a random forest classifier as𝑔, theM-step in the Expectation-
Maximization algorithm simply becomes training the classifier with
the current estimated labels (we use the hard labels �̂� obtained by
binarizing the soft labels 𝜸 because common implementations of
random forest only support training with hard labels), and the E-
step simply becomes performing prediction on the training set to
obtain an updated version of the soft labels 𝜸 .
Class Imbalance.Many real world datasets (especially EMdatasets)
have imbalanced classes. Traditionally, to handle the data imbalance
problem, one would need to carefully design the labeling model
(truth inference method) such as by introducing priors [33, 53, 67].
In our method, handling the problem of class imbalance is the same
as handling class imbalance in a typical ML setting, and we are able
to directly adopt state-of-the-art techniques to address it.

We handle the class imbalance problem when training the clas-
sifier at the M-step. Specifically, we augment the data points of
the minority class to match the size of the majority class with
SMOTE [18], a simple technique for class imbalance that works
very well in practice. SMOTE [18] works by creating synthetic ex-
amples by interpolating existing data points. For example, if we
have two data points in the positive class (𝑥1, 1), (𝑥2, 1), SMOTE
might create one synthetic data point by interpolating the two data
points, e.g., ( 𝑥1+𝑥22 , 1). We train the model with the augmented mi-
nority class and the original majority class at each M-step. After
training, in the E-step, we perform prediction on the original set
of data points to get a new version of the labels 𝜸 . Since we do
not know whether a given dataset has the class imbalance problem
or not, we always apply SMOTE at each M-step for all datasets.
The pseudo-code of the entire SIMPLE algorithm is shown in Algo-
rithm 1. We open-source our implementation at [9].

Algorithm 1: SIMPLE
Input: Labeling matrix 𝑋
Output: Estimated soft labels 𝜸

1 𝜸 ← majority vote on 𝑋

2 while Not Converged do
3 M Step
4 Obtain hard labels �̂� by binarilize the soft labels 𝜸 .
5 Make the classes balanced: 𝑋 ′, �̂�′ = SMOTE(𝑋, �̂�)
6 Select random forest parameters 𝑑max and ccp_alpha

with cross validation on data (𝑋 ′, �̂�′)
7 RandomForestClassifier.fit(𝑋 ′, �̂�′)
8 E Step
9 𝜸 ← RandomForestClassifier.predict_proba(𝑋 )

10 end
11 return 𝜸

Computational complexity. The complexity of each iteration is
dominated by training the random forest classifier, which has a time
complexity of 𝑂 (𝑁 log(𝑁 )) where 𝑁 is the number of tuple pairs
in the candidate set [57]. Let 𝑀𝐼 denote the number of iterations.
The overall time complexity is𝑂 (𝑀𝐼𝑁 log(𝑁 )). In our experiments,
we observe that 10 iterations is enough for all datasets. The space
complexity is 𝑂 (𝑁 ).
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Discussion. Our method has a connection to the pseudo-labeling
method in semi-supervised learning [15, 48]. In pseudo-labeling,
first a model is trained on a labeled training set and used to make
predictions on unlabeled data; the data with confident predicted
labels are then added to the training set. Next, the model is trained
on the new training set, and then this process continues iteratively.
Both pseudo-labeling and our method use predicted data as labeled
data for the next iteration. The differences between pseudo-labeling
and our method are as the following: First, pseudo-labeling is in
a semi-supervised setting while our method is in a unsupervised
setting. We highlight that truth inference might be the only (or at
least one of the few) unsupervised task(s) where one could apply
this type of iterative approach as one can get a reasonable initial
estimation (e.g., by majority vote in truth inference) to start with.
This is due to the implicit assumption in weak supervision that
each user-provided LF is better than random guessing. For general
unsupervised ML tasks, there is no straightforward way to get a
good initial estimation. Second, the focus of pseudo-labeling is to
train a model while our focus is to obtain the labels for all data
points; consequently, pseudo-labeling only adds confident label
predictions to the training set while we include all predictions.

4 INCORPORATING TRANSITIVITY
In this section, we tailor our proposed labeling model to the task of
EM by incorporating the transitivity property. The tailored method
is denoted as SIMPLE-EM. The transitivity property for EM states
that if tuple 𝑡𝑖 matches 𝑡 𝑗 and 𝑡𝑖 matches 𝑡𝑘 , we must conclude that
𝑡 𝑗 also matches 𝑡𝑘 . We follow prior work [81] to model transitivity
as an inequality constraint, and the E-step of the EM algorithm can
then be formulated as a constrained optimization problem. To make
this section self-contained, we briefly review the formulation from
prior work [81] in Section 4.1. Then, we introduce our solution in
Section 4.2 and Section 4.3.

4.1 Constrained Optimization Formulation for
Transitivity.

Transitivity as Constraint on Matching Probabilities.We fol-
low prior work [81] to model transitivity as an inequality constraint
defined on matching probabilities. Specifically, for any three tuples
𝑡𝑖 , 𝑡 𝑗 , and 𝑡𝑘 , the transitivity constraint can be expressed as the
following inequality:

𝛾 (𝑖, 𝑗) × 𝛾 (𝑖,𝑘) ≤ 𝛾 ( 𝑗,𝑘) (2)

where we use the superscript (𝑖, 𝑗) (e.g., 𝛾 (𝑖, 𝑗) ) to index the tuple
pair (𝑡𝑖 , 𝑡 𝑗 ) and 𝛾 (𝑖, 𝑗) denotes the matching probability of (𝑡𝑖 , 𝑡 𝑗 ).
To see how Equation 2 secures the transitivity constraint, consider
an example where 𝛾 (𝑖, 𝑗) = 0.6 and 𝛾 (𝑖,𝑘) = 0.5: in 60% of the
cases (𝑡𝑖 , 𝑡 𝑗 ) is a match and in 50% of the cases (𝑡𝑖 , 𝑡𝑘 ) is a match.
Transitivity applies only when both (𝑡𝑖 , 𝑡 𝑗 ) and (𝑡𝑖 , 𝑡𝑘 ) are matches
which is in 60%× 50% = 30% of the cases, and in these cases (𝑡 𝑗 , 𝑡𝑘 )
is a match due to transitivity. Therefore, (𝑡 𝑗 , 𝑡𝑘 ) has at least a 30%
chance of being a match, as captured by Equation 2.

The set of all transitivity constraints defines a feasibility set for
𝜸 : 𝑄 = {𝜸 |𝛾 (𝑖, 𝑗)𝛾 (𝑖,𝑘) ≤ 𝛾 ( 𝑗,𝑘)∀𝑖, 𝑗, 𝑘}. Intuitively, incorporating
transitivity reduces to ensuring that the labeling model’s prediction
𝜸 is in the feasibility set 𝑄 .

Incorporating Constraints in EM. On the surface, it seems very
difficult to incorporate the transitivity constraints 𝑄 into the la-
beling model – namely, to find the best model parameter \ that
minimizes 𝐿(\, 𝑋,𝜸 ), while ensuring that the probabilities 𝜸 that
are directly computed based on \ in the E-step satisfy𝑄 . Following
prior work [81], this is solved by using the free energy view of the
expectation-maximization algorithm [63]. In this view, the objec-
tive function becomes the negative free energy function 𝐹 (\, 𝑋,𝜸 ):

𝐹 (\,𝑋,𝜸 ) =
∑︁
(𝑖,𝑗 )
−𝛾 (𝑖,𝑗 ) log 𝑔 (𝑥 (𝑖,𝑗 ) , \ )

𝛾 (𝑖,𝑗 )
− (1 − 𝛾 (𝑖,𝑗 ) ) log 1 − 𝑔 (𝑥 (𝑖,𝑗 ) , \ )

1 − 𝛾 (𝑖,𝑗 )

(3)
The M-step stays the same as it was before, while the E-step also
becomes an optimization process that allows us to incorporate
the transitivity constraints. Specifically, the E-step becomes 𝜸∗ =
argmin𝜸 𝐹 (\, 𝑋,𝜸 ) which can be shown to be equivalent to the
original E-step where 𝜸∗ is obtained by direct computation (i.e.,
𝛾∗(𝑖, 𝑗) = 𝑔(𝑥 (𝑖, 𝑗) , \ )) [63]. With this formulation, the transitivity
constraint can be incorporated in E-step by constraining 𝜸 ∈ 𝑄 :

𝜸∗∗ = argmin𝜸∈𝑄𝐹 (\,𝑋,𝜸 ) (4)

Intuitively,𝜸∗∗ would be the best matching probabilities that satisfy
the transitivity constraint while minimizing the objective function.
However, the above constrained optimization problem is difficult
to solve since the constraint set 𝑄 is actually non-convex (the
Hessian matrix of a constraint is indefinite) [81]. Existing work
uses a projection-based heuristic [81] to address this, which is not
robust across datasets as we show in experiments. We will propose
a more principled and efficient solution.
Relationship Between Constrained and Unconstrained Solu-
tion. The observation of our solution is that the constrained so-
lution 𝜸∗∗ is only dependent on the unconstrained solution 𝜸∗; in
other words, there exists a function ℎ such that𝜸∗∗ = ℎ(𝜸∗). To see
this, 𝜸∗ is obtained as 𝛾∗(𝑖, 𝑗) = 𝑔(𝑥 (𝑖, 𝑗) , \ ) in the E-step and we can
replace 𝑔(𝑥 (𝑖, 𝑗) , \ ) with 𝛾∗(𝑖, 𝑗) in the objective function in Equa-
tion 3. In this way, the only two variables in the objective function
are 𝛾∗(𝑖, 𝑗) (which is known) and 𝛾 (𝑖, 𝑗) (which is to be solved and
the solution is denoted as 𝛾∗∗(𝑖, 𝑗) ). Since 𝜸∗ and 𝜸 are the only two
variables in the objective function and the constraint of Equation 4,
the optimal solution of 𝜸 (i.e., 𝜸∗∗) is only dependent on 𝜸∗.
4.2 Transitivity for Two-Table EM
For two-table EM, it has been found that in most real-world datasets
at least one of the two tables is duplicate-free [49]. Under the sce-
nario that one or both tables are duplicate-free, we can derive the
exact 𝜸∗∗ from 𝜸∗. (Again, note that 𝜸∗ can be easily obtained by
direct computation in the E-step.)
One Table Is Duplicate-free. Assume without loss of generality
that the left table is known to be duplicate-free. For any tuple
pair (𝑡𝑙𝑖 , 𝑡𝑙 𝑗 ) from the left table, the duplicate-free information is
incorporated into the model formulation by setting 𝛾∗∗(𝑙𝑖 ,𝑙 𝑗 ) =

𝛾∗(𝑙𝑖 ,𝑙 𝑗 ) = 0. We can show that in the constrained solution 𝜸∗∗,
for any tuple 𝑡𝑟𝑘 from the right table, there exists only one tuple
from the left table that has non-zero matching probability with
𝑡𝑟𝑘 . To see this by contradiction, let 𝑡𝑙𝑖 and 𝑡𝑙 𝑗 denote two tuples
from the left table that have non-zero matching probability with
𝑡𝑟𝑘 . By the transitivity constraint, 𝛾∗∗(𝑟𝑘 ,𝑙𝑖 )𝛾∗∗(𝑟𝑘 ,𝑙 𝑗 ) ≤ 𝛾∗∗(𝑙𝑖 ,𝑙 𝑗 ) = 0,
which means at least one of 𝛾∗∗(𝑟𝑘 ,𝑙𝑖 ) and 𝛾∗∗(𝑟𝑘 ,𝑙 𝑗 ) must be zero,
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contradicting the fact that 𝑡𝑙𝑖 and 𝑡𝑙 𝑗 both have non-zero matching
probability with 𝑡𝑟𝑘 .

Assume that we have the optimal unconstrained matching prob-
abilities 𝛾∗

𝑘
= {𝛾∗(𝑟𝑘 ,𝑙1) , 𝛾∗(𝑟𝑘 ,𝑙2) , . . . } between 𝑡𝑟𝑘 and the left table

tuples. Since the constrained solution can only have one of these
probabilities be nonzero, the optimal solution under the transi-
tivity constraint 𝛾∗∗

𝑘
is obtained by setting |𝛾∗

𝑘
| − 1 values to be

zero in 𝛾∗
𝑘
. We would like to keep as nonzero the variable with

the maximum increase in the objective function when it is set
to zero, so that the overall objective is minimized. The objective
function increase of a single probability 𝛾∗(𝑟𝑘 ,𝑙𝑖 ) is obtained as
Δ𝐹 (𝛾∗(𝑟𝑘 ,𝑙𝑖 ) ) = log(1/(1−𝛾∗(𝑟𝑘 ,𝑙𝑖 ) )) which is monotonic to𝛾∗(𝑟𝑘 ,𝑙𝑖 ) .
As a result, the algorithm of obtaining𝜸∗∗ from𝜸∗ is as follows: For
every tuple in the right table, find the left tuple with the maximum
probability of matching to it, and set the matching probabilities of
all other left tuples to be zero. The time complexity of this step is
𝑂 (𝑁 ) and the time complexity of the overall SIMPLE-EM algorithm
is still 𝑂 (𝑀𝐼𝑁 log(𝑁 )). Note this method is the same as the one
used in SiGMa [47] and LINDA [17]. In prior work [17, 47] the
method was used as a greedy solution for the general setting, while
we point out that in our formulation it is the optimal method in the
case when one table is duplicate-free. When two tables are both
duplicate-free, this method is sub-optimal/greedy and we propose
a different solution in the following paragraph.
Two Tables Are Duplicate-free. When both tables (𝐿 table and
𝑅 table) are known to be duplicate free, we can follow the same
reasoning as in the one-table duplicate-free case and extend it to be
bi-directional. Thus, every tuple in the left table can have non-zero
matching probability to only one tuple in the right table, and every
tuple in the right table can have non-zero matching probability to
only one tuple in the left table. Therefore, for all |𝐿 | × |𝑅 | possible
left tuple and right tuple pairs, we want to keep min( |𝐿 |, |𝑅 |) pairs
and set the matching probabilities of all other pairs to be zero. In
particular, we would like to keep the min( |𝐿 |, |𝑅 |) pairs with the
minimum objective function values while satisfying the condition
that every left (or right) tuple can have non-zero matching probabil-
ity to at most one tuple in the right (or left) table. This is essentially
the assignment problem, and there is an existing efficient algorithm
to solve it – the LAPJV algorithm [23, 41] with a time complexity
of 𝑂 (𝑁 min(𝑁𝑙 , 𝑁𝑟 )). Note that the time complexity listed in the
original paper [41] is the dense version which corresponds to the
setting without blocking. The complexity 𝑂 (𝑁 min(𝑁𝑙 , 𝑁𝑟 )) is the
sparse case with blocking and can be derived following [23]. Since
we only care about matches, we only need to consider the pairs
with a matching probability greater than 0.5. In this case, the time
complexity can be further optimized to be𝑂 (𝑁𝑀 min(𝑁𝑙,𝑀 , 𝑁𝑟,𝑀 )),
where 𝑁𝑀 is the number of predicted matches (typically orders
of magnitude smaller than 𝑁 ) and 𝑁𝑙,𝑀 and 𝑁𝑟,𝑀 are the number
of left and right tuples involved in the predicted matches. In our
experiments, we do not adopt this optimization as we empirically
observed that the algorithm finishes in a reasonable time without
the optimization. The time complexity of the SIMPLE-EM algorithm
in this case is𝑂 (𝑀𝐼𝑁 (log(𝑁 )+min(𝑁𝑙 , 𝑁𝑟 )). The space complexity
is 𝑂 (𝑁 ). We use an existing efficient implementation of the LAPJV
algorithm in the scipy package [6].

Since the LAPJV algorithm is non-trivial and technically dense,
here we only briefly introduce the high-level ideas of the algorithm.
The LAPJV algorithm first reformulates the assignment problem
as a minimum cost flow problem and then solves it by finding
the shortest path on an auxiliary graph [41]. It further employs
several techniques (e.g., column reduction, reduction transfer, and
augmenting row reduction) to quickly filter out unlikely paths [41].
For more details, one can refer to the original paper [41].
Duplicate-free Detection with Weak Supervision.We use the
exact solutions outlined above when it is known one or two tables is
duplicate-free. However, in some cases, the information of whether
one table is duplicate-free is unknown. Therefore, we propose a
method that leverages the results of the labeling model (without
considering transitivity) that labels left-right (LR) tuple pairs with
LFs to detect whether either table is duplicate free. The intuition of
our detection method is that, if the left table is not duplicate-free,
one right-table tuple might appear in multiple LR matching tuple
pairs. For example, (𝑡𝑙1 , 𝑡𝑟1 ) and (𝑡𝑙2 , 𝑡𝑟1 ) are both matches; due to
the fact the left table contains duplicates 𝑡𝑙1 and 𝑡𝑙2 , the right tuple
𝑡𝑟1 appeared twice in the matching pairs. On the other hand, when
the left table is duplicate-free, one right-table tuple can only appear
once in the LR matching tuple pairs. This means the distribution of
the right-table tuples in the LR matching tuple pairs is different in
the two cases. The predicted LR matching tuples pairs from the la-
beling model might be noisy, but still provide some information that
we can use to detect which of the two cases the distribution of the
right-table tuples falls in by using a hypothesis test procedure. We
describe and experimentally evaluate the method in Appendix 8.1
due to space limit. We highlight that the proposed duplicate-free
detection method does not require LFs for left-left (LL) or right-
right (RR) tuple pairs. Since the user has already written LFs for LR
pairs, the method requires no additional effort from the user.

4.3 Transitivity for Single-Table EM
For single-table EM, we are not able to leverage the duplicate-free
information to derive the exact constrained solution 𝜸∗∗ from the
unconstrained solution 𝜸∗. Since we showed that 𝜸∗∗ = ℎ(𝜸∗) at
the end of Section 4.1, we propose to train a model offline to ap-
proximate ℎ. Specifically, we randomly generate many instances
of 𝜸∗, and employ expensive numerical solvers to obtain the corre-
sponding𝜸∗∗. In this way, we obtain many pairs of (𝜸∗,𝜸∗∗), which
are used as training data to train an ML model to approximate ℎ.
Trained model will be dataset-agnostic. Before we go into the
details of how we train the model, we emphasize that the trained
model will also work on unseen datasets that may differ from the
generated training set. To see this, consider that the form of the
function ℎ is dataset-independent as no dataset-specific informa-
tion is involved in our derivation at the end of Section 4.1. If we
can derive the analytical form of ℎ, the analytical form can surely
be used for any dataset. However, obtaining the analytical form
is difficult. Intuitively, we could obtain all possible values in the
domain of 𝜸∗ and numerically solve 𝜸∗∗ for each value and then
save the result in a dictionary. In this way, we obtain a numerical
representation of the function ℎ as a dictionary. Then at inference
time, for each value 𝜸∗ we could find the corresponding 𝜸∗∗ in the
dictionary. Intuitively, the dictionary can be used for any unseen
dataset as it is simply a different but equivalent representation to
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the analytical form. Our ML-based solution can be seen as a less
expensive approximation of such a dictionary-based approach. In-
stead of obtaining all possible values in the input domain, we pick a
subset of random values (i.e., the training set), and instead of saving
every pair of one-to-onemapping between𝜸∗ and𝜸∗∗, we compress
the mapping by using an ML model. Similar to the dictionary-based
approach, the trained ML model can be used for any dataset. The
way of learning an ML model to approximate functions (that are
difficult to solve analytically) has also been adopted in other tasks
recently [13, 38, 82, 84]. In these tasks, similar to ours, the trained
model can be used for any unseen dataset [13, 38, 82, 84].

To manifest this idea, one challenge is that ML models require
their inputs and outputs to have fixed dimensions, while the dimen-
sion of 𝜸∗ depends on the number of tuple pairs, which varies for
different EM tasks. Our approach is to first train a model to approx-
imate ℎ for fixed-dimension 𝜸∗ (e.g., a 1024-dimensional 𝜸 is suffi-
cient to represent at most 32 tuple pairs as there are 32 × 32 = 1024
matching probabilities). We then carefully decompose 𝜸∗ to sub-
components with a maximum size of 1024 (i.e., clusters with 32
tuple pairs) and apply the model to each sub-component.
Training Data Generation.We randomly generate 105 matching
probability matrices of size 32 × 32, each corresponding to a 1024-
dimensional vector 𝜸∗. Each probability matrix corresponds to one
training data point and we empirically observed that increasing
the amount of training data from 105 to 106 does not bring mean-
ingful improvement. For each 𝜸∗, 𝜸∗∗ is obtained by Equation 4.
Specifically, by replacing 𝑔(𝑥 (𝑖, 𝑗) , \ ) in 𝐹 (\, 𝑋,𝜸 ) with 𝛾∗(𝑖, 𝑗) :

𝜸∗∗ = arg min
𝜸∈𝑄

∑︁
(𝑖,𝑗 )
−𝛾 (𝑖,𝑗 ) log 𝛾∗(𝑖,𝑗 )

𝛾 (𝑖,𝑗 )
− (1 − 𝛾 (𝑖,𝑗 ) ) log 1 − 𝛾∗(𝑖,𝑗 )

1 − 𝛾 (𝑖,𝑗 ) (5)

We denote the big summation on the right-hand side as ℎ1 (𝜸∗,𝜸 )
so 𝜸∗∗ = argmin𝜸 ∈𝑄 ℎ1 (𝜸∗,𝜸 ). We resort to expensive numerical
optimizers to find 𝜸∗∗. Since this is done only once offline, we
can afford expensive computation for a more accurate solution.
Specifically, to account for the transitivity constraint 𝑄 , we add
an additional transitivity loss to the objective function. The total
amount of transitivity violations of all triplets of tuples is:

𝑙transitivity (𝜸 ) = Σ𝑖,𝑗,𝑘Relu(𝛾 (𝑖,𝑗 )𝛾 (𝑖,𝑘 ) − 𝛾 ( 𝑗,𝑘 ) ) (6)

The constrained solution 𝜸∗∗ can be obtained by minimizing the
following expression with respect to 𝜸 :

Loss(𝜸∗,𝜸 ) = 𝛼𝑙transitivity (𝜸 ) + ℎ1 (𝜸∗,𝜸 ) (7)

where 𝛼 is a hyperparameter controlling the preference between
satisfying the transitivity constraint and minimizing the negative
free energy function. We set 𝛼 = 100 as we empirically observed
that 𝛼 = 100 ensures the transitivity constraint is satisfied in the
final numerical solutions. For each 𝜸∗, we numerically minimize
Loss(𝜸∗,𝜸 ) with multiple optimizers including optimizers for non-
convex optimization [58, 72] using an existing pytorch implementa-
tion [40]. Thus, for each 𝜸∗, we obtain multiple different solutions
of 𝜸∗∗ where each solution is from a different optimizer. We then
pick the solution with the smallest loss. Since we expect 𝜸∗∗ to be
close to 𝜸∗, we always initialize 𝜸∗∗ as 𝜸∗ during optimization.
OutputDimensionReduction. Predicting the𝜸∗∗ vector requires
the model to predict 1024 values at the same time, which would
be very difficult. We instead reduce the task to predicting only a
single value by exploiting a symmetry property of the task.

Consider the example shown in Figure 3. The naive approach of
predicting all 1024 values is shown in Figure 3(a) where the input
and output of the model are both a matrix of size 32 × 32. Imagine
we have a model learned to predict a single value in the red cell in
Figure 3(a). Originally, the value in this cell is 𝛾∗∗0,1, which means the
model predicts𝛾∗∗0,1. Next in Figure 3(b), we swap 𝑡0 with 𝑡2 and swap
𝑡1 with 𝑡3. The rows and columns in the input matrix are swapped
accordingly. Now the value in the red cell becomes 𝛾∗∗2,3 and the
model predicts the value 𝛾∗∗2,3. Similarly, we can make the model
predict any value in the output matrix by swapping appropriate
tuples, except the diagonal values which are known to be 1.

Formally, let ℎ denote the model that takes an input matrix and
predicts a single value in the red cell where the original value is
𝛾∗∗0,1. Let 𝑆

𝑘,𝑙
𝑖, 𝑗
(𝜸∗) denote swapping 𝑡𝑘 with 𝑡𝑖 and swapping 𝑡𝑙 with

𝑡 𝑗 . Then, ∀𝑖, 𝑗 we have 𝜸∗∗𝑖, 𝑗 = ℎ(𝑆0,1
𝑖, 𝑗
(𝜸∗)). In this way, we are able

to predict any of the 32 × 32 values in 𝜸∗∗ with a model ℎ that only
predicts a single value. Therefore, we do not need to train a model
that predicts the 32 × 32 = 1024 values at the same time; we only
need to train a model that predicts one value, which is much easier.

Figure 3: (a) Naive model. (b) Model with output dimension
of 1. (c) Demonstration of invariance to permutation on tu-
ples other than 𝑡0 and 𝑡1.

Swapping-invariant Model Architecture. Consider that in Fig-
ure 3(c), when we swap 𝑡2 with 𝑡3, the model ℎ should still predict
the value 𝛾∗∗0,1 and the swapping operation should not impact the
prediction. This is a special swapping-invariance property of the
problem which we also want to leverage. In general, if we divide the
tuples into groups 𝑔1 = {𝑡0, 𝑡1} and 𝑔2 = {𝑡2, . . . }, then randomly
swapping any tuples any number of times within each group should
not change the prediction of 𝛾∗∗0,1, as the value in the red cell will
always be𝛾∗∗0,1 or𝛾

∗∗
1,0, which are equivalent. More formally, we want

the following invariance to hold for ℎ:
ℎ (𝜸∗) =ℎ (𝑆1,00,1 (𝜸

∗))

ℎ (𝜸∗) =ℎ (𝑆𝑘,𝑙
𝑖,𝑗
(𝜸∗)), ∀𝑖, 𝑗, 𝑘, 𝑙 that {0, 1} ∩ {𝑖, 𝑗, 𝑘, 𝑙 } = ∅

(8)

We would like to encode this invariance property directly into the
model architecture. However, this is very challenging because when
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swapping the tuples, the corresponding rows and columns in the
input matrix change at the same time. Let 𝜸∗mat denote the matrix
form of 𝜸∗. The swapping operation 𝑆𝑘,𝑙

𝑖, 𝑗
(𝜸∗) can be also written in

a matrix form as (𝑃𝑘
𝑖
𝑃𝑙
𝑗
)𝜸∗mat (𝑃𝑘𝑖 𝑃

𝑙
𝑗
)𝑇 where 𝑃𝑘

𝑖
is the permutation

matrix [5] obtained by swapping the 𝑖th row and 𝑘th row of the
identity matrix. Our core idea is to decompose the input matrix into
an eigenvector matrix 𝑉 and eigenvalue matrix using the singular
value decomposition 𝜸∗mat = 𝑉𝑊𝑉𝑇 . Subsequently,

(𝑃𝑘
𝑖 𝑃

𝑙
𝑗 )𝜸∗mat (𝑃𝑘

𝑖 𝑃
𝑙
𝑗 )𝑇 =(𝑃𝑘

𝑖 𝑃
𝑙
𝑗 )𝑉𝑊𝑉𝑇 (𝑃𝑘

𝑖 𝑃
𝑙
𝑗 )𝑇

=(𝑃𝑘
𝑖 𝑃

𝑙
𝑗𝑉 )𝑊 (𝑃𝑘

𝑖 𝑃
𝑙
𝑗𝑉 )𝑇 = 𝑉 ′𝑊𝑉 ′𝑇

(9)

where 𝑉 ′ = 𝑃𝑘
𝑖
𝑃𝑙
𝑗
𝑉 . The 𝑉 ′ matrix is obtained by swapping the 𝑖th

row with the 𝑘th row and swapping the 𝑗 th row with the 𝑙th row in
the matrix 𝑉 . This means that swapping the rows and columns in
𝜸∗mat at the same time is equivalent to swapping only the rows in the
eigenvector matrix𝑉 . Note that since the matrix𝜸∗mat is symmetric,
𝑊 and 𝑉 are guaranteed to be real-valued. Also, while it might
be tempting to use the Cholesky decomposition [4] instead (i.e.,
𝜸∗mat = 𝑈𝑈𝑇 ), the problem is that𝑈 can contain complex numbers
which cannot be easily used as inputs for neural networks.

To make the model satisfy the invariance in Equation 8, we
decompose the input 𝜸∗mat as𝑊 and 𝑉 , then use𝑊 and 𝑉 as the
new input to the model, so that we only need to ensure the model is
invariant to row swapping operations on 𝑉 . Specifically, similar to
how we divide the tuples into two groups, we divide the rows in 𝑉
into two groups 𝑔′1 = {1st row, 2nd row} and 𝑔′2 = {3rd row, . . . },
and we need to make sure that randomly swapping/shuffling any
rows within each group does not change the model prediction.

Inspired by PointNet [65], we present such a model architecture
in Figure 4. The input𝜸∗ is first decomposed as𝑉 and𝑊 . Each row
in𝑉 is then encoded by a neural network to obtain a row embedding
vector. We subsequently take the maximum along every embedding
dimension for embedding vectors in each group of rows (𝑔′1 and
𝑔′2). This gives us one embedding vector for each group. Since the
max operation is invariant to any swapping of elements within
each group, the model architecture is invariant to row-swapping
within each row group (𝑔′1 or 𝑔

′
2) of 𝑉 . The two embedding vectors

of the two groups are then concatenated with the diagonal values
in𝑊 (𝑊 is a diagonal matrix) to form one concatenated embedding
vector. The concatenated vector finally passes through another
neural network which predicts the value 𝜸∗∗0,1.

Figure 4: Transitivity model architecture.
Model Inference. In online inference, we decompose a higher-
dimensional input 𝜸∗ into many independent vectors of 1024 dimen-
sions, and we can apply ℎ on each vector. To do so, we form a graph
𝐺𝑀 , where nodes are tuples and an edge exists between two nodes
only if their matching probability exceeds 0.5. This is equivalent
to a prior approach that relaxes the transitivity constraint 𝑄 by
only considering transitivity violations that involve at least two pre-
dicted matching pairs [81]. The intuition is that transitivity is useful

only for tuple pairs predicted to be matches. After identifying the
connected components of𝐺𝑀 , we can apply ℎ to tuple pairs in each
connected component independently because there is no constraint
that involves tuples from two different connected components (oth-
erwise, the two components would have been merged). For each
component, if it has fewer than 32 tuples (which covers most cases),
we add dummy tuples to form a 1024-dimensional vector (or a 32×
32 matrix) as illustrated in Figure 5(1); if it has more than 32 tuples,
then for each edge, we randomly sample 30 neighbors of the two
nodes on the edge as illustrated in Figure 5(2); The random sampling
is repeated ten times and we take the averaged prediction for that
edge after applying ℎ to each sample. Each connected component
with a size smaller than 32 will be processed by ℎ only once, so
the involved edges will be processed only once. For a connected
component with a size greater than 32, each edge will be processed
10 times as we take 10 random samples of its neighbors. Therefore,
the time complexity is𝑂 (𝑁 ) where 𝑁 is the number of edges in the
graph (which is the number of tuple pairs in the candidate set) and
the time complexity of the overall SIMPLE-EM algorithm is still
𝑂 (𝑀𝐼𝑁 log(𝑁 )). The space complexity of SIMPLE-EM is 𝑂 (𝑁 ).
Computational complexity. We summarize the computational
complexity in all cases. For two-table EM,when one table is duplicate-
free, the time complexity is 𝑂 (𝑀𝐼𝑁 log(𝑁 )) where𝑀𝐼 is the num-
ber of iterations (we empirically found𝑀𝐼 < 10 suffices) and 𝑁 is
the size of the candidate set; when two tables are duplicate-free, the
time complexity is 𝑂 (𝑀𝐼𝑁 (log(𝑁 ) + min(𝑁𝑙 , 𝑁𝑟 )) where 𝑁𝑙 and
𝑁𝑟 are the number of tuples in the left and right table; when no
table is duplicate-free, transitivity is not used and the time complex-
ity is 𝑂 (𝑀𝐼𝑁 log(𝑁 )). For single-table EM, the time complexity is
𝑂 (𝑀𝐼𝑁 log(𝑁 )). In all cases, the space complexity is 𝑂 (𝑁 ).

Figure 5: (1) A small connected component with a size ≤ 32.
(2) A large connected componentwith a size > 32. Thematrix
on the right is the input for the ML model.

5 EXPERIMENTS
We evaluate our proposed method along five dimensions:

• Overall Performance. How does the overall performance of our
method (SIMPLE-EM) compare to other existing methods?
• Transitivity. How does our proposed method of handling transi-
tivity compare to prior methods?
• Data shift. How do traditional manual labeling and weak super-
vision behave in case of data shift?
• Sensitivity Analysis.How sensitive is our method to different LFs?
• Truth inference on general tasks. How does the general form of
our method (SIMPLE) work on general weak supervision tasks?
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5.1 Experimental Setup
Hardware and Platform.We use a machine with a 2.20GHz Intel
Xeon(R) Gold 5120 CPU, a K80 GPU and with 96GB 2666MHz RAM.
In all experiments for all involved methods, we use GPU whenever
possible and we use multi-core parallelization whenever possible.
Datasets. We adopt commonly used real-world two-table and one-
table benchmark datasets from the EM literature, such as those
maintained by the Leipzig DBGroup [1, 46], theMagellan project [26]
and the Alaska benchmark [22]. The statistics of the datasets are
shown in Table 1. The Monitor and Camera datasets are single-
table datasets, and all other datasets are two-table datasets. Note
that three datasets (IMDB-Rotten Tomatoes, Yellow Pages-Yelp, and
Amazon-Barnes Noble) from the Magellan Repository [26] only
contain partial ground-truth (i.e., only a subset of matching pairs
and a subset of non-matching pairs are provided). All other datasets
have complete ground-truth. Also note that different records in
the Alaska benchmark datasets (Monitor and Camera) can have
different attributes [22]; in these cases, we keep the 10 most com-
mon attributes and fill with NA for records missing these attributes.
We design a default blocking strategy for each dataset based on its
most informative attributes (e.g., title) using the overlap of tokens.
Specifically, we use the OverlapBlocker from the py_entitymatching
package [3]; the candidate set size and blocking recall are shown
in Table 1. The same blocking is used for all baseline methods.
Table 1: Benchmark EM datasets. "-" for 𝑁𝑁𝑜𝑛 denotes that
all other tuple pairs are non-matches as the complete set of
matches is provided for the dataset.

Dataset # tuples
L , R

# matches 𝑁𝑀

# nonmatches 𝑁𝑁𝑜𝑛

# unlabeled 𝑁𝑈

𝑁𝑀 , 𝑁𝑁𝑜𝑛, 𝑁𝑈

# attr candset
size , recall

Fodors-Zagats (FZ) 533 , 331 112 , - , 0 7 2915 , 1.0
DBLP-ACM (DA) 2616 , 2294 2224 , - , 0 4 46456 , 0.998
DBLP-Scholar (DS) 2616 , 64263 5347 , - , 0 4 135327 , 0.913

Abt-Buy (AB) 1082 , 1093 1098 , - , 0 4 164072 , 0.995
Amazon-Google (AG) 1363 , 3226 1300 , - , 0 4 42413 , 0.944
Walmart-Amazon (WA) 2554 , 22074 1154 , - , 0 9 68265 , 0.879

IMDB-Rotten Tomatoes (IR) 2960 , 3093 169 , 230 , 63399 10 63798 , 1.0
Yellow Pages-Yelp (YY) 11840 , 5223 131 , 271 , 4876 6 5278 , 1.0

Amazon-Barnes Noble (ABN) 9836 , 9958 233 , 143 , 67769 11 68145 , 0.884
Monitor (M) 16663 26921 , - , 0 10 99230 , 0.953
Camera (C) 29788 314315 , - , 0 10 1101318 , 0.979

Algorithms Evaluated.Wefirst compare our SIMPLE-EMmethod
to five state-of-the-art labeling models (or truth inference methods),
which are selected based on prior benchmarks [87, 89].
• Majority Vote (MV): For each tuple pair, the labeling model’s
prediction is the most common label given by the labeling functions.
• Dawid and Skene’s Method (D&S): This method models each LF’s
confusion matrix with respect to the ground-truth and optimizes
the parameters with the Expectation-Maximization algorithm [27].
• Enhanced Bayesian Classifier Combination (EBCC): This method
models the joint distribution of LFs with matrix decomposition to
reduce the number of parameters [53]. This is the state-of-the-art
variant of the Bayesian Classifier Combination based methods.
• Snorkel (SN): This is the labeling model used by the Snorkel sys-
tem [67]. We use the latest open-source implementation [10] which
performs truth inference with a matrix completion model [68].
• Flying Squid (FS): This is an efficient alternative to the PGM
model. It provides a closed-form solution for a triangulated PGM
under some assumptions, obviating the need for an iterative EM
algorithm or stochastic gradient descent [33].

We further compare to EM solutions designed to require no
or less label data including the state-of-the-art unsupervised EM
solution, one pre-trained language model based solution, and two
active learning based solutions:
• ZeroER (ZE): This is the state-of-the-art unsupervised entity
matching solution [81]. ZeroER tailors the Gaussian Mixture Model
to EM by considering several EM-specific properties. ZeroER uses
Magellan [44] to do feature engineering. We use the official imple-
mentation [20] that supports both two-table and one-table EM.
• Ditto: This is the state-of-the-art entity matching system based on
pre-trained language models [52]. Ditto casts the entity matching
task as a sequence pair classification task and works by fine-tuning
a pre-trained language model for the task. Since the model can
capture various semantic meanings of textual data, Ditto is expected
to require fewer labeled examples.
• Active learning based Random forest (AL-RF): We use the im-
plementation from the most widely used active learning library
modAL [24] and use the default query strategy (uncertainty sam-
pling). Active learning requires feature engineering, so we use Mag-
ellan [45] to automatically generate features. We use the default
strategy to handle class imbalance.
• Active learning based Random forest with SMOTE (AL-RF-S): This is
a variant of AL-RF that uses SMOTE [18] to handle class imbalance.

Setups forVariousAlgorithms.The candidate set size after block-
ing on Monitor and Camera is still huge, so we take a subsample
on these two datasets. To not lose any matches in the candidate set,
we sample by keeping the tuple pairs where at least one of the two
tuples has matches. The candidate set size and recall in Table 1 are
obtained after subsampling. For all methods that need a seed, the
reported results are the average results of five runs. For methods
(e.g., Snorkel) that require a class weight parameter to handle class
imbalance, we obtain the class weights by counting the number
of matches and non-matches from the Majority Vote method. For
active learning and Ditto, we evaluate the performance on a hold
out test set which includes 20% of the data.
Performance Metric.We use F1 score as our performance metric
since EM is a binary classification task with unbalanced classes.

5.2 Labeling Function Development
Though we consider LF development as an orthogonal task and
focus on accurately combining a given set of LFs, we provide the
details of how we obtain the LFs for EM datasets as there is no ex-
isting open-source LFs. We use an existing tool, the Panda IDE [85],
that provides a visual interface to develop LFs efficiently for each
dataset. Our developed LFs are available at [9].

We developed LFs for all datasets in Table 1 in the following order:
FZ, DA, DS, AB, AG, M, C, WA, IR, YY, and ABN. When writing
LFs for one dataset, we may reuse LFs from different attributes of
the same dataset or LFs from a prior dataset. To properly measure
the effort spent, we report the number of new LFs that require
significant effort on each dataset. Specifically, an LF that requires
more than 15 seconds is counted as a new LF, while an LF that is
obtained in less than 15 seconds by simply modifying the attribute
or distance function of an existing LF does not count as a new LF.
On each dataset, the number of new LFs is smaller than the total
number of LFs because we reuse LFs from prior datasets or across
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multiple attributes of the same dataset and these "duplicate" LFs
are not counted as new LFs.

The statistics of new LFs and total time spent on all datasets are
shown in Table 2. The number of LFs ranges from 8 to 16 for the
datasets. However, most of the LFs are obtained rapidly by changing
the attribute or distance function of existing LFs. Typically, one
only needs to develop a few new LFs with some actual effort for a
new dataset; the required time ranges from 10 to 50 minutes.

Table 2: Time spent for developing LFs
FZ DA DS AB AG WA IR YY ABN M C

# of LFs 12 13 16 13 13 14 8 10 13 10 11
# of new LFs 5 6 4 4 3 2 1 1 2 3 2

time spent, minutes 30 50 45 30 20 15 10 10 15 25 15

5.3 Overall Performance
Labeling Performance. The performance results for weak/un-
supervised methods are shown in Table 3. Our method outperforms
all baseline methods significantly, achieving the highest F1 score
on 9 out of the 11 datasets, and only under-performing EBCC on
the Camera (C) dataset and D&S on the IR dataset by less than 1%.
Snorkel is the best-performing weak supervision baseline on most
datasets, and our model achieves 10% higher F1 score on average
across all datasets. Snorkel performs poorly on the AG dataset; one
possible reason for this is that the assumptions Snorkel makes (e.g.,
LFs are conditionally independent) are violated on AG. All methods
perform badly on the WA dataset as the dataset is very dirty.

The unsupervised method ZeroER does not work as well as weak
supervision methods. This is because unsupervised methods do not
use any supervision signals, so they typically only work well on
simple datasets like Fodors-Zagats (FZ).

Table 3: F-1 scores for weak/un-supervsied methods
Weak Supervision Unsupervised

SIMPLE-EM MV D&S EBCC FS SN ZE
FZ 0.996 0.848 0.973 0.978 0.644 0.942 0.992
DA 0.991 0.726 0.339 0.238 0.324 0.958 0.957
DS 0.911 0.908 0.896 0.824 0.421 0.904 0.863
AB 0.906 0.628 0.686 0.327 0.689 0.776 0.520
AG 0.555 0.439 0.426 0.369 0.217 0.199 0.484
WA 0.499 0.397 0.332 0.395 0.085 0.363 0.400
IR 0.989 0.985 0.997 0.911 0.982 0.958 0.968
YY 0.969 0.968 0.952 0.960 0.956 0.953 0.684
ABN 0.897 0.834 0.792 0.821 0.240 0.809 0.839
M 0.887 0.780 0.708 0.737 0.665 0.812 0.325
C 0.872 0.791 0.791 0.884 0.865 0.817 0.477
Avg. 0.861 0.755 0.717 0.677 0.553 0.772 0.683

Comparison to Ditto.We compare our method to Ditto, a method
based on pre-trained language models that is expected to require
less data. We use the implementation from the official GitHub repos-
itory and use the default configurations [59]. For some datasets, the
official repository also provides pre-split training, validation and
test sets that are small subsamples of the candidate set [52]. We
first confirm that we are able to get comparable results with the
original paper using the provided training, validation and test sets.
However, the provided training, validation and test sets are only
small subsamples of the candidate set; for example, the provided
Walmart-Amazon dataset only includes about 10000 pairs, which is
just 15% of our candidate set size. Therefore, to evaluate the per-
formance of Ditto in a more realistic setting and also to ensure the

setting of Ditto is comparable to our method, in our experiment
we use all data in the candidate set (with ground-truth labels) and
randomly split the data into training, validation, and test sets by a
ratio of 3:1:1. We report the results in Table 4.

Table 4: Comparison to Ditto (F-1 score)
FZ DA DS AB AG WA IR YY ABN M C

SIMPLE-EM 0.996 0.991 0.911 0.906 0.555 0.499 0.989 0.969 0.897 0.887 0.872
Ditto 0.951 0.967 0.933 0.283 0.275 0.262 0.716 0.861 0.708 0.844 0.627

Ditto is better than our method only on the Dblp-Scholar (DS)
dataset. Ditto likely falls short of our method for the following rea-
sons: (1) Ditto is sensitive to the creation of training/validation/test
sets. For example, on the Abt-Buy dataset, Ditto gets a F1 score of
0.821 on the provided training/validation/test sets in the GitHub
repository but only gets an F1 score of around 0.283 on random
splits (we got similar results on several splits). (2) Since Ditto is
based on pretrained language models, Ditto is expected to have
advantages on datasets with many text attributes and may not work
well on datasets with numerical features and categorical features.
Comparison to Active Learning. Active learning is also a com-
mon technique to obtain labeled data. We compare our method
to two active learning methods (AL-RF and AL-RF-S). The results
are shown in Table 5. Note that in Table 5, for each dataset, we
report the best result between the two active learning methods
(the performance of the two methods is similar across datasets,
so we do not report them separately). Human time is estimated
by assuming each label takes three seconds. On six out of eight
datasets, active learning is not able to match the performance of
our method even after querying for labels on all data points (which
is equivalent to a random forest classifier trained using all labels).
Even on the three datasets (DS, WA and C) where active learning
matches the performance of our method, active learning requires
several hundreds or thousands of labels. The required human time
can be as much as 200 minutes, which is significantly more than
the required human time for our method (shown in Table 2).

Active learning likely does not work as well as ourmethod for the
following reasons: (1) Weak supervision holistically incorporates
(weak) information of all data points to infer the ground-truth labels,
while active learning infers the decision boundary based on the set
of most uncertain data points selected on its query strategy which
might not be reliable. Furthermore, on difficult datasets where the
decision boundary is complicated, active learning would still need
to select many data points. (2) Our method considers the transitivity
property of EM which provides additional signals.
Running Time. The memory requirements of the methods are
comparable except that Majority Vote requires much less memory
and Ditto requires much more memory. The running times of all
methods are shown Table 6. Note the table only shows machine
time, and human time for labeling is not included. For weak super-
vision methods, the running time includes the time for applying
the LFs to all tuple pairs in the candidate set to obtain the weak
labels and the time for inferring the ground-truth labels. The unsu-
pervised method ZeroER (ZE) and active learning method (AL-RF)
require feature engineering to be done. We use Magellan [45] to
automatically perform feature engineering for the two methods
following prior work [81]. For these two methods (ZE and AL-RF),
the running time includes the time for feature engineering and
the time for training and inference. For Ditto, we use the default
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Table 5: Comparison to active learning. Note we report the
best result of the two active learning methods (AL-RF and
AL-RF-S) on each dataset. "-" denotes that active learning is
not able to match our method’s performance. Human time
is estimated by assuming each label takes three seconds.
Note that the three datasets (IR, YY, ABN) with only partial
ground-truth are not included as active learning may query
data points not in the ground-truth.

AL matches SIMPLE AL queries all labels
SIMPLE-EM # of labels % of labels human time (min) F1 # of labels

FZ 0.996 - - - 0.985 2332
DA 0.991 - - - 0.981 37165
DS 0.911 460 0.4% 23 0.938 108262
AB 0.906 - - - 0.510 131258
AG 0.555 - - - 0.539 33931
WA 0.499 350 0.5% 17.5 0.695 3150
M 0.887 - - - 0.848 79384
C 0.872 4310 0.5% 215 0.949 881055
configuration from the official implementation [59] and the run-
ning time includes the time for preprocessing the textual data (e.g.,
tokenization), the time for data augmentation, the time for text
summarization, and the time for training and inference [52].

The running time of SIMPLE-EM is greater than other weak
supervision methods, as performing cross validation to select the
hyperparameters for the random forest classifier can be relatively
expensive. However, this can be alleviated by using more CPUs
because cross validation can be easily parallelized. Overall, the un-
supervised method ZeroER and the active learning method AL-RF
have much higher running time than SIMPLE-EM because these
two methods require feature engineering, which is expensive. In
addition, AL-RF updates the model when querying each new data
point which is expensive. Ditto has the longest running time as it
involves multiple expensive steps like tokenizing the text data, per-
forming data augmentation and text summarization, and training a
deep learning model. Note that for the three datasets (IR, YY and
ABN) with partial labeled data, we only use the small labeled subset
of data for training Ditto, so the running time of Ditto is extremely
small on these three datasets.
Table 6: Running time (minutes) for all methods. Note only
machine time is included even for active learning (AL-RF).

Weak Supervision Unsupervised Supervised
SIMPLE-EM MV D&S EBCC FS SN ZE AL-RF Ditto

FZ 0.6 0.1 0.2 0.1 0.1 0.1 1.5 3.7 4.4
DA 3.7 0.6 1.8 1.2 0.7 0.6 16.3 18.1 59.2
DS 15.3 3.1 7.7 3.5 3.1 3.3 52.4 57.2 113.7
AB 17.9 3.7 8.4 4.7 3.9 3.7 71.8 81.5 140.3
AG 7.9 0.8 3.3 1.1 0.9 0.8 22.4 26.9 127.4
WA 6.8 1.4 3.6 1.7 1.5 1.4 179.2 194.1 214.8
IR 6.5 0.9 2.7 1.3 1.1 0.9 28.2 - 1.4
YY 1.7 0.3 0.4 0.3 0.3 0.3 4.5 - 0.8
ABN 12.8 0.6 11.6 1.1 0.9 0.6 30.3 - 1.2
M 5.5 0.7 5.1 0.9 0.8 0.7 128.1 133.4 151.3
C 46.5 6.3 42.2 15.1 7.4 6.3 197.9 216.0 248.7
Avg. 11.4 1.7 7.9 2.9 1.9 1.7 66.6 91.4 96.7

End Model EM Performance. Our generated labels can be used
to train any downstream models, such as existing supervised ML
methods. We use DeepMatcher [60] as an example downstream
model to demonstrate the effectiveness our generated labels for
training an end model. Using the open-source implementation [12],
we compare the DeepMatcher model trained with our generated la-
bels with the DeepMatcher model trained with ground-truth labels.
For each dataset, we divide the tuple pairs after blocking into train-
ing, validation, and test sets by a ratio of 3:1:1. (1) SIMPLE-EM

Labels:We use our generated labels for the training and validation
set to train a model and use the ground-truth labels for the test set
to evaluate the trained model. (2) Ground-Truth Labels:We train
another end model with ground-truth labels in the training and val-
idation set. To measure the labeling effort saved by SIMPLE-EM, we
gradually increase the training set size to match the performance of
the end model trained on our generated labels. We report the num-
ber of ground-truth labels required to match the performance of the
end model trained on our labels and the number of ground-truth la-
bels (when F1 score is converged) where adding more ground-truth
labels does not improve F1 score by a meaningful amount.
Table 7: DeepMatcher trained on SIMPLE-EM labels vs Deep-
Matcher trained on Ground-Truth (GT) labels. The "*" sym-
bol on the converged # GT labels denotes that the dataset
only has partial ground-truth labels and the number pre-
cedes "*" is 80% of the ground-truth labels (the other 20% are
used as the test set).

FZ DA DS AB AG WA IR YY ABN M C Avg.
F1 of DeepMatcher

on SIMPLE-EM labels 0.979 0.978 0.926 0.673 0.741 0.450 1.0 1.0 0.898 0.956 0.929 0.866

# GT labels to
match above F1 2333 37170 48284 164078 11015 10947 - - 265 7586 8866 32282

Converged F1
# GT labels

0.979
2333

0.978
37170

0.956
120710

0.692
218770

0.845
55075

0.631
16421

0.964
320∗

0.923
322∗

0.903
285∗

0.999
75860

0.999
122200

0.897
59042

Overall, when using ground-truth labels, at least several thou-
sand labels are required for the end model to match its performance
when trained on the generated labels from SIMPLE-EM. In addition,
the F1 score of end model trained on SIMPLE-EM labels is compa-
rable (though on average 3.1% worse) to the converged F1 of the
end model trained on sufficient amount of ground-truth labels.

We observed that the performance of the end model trained
on SIMPLE-EM’s labels can sometimes be better than the original
labeling performance. On the AG dataset in particular, the end
model F1 score is 0.741, which is about 20% better than the original
labels (0.555). The reason is that the end model can incorporate
additional information (e.g., textual features) that is different from
the information used in LFs. This phenomenon is also observed in
multiple prior works on weak supervision [25, 78, 83].

On the AG dataset, the end model trained with ground-truth
labels (which have F1 score of 1) gets an F1 score of at most 0.845,
which is only 10% better than the end model trained on SIMPLE-EM
labels. This is in spite of the fact that the SIMPLE-EM labels have a
50% worse F1 score than the ground-truth labels. Our takeaway is
that training end models with noisy and weak supervision often
suffices, while accurate supervision by an expensive process of
labeling individual data points may not be necessary. This confirms
prior empirical findings [67, 79] and theoretical derivations [69, 73].

5.4 Handling Transitivity Constraint
We conduct experiments to compare different ways of handling
transitivity. We compare the following methods:
• No trans: This is to ignore transitivity and directly use our base
labeling model (SIMPLE) in Section 3.
• SIMPLE-EM: This is our proposed method in Section 4.
• ZeroER Trans: We replace our component of handling transitiv-
ity with the one in ZeroER [81]. ZeroER uses a projection based
heuristic to solve Equation 4 to enforce transitivity.
• Postprocessing: This is the traditional way of handling transitivity
in a postprocessing step. Specifically, the No trans method (SIMPLE)
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is used to obtain a prediction, then a postprocessing step is done
on the prediction to enforce transitivity. The way to perform post-
processing differs for two-table datasets and single-table datasets.
(1) On single-table datasets, we have the matching probability for
all pairs, so it is possible to use clustering methods in ER literature.
We use the method adopted by dedupe [36] (hierarchical clustering
with centroid linkage [62]) and we also use the implementation in
dedupe [36]. (2) On two-table datasets, we do not have the matching
probabilities for tuple pairs from the same table. In order to do post-
processing, following prior work [81], we assume that the left and
right table are duplicate-free and the matching probability of any
tuple pair from the same table to be 0 for all two-table datasets. For
example, we have three tuples 𝑡𝑙1 , 𝑡𝑙2 , and 𝑡𝑟1 where 𝑡𝑙1 and 𝑡𝑙2 come
from the left table and 𝑡𝑟1 is from the right table. We assume the
matching probability of 𝑡𝑙1 and 𝑡𝑙2 to be 0, i.e., 𝛾

(𝑙1,𝑙2) = 0. When the
transitivity constraint is violated, we keep the cross-table tuple pair
with higher probability as a match. For example, when 𝛾 (𝑙1,𝑟1) = 0.8
and 𝛾 (𝑙2,𝑟1) = 0.9, the transitivity constraint is violated and we keep
(𝑡𝑙2 , 𝑡𝑟1 ) as a match and discard the tuple pair (𝑡𝑙1 , 𝑡𝑟1 ).

Table 8: Different methods to handle transitivity.
FZ DA DS AB AG WA IR YY ABN M C Avg.

No Trans 0.978 0.765 0.911 0.697 0.555 0.493 0.988 0.969 0.884 0.781 0.832 0.805
SIMPLE-EM 0.996 0.991 0.911 0.906 0.555 0.499 0.989 0.969 0.897 0.887 0.872 0.861
ZeroER Trans 0.993 0.991 0.880 0.794 0.413 0.499 0.988 0.670 0.897 0.694 0.142 0.724
Postprocess 0.990 0.979 0.625 0.343 0.486 0.494 0.985 0.670 0.894 0.610 0.633 0.701

The results are shown in Table 8. Overall, our method of handling
transitivity works the best on all datasets and improves F1 score by
about 9% on average. The method of handling transitivity in ZeroER
is not robust across datasets as it employs a greedy algorithm to
correct each triplets of tuple pairs that violates transitivity [81].
In contrast, our method holistically considers all tuple pairs when
enforcing transitivity. Postprocessing also does not work well and is
even worse thanNo trans, e.g. on AB. This is because postprocessing
can introduce spurious matches or remove true matches [16, 81].
Intuitively, postprocessing separates the clustering stage from the
inference stage and therefore each stage uses less information, while
our method considers clustering as an integral part of the inference
stage and thus exploits all information holistically.

5.5 Controlled Study of Transitivity
5.5.1 A Survey on Transitivity Violations in real-world datasets. We
investigate the frequency of transitivity violations in the ground-
truth of real-world datasets and examine the cause of the violations.

We first introduce how we detect transitivity violations in the
ground-truth. For single-table datasets, three tuples 𝑡𝑖 , 𝑡 𝑗 and 𝑡𝑘
constitute a violation if in the ground-truth (𝑡𝑖 , 𝑡 𝑗 ) and (𝑡𝑖 , 𝑡𝑘 ) are
matches but (𝑡 𝑗 , 𝑡𝑘 ) is a non-match. For two-table datasets, since
only ground-truth labels of the cross-table tuple pairs are pro-
vided [26], we can only identify transitivity violations with the
following method: Let 𝑡𝑙,𝑖 and 𝑡𝑙, 𝑗 denote two tuples from the left ta-
ble; Let 𝑡𝑟,𝑖 and 𝑡𝑟, 𝑗 denote two tuples from the right table; The tran-
sitivity property is violated when (𝑡𝑙,𝑖 , 𝑡𝑟,𝑖 ), (𝑡𝑙, 𝑗 , 𝑡𝑟,𝑖 ) and (𝑡𝑙,𝑖 , 𝑡𝑟, 𝑗 )
are matches and (𝑡𝑙, 𝑗 , 𝑡𝑟, 𝑗 ) is not a match. To see this, when (𝑡𝑙,𝑖 , 𝑡𝑟,𝑖 )
and (𝑡𝑙, 𝑗 , 𝑡𝑟,𝑖 ) are matches, the tuples 𝑡𝑙,𝑖 and 𝑡𝑙, 𝑗 are the same entity
by the transitivity property, so if (𝑡𝑙,𝑖 , 𝑡𝑟, 𝑗 ) is a match (𝑡𝑙, 𝑗 , 𝑡𝑟, 𝑗 ) must
be a match, otherwise the transitivity property is violated.

In the 11 datasets we used in our experiments, only two datasets
(DS and WA) contain transitivity violations in the ground-truth (on
which SIMPLE-EM still outperforms other methods, see Table 3.).
We further inspected all 30 datasets in the Magellan repo [26], and
found that only 6 datasets contain transitivity violations in the
ground. For these 6 datasets, on average only 4% of the labeled
tuple pairs in the ground-truth are involved in a violation. This
validates a belief commonly-held in the literature that transitivity
is mostly satisfied in real-world scenarios [17, 47, 81].

To investigate the causes of transitivity violations, we manually
inspect a random sample of the detected violations. We found that
in 40% of the cases, the violation of transitivity is due to incorrect
matching pairs in the ground-truth. For example, (𝑡𝑖 , 𝑡 𝑗 ) is a match
and (𝑡𝑖 , 𝑡𝑘 ) should not be a match, but the ground-truth includes
both (𝑡𝑖 , 𝑡 𝑗 ) and (𝑡𝑖 , 𝑡𝑘 ) as matches. The other 60% of the cases
are caused by incomplete matching labels in the ground-truth. For
example, both (𝑡𝑖 , 𝑡 𝑗 ) and (𝑡𝑖 , 𝑡𝑘 ) are actualmatches and are included
in the ground-truth, (𝑡 𝑗 , 𝑡𝑘 ) is also a match (based on a manual
inspection) but is not included as a match in the ground-truth.
5.5.2 Varying the Amount of Transitivity Violations. We perform a
controlled experiment to evaluate how different methods behave
when we vary the amount of transitivity violations in the ground-
truth. From our survey on 30 real-world datasets, transitivity is vio-
lated when the ground-truth is incomplete or incorrect. Therefore,
we can perform this experiment by corrupting the ground-truth
labels to make the set of matching pairs incomplete or incorrect.

The Camera and Monitor datasets have the highest number of
labeled tuple pairs involved in transitivity constraints in the ground-
truth, while other datasets have fewer such tuple pairs (e.g., the
ground-truth matching pairs in the FZ dataset are all one-to-one
mappings so no tuple pairs are involved in transitivity). In addition,
the Camera andMonitor datasets are "perfectly" labeled in the sense
that initially there are no transitivity violations in the ground-truth.
Therefore, we use the Camera and Monitor datasets for this experi-
ment. We inject transitivity violations with the following steps: We
first randomly select a tuple 𝑡𝑖 that has matches in the ground-truth.
Next, by a probability of 60% we randomly mark one true matching
pair that involves 𝑡𝑖 as a non-match, and in the remaining 40% of
cases we randomly choose a non-matching pair that involves 𝑡𝑖 and
mark it as a spurious match. These probabilities are selected based
on our survey on real-world datasets in Section 5.5.1. We repeat the
two steps 𝑥𝑁gt times, where 𝑁gt is the total number of matches in
the original ground-truth; and 𝑥 controls the amount of violations
we introduce (from 0 to 0.5 with a step size of 0.1). We compare with
the two best performing baseline methods from Table 3: Snorkel
and Majority Vote. We report the averaged score of all methods over
the two datasets in Table 9. As 𝑥 increases, the performance of all
methods decreases because transitivity violations are achieved by
corrupting the ground-truth labels. However, SIMPLE-EM always
performs better than the two other baseline methods.

Table 9: F1-score of top methods when varying the amount
of transitivity violations in the ground-truth (x).

𝑥 0 0.1 0.2 0.3 0.4 0.5
SIMPLE-EM 0.880 0.841 0.802 0.764 0.726 0.697
SN 0.815 0.777 0.740 0.705 0.670 0.636
MV 0.786 0.750 0.715 0.681 0.648 0.616
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5.6 Adaptation to Data Shift
Data shift is a challenging problem in many real-world applica-
tions [66]. In this section, we study the behavior of LFs and tradi-
tional manual labeling during data shift.

In our datasets in Table 1, we have two pairs of datasets with
the same schema: (DA, DS) and (AB, AG). In addition, we have (AB,
WA) where the attributes of WA is a super-set of the attributes in
AB. We construct a new dataset WA’ from WA using the subset
attributes appearing also in AB so that the constructed dataset WA’
has the same schema with AB. To simulate data shift, we consider
the following source-target data shift: DA-DS (shift from DA to DS),
AB-AG (shift from AB to AG), AB-WA’ (shift from AB to WA’). We
use the following settings for LFs and manual labeling:

• LFs. When developing LFs in Section 5.2, we reused many LFs
from prior datasets. For each source-target dataset pair, we count
the total number of LFs 𝑁 ′1 in the target dataset. Since some of the
LFs are reused from the source dataset, we count the number of
newly developed LFs 𝑁 ′2 for the target dataset. We report 𝑁 ′1−𝑁 ′2

𝑁 ′1
as

the amount of saved effort for labeling the target dataset.
• Manual labeling. For each source-target dataset pair, we consider
the task of learning on the target dataset. First, we ignore the source
dataset and only consider the target dataset, and we use the active
learning method. We count the number of labels 𝑁1 queried by
active learning when it reaches the performance of LFs (or its peak
performance if it cannot match LFs). Second, we add all labeled data
from the source dataset to the training set of active learning on
the target dataset. Since the source and target dataset has the same
schema, the features generated byMagellan [45] are the same, so we
can directly use the labeled data from the source dataset to train a
model for the target dataset.We then count the number of additional
labels 𝑁2 from the target dataset queried by active learning when it
reaches the performance of LFs (or its peak performance if it cannot
match LFs) on the target dataset. We report 𝑁1−𝑁2

𝑁1
as the amount

of saved effort for labeling the target dataset by using the manual
labels in the source dataset.

The results are shown in Table 10. In manual labeling, the labeled
data on the source dataset is not always helpful for the target dataset.
For example, on the AB-AG datasets and the AB-WA’ datasets, the
saved labeling effort is negative. This means, when using labeled
data from the source, one actually needs to label more data on
the target dataset to achieve the same performance as in the case
where one simply ignores the source dataset. This is understandable
as the definition of being a match can be different on a different
dataset. Even when the labeled data from the source dataset is
helpful (e.g., on the DA-DS datasets), the saved labeling effort is
still significantly smaller than that for using LFs. In contrast, using
LFs is more flexible and one can easily adapt to the new definition
of being a match on the new dataset by reusing a subset of original
LFs or by adding more LFs.

In addition, we highlight that when the source and target datasets
have different schemas (features are different), there is no way for
manual labeling to reuse existing labels from the source dataset;
However, for LFs, as long as there are some common or similar
attributes, one can easily reuse the LFs written on these attributes.

Table 10: Saved labeling effort on the target dataset for LFs
and manual labeling under data shift.

data shift manual labeling LFs
DA-DS 31.5% 62.5%
AB-AG -23.2% 63.6%
AB-WA’ -9% 73.3%5.7 Sensitivity Analysis

We analyze labeling model performance under varying sets of LFs.
LFRandomization. Some LFs use threshold values to assign labels
(e.g., the name_overlap LF in Figure 1 compares the score variable
to two different threshold values). To assess LF sensitivity, we gen-
erate a new set of LFs from the original LFs by randomly tweaking
the threshold values (if any) within a range around the original
thresholds. Additionally, we also take a random sample of the full
set of LFs to see how methods perform with fewer LFs.
Results. Table 11 shows the sensitivity of our method and base-
line methods to changes in the LFs. Our method outperforms all
baselines in all scenarios and generally shows less of a degradation
in performance than other methods at 80% and 60% LF sampling.
When the sampled proportion of LFs decreases, the performance
improvement of our method over baseline methods decreases. This
is because when there are fewer LFs, the benefit of carefully com-
bining them decreases, as also reported in prior work [67].

Table 11: Sensitivity to LFs. RT denotes randomized thresh-
olds. 𝑥% denotes sampling 𝑥% of the original set of LFs. The
original number of LFs for each dataset can be found in Ta-
ble 2. The scores are F1-scores averaged over all datasets.

Original RT+100% RT+80% RT+60% RT+40%
SIMPLE-EM 0.861 0.856 0.831 0.766 0.570
MV 0.755 0.718 0.599 0.554 0.537
D&S 0.717 0.672 0.595 0.474 0.397
EBCC 0.677 0.632 0.638 0.533 0.504
SN 0.772 0.698 0.674 0.623 0.554
FS 0.553 0.486 0.460 0.447 0.445

5.8 Truth Inference on General Tasks
We evaluate our proposed method (SIMPLE) from Section 3 on
general weak supervision tasks to verify that our proposed method
works beyond EM. We consider all ten binary classification datasets
in the WRENCH weak supervision benchmark repository [11, 87].
For all datasets, we use the provided LFs and performance metric
from the benchmark [11, 87]. The results are shown in Table 12.
Table 12: Performance on the wrench benchmark [87]. "F1"
denotes F1-score and "acc" denotes accuracy score.
Datasets # of LFs metric SIMPLE MV D&S EBCC FS SN
basketball 4 F1 0.171 0.181 0.171 0.171 0.171 0.144
commercial 4 F1 0.837 0.846 0.778 0.775 0.763 0.878
tennis 6 F1 0.844 0.847 0.847 0.847 0.847 0.841
yelp 8 acc 0.744 0.722 0.683 0.696 0.709 0.696
imdb 8 acc 0.750 0.737 0.744 0.744 0.744 0.750
spouse 9 F1 0.517 0.492 0.343 0.343 0.505 0.455
youtube 10 acc 0.916 0.853 0.452 0.452 0.845 0.847
cdr 33 F1 0.713 0.672 0.001 0.087 0.104 0.666
sms 73 F1 0.825 0.838 0.650 0 0 0.840
census 83 F1 0.527 0.330 0.001 0 0.209 0.445
Avg. - - 0.684 0.652 0.467 0.412 0.490 0.656

Our proposed method outperforms the best baseline on average
by 3%. This is significant considering that the best prior work only
outperforms Majority Vote by 0.4%. It’s quite surprising that our
method obtains such good performance in spite of its simplicity. In
contrast, existing methods typically use very complicated models
(e.g., graphical models [33] and matrix completion models [68]).
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6 RELATEDWORK
Entity Matching. Supervised learning algorithms achieve the best
results on entity matching [44, 51, 60, 61, 88]. However, they re-
quire large amounts of labeled data. To reduce training data size in
supervised EM, active learning based approaches selectively label
useful tuple pairs, but need to have human annotators involved in
the ML training process [14, 75]. Transfer learning is adopted to
reuse information from existing datasets or pretrained language
models [51], but is not robust when the target dataset is very dif-
ferent from source datasets or language models as we have shown
in our experiments. Different from existing work, our work pro-
grammatically generates labels by adapting weak supervision (that
has been successfully applied to label generation for general ML
tasks [67, 70, 79]) to EM. Our work offers a new method to perform
entity matching when no labeled data is available.
Truth Inference. The existing truth inference methods are typi-
cally designed for general tasks [50, 53]. Our SIMPLE-EM method
is specifically designed for EM by incorporating the transitivity
property of EM and achieves better performance than general truth
inference methods. In addition, existing methods are mostly hand-
crafted, complicated models with various assumptions to implicitly
restrict the hypothesis space to avoid trivial solutions [50, 53, 67, 70].
In contrast, our method is based on a generic classifier and makes
no assumptions. Our method restricts the hypothesis space in an
explicit data-driven fashion through cross validation. The two dis-
tinctions of ourmethod enabled ourmethod to achieve better results
on both general tasks and EM tasks.

7 CONCLUSION
In this work, we present a labeling model to generate high-quality
EM labels by combining the predictions of different labeling func-
tions in a weak supervision setting. We first propose a simple and
powerful general labeling model for general weak supervision clas-
sification tasks. We then tailor the method to the task of EM by
ensuring the predicted labels satisfy the transitivity property of
EM. Finally, we experimentally validate that our general labeling
model works well on ten weak supervision datasets and find that
the tailored version for EM is significantly better than existing
approaches across several diverse datasets.
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8 APPENDIX
8.1 Duplicate-free Detection with Weak

Supervision
We propose a method to detect whether each table is duplicate-free
in two-table EM. The method uses information from the predicted
matches (pairs of left tuple and right tuple) of a labeling model
(without considering transitivity). Since the user has alreadywritten
LFs for LR pairs, this method requires no additional effort from the
user.
Formulation of the Detection Method. Let 𝑀 = {(𝑡𝑙1 , 𝑡𝑟1 ), . . . }
denote the set of found matches by the labeling model (without
considering transitivity). Let 𝑑𝑟 denote the number of distinct right
tuples in𝑀 . Consider the case when the predictions in𝑀 are correct
with a precision of 1. When the left table is duplicate-free we have
𝑑𝑟 = |𝑀 |, and when the left table is not duplicate free we have
𝑑𝑟 < |𝑀 | as illustrated in Figure 6. However, in practice, even when
the left table is duplicate-free we may likely observe 𝑑𝑟 < |𝑀 |
because the found matches 𝑀 can contain noise. Our idea is to
test whether the observed data of 𝑑𝑟 < |𝑀 | can be explained by
the noise in 𝑀 , and if not, this indicates that the left table is not
duplicate-free. (Note that if the observed data is𝑑𝑟 = 𝑑𝑙 = |𝑀 |, tuple
pairs in𝑀 are not involved in transitivity constraints, so whether
we enforce transitivity or not makes no difference.)

Figure 6: Illustration of matching edges when (a) L table is
duplicate-free and (b) L table is not duplicate-free.

Without loss of generality, we design a hypothesis test to detect
whether the left table is duplicate-free. Our observed data is 𝑑𝑟 and
𝑀 , and we conduct the test when we observe that 𝑑𝑟 < |𝑀 |. Our

null hypothesis is that the left table is duplicate-free. Let 𝑥 denote
the number of true positives in𝑀 and |𝑀 | − 𝑥 denote the number
of false positives (Since the ground-truth is unknown, 𝑥 is a hidden
variable.). Under the null hypothesis, the 𝑥 true positives are 𝑥

tuple pairs with 𝑥 distinct right tuples, so 𝑑𝑟 < |𝑀 | is caused by the
|𝑀 | − 𝑥 false positives. The labeling model makes mistakes (false
positive predictions) when it encounters "unexpected" tuple pairs
which usually do not follow the patterns that the set of LFs were
designed for. Since these tuple pairs can be "unexpected" in random
ways, these tuple pairs can be seen to be distributed randomly.
Accordingly, the |𝑀 | − 𝑥 right tuples in the |𝑀 | − 𝑥 false positive
pairs are distributed randomly and can be seen to be randomly
selected from the right table (with replacement). By formulating
this random process, we are able to obtain a distribution 𝑝 (𝑑𝑟 ). If the
observed 𝑑𝑟 is too small to be observed under the null hypothesis,
we reject the null hypothesis. Formally, we reject the null hypothesis
when:

𝑝 (𝑑𝑟 < 𝑑𝑟 ) =
𝑑𝑟−1∑︁
𝑑𝑟=𝑥

𝑝 (𝑑𝑟 ) < 𝑐 (10)

where 𝑐 is a confidence level constant typically chosen as 0.05.
Computing Equation 10. There is a hidden variable 𝑥 in 𝑝 (𝑑𝑟 ).
We would like to obtain the maximum likelihood estimation of
𝑥 , which then can be used to compute Equation 10. Under our
formulated random process, it can be shown that:

𝑝 (𝑑𝑟 ) =
|𝑀 |−𝑥∑︁
𝑖=𝑑𝑟−𝑥

(
|𝑀 | − 𝑥

𝑖

)
𝑆2 (𝑖, 𝑑𝑟 − 𝑥) (𝑁𝑟 − 𝑥)!𝑥 |𝑀 |−𝑥−𝑖

𝑁
|𝑀 |−𝑥
𝑟 (𝑁𝑟 − 𝑑𝑟 )!

(11)

where 𝑆2 (𝑛, 𝑘) is the number of ways to partition 𝑛 objects into 𝑘
non-empty sets and is known as the Sterling number of the second
kind [7]. Since Equation 11 is too complicated to be used in practice,
we design ourmethod to bypass the computation of Equation 11.We
omit the derivation of Equation 11 as it is not used in our method.

Directly maximizing 𝑝 (𝑑𝑟 ) with respect to 𝑥 in Equation 11 is
difficult. We first show in some cases we can make the decision of
rejecting the null hypothesis without needing to find 𝑥 . Intuitively,
𝑑𝑟 achieves the maximum value 𝑑𝑟 = |𝑀 | when 𝑥 is at its maximum
|𝑀 |. When 𝑥 is smaller, more items are selected at random, and 𝑑𝑟
will be smaller. Therefore, we would expect:

𝑝 (𝑑𝑟 < 𝑑𝑟 , 𝑥) ≤ 𝑝 (𝑑𝑟 < 𝑑𝑟 , 𝑥 = 0) =
𝑑𝑟−1∑︁
𝑑𝑟=0

𝑝 (𝑑𝑟 , 𝑥 = 0) (12)

where 𝑝 (𝑑𝑟 , 𝑥 = 0) is the distribution of the number of distinct
values 𝑑𝑟 in a set of size |𝑀 | where each element is randomly
selected from a set of size 𝑁𝑟 with replacement. It is given as [8]:

𝑝 (𝑑𝑟 , 𝑥 = 0) = 𝑆2 ( |𝑀 |, 𝑑𝑟 )𝑁𝑟 !

𝑁
|𝑀 |
𝑟 (𝑁𝑟 − 𝑑𝑟 )!

(13)

Intuitively, 𝑆2 ( |𝑀 |,𝑑𝑟 )𝑁𝑟 !
(𝑁𝑟−𝑑𝑟 )! =

𝑆2 ( |𝑀 |,𝑑𝑟 )𝑑𝑟 !𝑁𝑟 !
(𝑁𝑟−𝑑𝑟 )!𝑑𝑟 ! = 𝑆2 ( |𝑀 |, 𝑑𝑟 )𝑑𝑟 !

(𝑁𝑟

𝑑𝑟

)
is

the number of ways to select |𝑀 | elements with exactly 𝑑𝑟 distinct
values. 𝑁 |𝑀 |𝑟 is the total number of ways to select |𝑀 | elements.
Therefore, their division is the probability of having 𝑑𝑟 distinct
values.
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Based on Equation 14 and Equation 13, we obtain an upper-bound
of 𝑝 (𝑑𝑟 < 𝑑𝑟 , 𝑥) as:

𝑝 (𝑑𝑟 < 𝑑𝑟 , 𝑥) ≤
𝑑𝑟−1∑︁
𝑑𝑟=0

𝑆2 ( |𝑀 |, 𝑑𝑟 )𝑁𝑟 !

𝑁
|𝑀 |
𝑟 (𝑁𝑟 − 𝑑𝑟 )!

(14)

When the right hand side is smaller than 𝑐 , for sure 𝑝 (𝑑𝑟 < 𝑑𝑟 , 𝑥) <
𝑐 , so we reject the null hypothesis. Otherwise, we have to find
𝑥 to make a decision. We resort to a simulation based approach.
Specifically, we vary 𝑥 from 0 to |𝑀 | with a step size of |𝑀 |/10
and, for each 𝑥 , we perform the following simulation: we initialize
a bag with 𝑥 unique numbers {1, 2, ..., 𝑥}, then randomly select
|𝑀 | − 𝑥 numbers in range [1, 𝑁𝑟 ] to the bag with replacement (this
is equivalent to generating |𝑀 | − 𝑥 random integers and can be
done efficiently with numpy), and finally find the number of distinct
numbers 𝑑𝑟 in the bag. By repeating this simulation many times,
we obtain an empirical distribution 𝑝 (𝑑𝑟 ). We choose the value of
𝑥 , so that the probability of the observed 𝑑𝑟 is maximized under the
empirical distribution, i.e. 𝑝 (𝑑𝑟 ) is maximized. We further perform
the hypothesis test with the empirical distribution under the chosen
𝑥 , i.e. we reject the null hypothesis when 𝑝 (𝑑𝑟 < 𝑑𝑟 ) < 𝑐 . The time
complexity of computing the upper-bound in Equation 14 is 𝑂 (𝑑𝑟 )
and the time complexity of the simulation is 𝑂 ( |𝑀 |).
Discussion.With the hypothesis test, we are able to detect whether
the left table is duplicate-free. By switching the left and right table
and repeating the hypothesis test, we are equivalently able to detect
whether the right table is duplicate-free. Note that obtaining the
hidden variable 𝑥 by maximizing the likelihood of observed data
biases the test toward the observed data and toward not rejecting
the null hypothesis. This means we only reject the null hypothesis
(left table is duplicate free) when the left table is significantly not
duplicate free. This is intuitively acceptable, as when the left table
only has a few duplicates, it is close to being duplicate-free and
enforcing transitivity using the exact solution can still be helpful.
We further empirically verify this in our experiments.
Experimental Evaluations of Duplicate-free Detection. We
evaluate the effectiveness of our duplicate-free detection method
on two-table datasets. The results are shown in Table 13. Each cell
in the first two columns shows the number of duplicates in the L
and R table in the ground truth and in the predicted set of matches
𝑀 of the labeling model without considering transitivity. Note the
ground-truth and the predicted set of matches only include cross-
table tuple pairs, so the number of duplicates is estimated based
on the cross table matching pairs. For example, when (𝑡𝑙1 , 𝑡𝑟1 ) and
(𝑡𝑙1 , 𝑡𝑟2 ) are two cross-table matching pairs, we know that (𝑡𝑟1 , 𝑡𝑟2 ) is
a matching/duplicate pair in the right table. Since the three datasets
IR, YY and ABN only includes a small fraction of the ground-truth of
the cross-table matching pairs, the estimated number of duplicates
is not accurate so we don’t show them in Table 13. The third row
shows the duplicate-free detection results for each dataset using
the method at the end of Section 4.2. The method is able to correctly
detect that the Fodors-Zagats, DBLP-ACM, and Abt-Buy datasets
are duplicate-free or almost duplicate-free. Note that the detection
method uses the information in𝑀 which actually contains many
duplicates in the L table or R table in DBLP-ACM and Abt-Buy, but
our proposed method is able to detect the two tables of the two

datasets are duplicate-free. In addition, the AG dataset has fewer
duplicates in 𝑀 than the DA dataset, which make it seem to be
more likely to be duplicate-free than DA. However, our proposed
method is able to judiciously recognize that AG is not duplicate
free while DA is. The fourth row shows whether using the closed-
form solution derived for the duplicate-free scenario is helpful for
each dataset. We consider applying transitivity to be helpful when
F1 score increases by applying transitivity (see Section 5.4 for full
ablation results). We can see whenever the detectionmethod detects
duplicate-free tables, using the closed-form solution derived for the
duplicate-free scenario for that dataset is helpful, even though the
dataset may not be completely duplicate-free (e.g., Abt-Buy). This
also verifies our intuition at the end of Section 4.2 that bias toward
not rejecting the hypothesis of duplicate-free is acceptable.

Table 13: Duplicate-free detection on two-table datasets.

FZ DA DS AB AG WA IR YY ABN
Ground truth # dups

in (L, R) 0, 0 0, 0 2939, 129 16, 5 187, 9 162, 8 - - -

Predicted # dups
from𝑀 in (L, R) 3, 3 781, 817 3973, 979 165, 172 544, 355 1265, 327 - - -

Dup-free prediction
in (L, R) T, T T, T F, F T, T F, F F,F T,T F,F T,T

Is dup-free based
solution helpful? Yes Yes No Yes No No Yes No Yes
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