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Abstract
Ontology matching is the process of finding seman-
tic correspondences between entities from different
ontologies. As an effective solution to linking dif-
ferent heterogeneous ontologies, ontology match-
ing has attracted considerable attentions in recent
years. In this paper, we propose a novel graph-
based approach to ontology matching problem.
Different from previous work, we formulate ontol-
ogy matching as a random walk process on the as-
sociation graph constructed from the to-be-matched
ontologies. In particular, two variants of the con-
ventional random walk process, namely, Affinity-
Preserving Random Walk (APRW) and Mapping-
Oriented Random Walk (MORW), have been pro-
posed to alleviate the adverse effect of the false-
mapping nodes in the association graph and to in-
corporate the 1-to-1 matching constraints presumed
in ontology matching, respectively. Experiments
on the Ontology Alignment Evaluation Initiative
(OAEI1) datasets show that our approach achieves
a competitive performance when compared with
state-of-the-art systems, even though our approach
does not utilize any external resources.

1 Introduction
Ontologies have recently gained popularity because they help
with inter-operability, information sharing and knowledge
reuse. However, there are many different ontologies that de-
scribe the same domain, they are often different from each
other because they have been designed and constructed inde-
pendently by different ontology developers. As a result, how
to address the heterogeneity of ontologies has attracted con-
siderable attention in recent years.

Ontology matching is the process of finding semantic cor-
respondences between entities from different ontologies. It
is one of the most effective solutions to solving the semantic
heterogeneity problem [Shvaiko and Euzenat, 2013].

1The OAEI is an international initiative organizing annual cam-
paigns for evaluating ontology matching systems. All of the on-
tologies provided by OAEI are described in OWL-DL language, and
like most of the other participants our approach manages the OWL
ontology. OAEI: http://oaei.ontologymatching.org/

A myriad of approaches have been proposed for ontology
matching. In graph-based ontology matching approaches,
graphs are used to represent the two input ontologies and
compute structural similarities of graphs. Examples of these
approaches include Anchor-Prompt [Noy and Musen, 2001],
GMO [Hu et al., 2005] and Similarity Propagation [Li et
al., 2009; Ngo et al., 2012b]. Anchor-Prompt is an ontol-
ogy merging and mapping tool, which treats ontologies as
directed labeled graphs. The basic idea is that if two pairs of
entities are similar and there are paths connecting them, the
entities in these paths are often similar as well. GMO is an
iterative structural matcher, that uses RDF bipartite graphs to
represent ontologies and computes structural similarities be-
tween entities by recursively propagating their similarities in
the bipartite graphs. Similarity Propagation (SP) is a graph
matcher inspired from the work in [Melnik et al., 2002],
which aims at database schema matching. SP uses fixed-point
computation to determine corresponding nodes in the graphs.
The basic idea is that the similarity between two nodes de-
pends on the similarity between their adjacent nodes, or that
similarities of nodes can propagate to their respective neigh-
bors. SP is effective and has been embedded in some out-
standing ontology matching systems such as RiMOM[Li et
al., 2009] and YAM++[Ngo et al., 2012b].

In this paper, we propose a new graph-based approach
based on random walks, which is inspired by the work in
[Cho et al., 2010] that aims at a graph matching problem in
the image processing field. We introduce an association graph
constructed with nodes as candidate mappings and edges as
affinities between candidate mappings, and we show that the
search for mappings between two to-be-matched ontologies
can be cast as a node ranking and selection problem in the
association graph. We summarize our contributions as fol-
lows. (1) We establish a novel random walk view for ontol-
ogy matching and provide a random walk interpretations for
ontology matching. (2) We preserve the original affinity re-
lations between ontology entity pairs by adding an absorbing
node into the traditional Markov chains to differentiate the
potential true and false mappings. (3) We dynamically add
the 1:1 matching constraint to the process of random walk to
further improve performance.

To evaluate the effectiveness of our approach, we conduct
experiments on the public datasets published in the OAEI
campaign. The experimental results show that our match-
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ing approach achieves a competitive performance when com-
pared with the state-of-the-art systems.

2 Problem Statement
Ontology is a formal, explicit specification of a shared con-
ceptualization in terms of classes, properties and relations
[Euzenat and Shvaiko, 2013]. The process of ontology
matching is to find correspondences between entities (classes,
properties or individuals) from two ontologies. A mapping or
a correspondence is defined as a four-tuple (as written in Eq.
(1)), where e1 and e2 represent the entity in ontology O1 and
O2, respectively, r is a type of matching relation (e.g., equiv-
alent, subsume) and k → [0, 1] is the degree of confidence of
matching relation between e1 and e2 [Mao et al., 2010].

m =< e1, e2, r, k > (1)

Similar to the work in [Mao et al., 2011; Shvaiko and Eu-
zenat, 2013; Ngo et al., 2012a], we limit the type of entity to
class and property, and focus on discovering only equivalent
mappings between entities with cardinality 1:1. That is, one
class (property) in ontology O1 can be matched to at most
one class (property) in ontology O2 and vice versa.

3 Random Walks for Ontology matching
Ontology (more accurately, OWL ontology) can be modeled
as a graph[Hu et al., 2005; Euzenat and Shvaiko, 2013]. That
is, given an ontology, we can define a graph G =< V,E >,
where V is the set of labeled nodes representing the entities
in the ontology and E is the set of edges representing the
relations between two entities. Thus, ontology matching can
be viewed as a graph matching problem that aims at finding
the semantically similar nodes between two ontology graphs.

In this paper, we treat the problem of ontology matching
between two given ontology graphs as a random walk pro-
cess on an association graph Grw = (V rw, Erw) constructed
from the input ontology graphs, which will be described
in detail in Sec.3.1. Then, the original ontology matching
problem between ontologies is equivalent to selecting suit-
able nodes in the association graph Grw because the selected
nodes correspond to mappings between entities. To select
nodes in Grw, we adopt the statistic of the Markov random
walks, which have been used to compute the ranking or rel-
evance of web pages on the Internet [Kleinberg, 1999; Page
et al., 1999]. Thus, finding mappings between ontologies O1

and O2 can finally be viewed as node ranking and selection
problems by random walks on the association graph Grw.

3.1 Association Graph from Ontologies
Nodes in the Association Graph
We present here the composition of nodes in the association
graph. As shown in Figure 1, ellipses and squares in the
ontology graph Gi, where i ∈ {1, 2}, represent classes and
properties, respectively. A node via ∈ V rw in the associ-
ation graph Grw denotes a candidate mapping < c1i , c

2
a >

(c denotes the class) or < p1i , p
2
a > (p denotes the property)

because classes (properties) can only be matched to classes
(properties). Here, the subscripts i and a denote the ith and
ath node in the ontology graphs G1 and G2, respectively.

Edges in the Association Graph
To set edges between nodes in the association graph, we
first extract the existing four main types of relations between
classes and properties in the ontology. These relations are: (1)
the is-a relation between two classes or two properties; (2)
the hasProperty relation between a class and its properties;
(3) the hasDomain relation between a property and its do-
main classes; and (4) the hasRange relation between a prop-
erty and its range classes. Then, we set an edge between two
nodes via ∈ V rw and vjb ∈ V rw if and only if the relations
of entity pairs (e1i , e

1
j ) and (e2a, e

2
b) are exactly the same. For

example, in Figure 1 (Grw), there is an edge between nodes
v11 and v32 because the entities e13 and e22 are subclasses of
entities e11 and e21, respectively.

Edge Weights Assignment
We compute the weightwia;jb of edgeErw

ia;jb with the method
described in Algorithm 1 for which the returning value is an
n×n real diagonal matrix W, where n is the number of nodes
in graph Grw. In Algorithm 1, the array ES contains similar-
ity scores between classes and properties, which is computed
with the cosine formula based on the classes’ and properties’
TFIDF vectors created from their descriptions. The descrip-
tions of an entity include: local name, label, comment, sub-
terms, superterms (both for classes and properties) and prop-
erties and instances (for classes) or domain and range (for
properties). Pre-processing steps for the description label and
comment consist of tokenization, lemmatization, stop word
removal and translations as in [Cheatham and Hitzler, 2013].

Algorithm 1: Computing the weights of Erw

Input: The number of entities in O1 and O2, m1 and
m2; The set of nodes in the association graph, V ;
The array of entity similarity, ES;

Output: The weight matrix, W ;
1 for all vh ∈ V do
2 ei ← the entity vh1 from O1;
3 ea ← the entity vh2 from O2;
4 for all vk ∈ V do
5 ej ← the entity vk1 from O1;
6 eb ← the entity vk2 from O2;
7 if hasSameRelation(ei, ej , ea, eb) then
8 sim← (ESh + ESk) / 2;
9 if sim 6= 0 then

10 wia;jb ← exp(sim);
11 else
12 wia;jb ← 1.0/(m1 +m2);

13 else
14 wia;jb ← 1.0/|V |;

15 wh;h ← exp(ESh);
16 return W ;

In Algorithm 1, exp() means the exponential function, and
hasSameRelation is used for checking the equality of rela-
tion between ei and ej and between ea and eb in the orig-
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Figure 1: Association Graphs for Ontology Matching by Random Walks. Grw is the association graph constructed from the
two to-be-matched ontology graphs G1 and G2. Garw is the graph augmented with an absorbing node based on the graph Grw.
Gb is a bipartite graph used for extracting final mappings.

inal graphs. We can see that the larger the wia;jb value is,
the more likely the nodes vh and vk in Grw represent map-
pings. It is different from the methods of assigning weights
to edges in Similarity Propagation[Li et al., 2009; Ngo et al.,
2012b], in which edge weights are empirically determined by
the number of outgoing edges of source nodes. However, the
weights of edges in our association graph are calculated based
on not only the relations but also the similarities between en-
tities. We call wia;jb “affinity” between these two nodes in
the association graph, and the affinity matrix W will be used
to compute the transition probability matrix of the Markov
chain in Sec.3.2.

3.2 Affinity-Preserving Random Walks
Imagine a walker who takes off from an arbitrary node in a
graph and then successively visits new nodes by randomly
selecting one of the outgoing edges according to a Markov
transition probability and then repeats this process. In this
way, we define a random walk on a graph.

Problem of Internet Democracy
Generally, to define the transition probability matrix for a
Markov chain on a weighted graph, traditional approaches
convert the affinity or weight matrix W to a row stochastic
matrix by P = D−1W, where D is a diagonal matrix with en-
tries Dii = di =

∑
j Wij . This practice can be found in

PageRank [Page et al., 1999], in which each outgoing hyper-
link from a node i is row-normalized by 1/di. This also can
be interpreted as Internet Democracy [Langville and Meyer,
2004]. However, in our ontology matching task, there exists
lots of pseudo candidate mappings (i.e., outlier nodes); this
row normalization can strengthen the adverse effect of the
pseudo mappings and weaken the true mappings (i.e., inlier
nodes). For example, in Figure 1 (G1, G2), suppose the class
c11 and the property p11 correspond to the class c21 and the prop-
erty p21, respectively. The democratic normalization on Grw

scales up the affinities of outgoing edges of outlier nodes such
as <c11, c22> and <p11, p22> when compared with the affini-
ties of two inlier nodes <c11, c21> and <p11, p21> because the
affinity sum of an outlier node is usually smaller than that

of an inlier node. A similar problem also exists in Similar-
ity Propagation [Li et al., 2009; Ngo et al., 2012b], in which
the confidences from the parent node are evenly distributed to
subnodes even if some of these subnodes are outliers.

Affinity Preserving in Random Walks
To preserve the original affinity relations while transform-
ing the affinity matrix into the stochastic transition matrix for
random walks, some other normalization methods should be
used. We define a maximum degree dmax = maxidi and
construct an augmented graph Garw (as shown in Figure 1
(Garw)) with an absorbing node vabs, which soaks affinity
dmax − di out of all the unabsorbed nodes. In this special
Markov chain, once the random walker reaches the absorb-
ing node, he cannot walk out of there. Because each node in
the graph Garw has the same degree of dmax, its affinity ma-
trix normalized by 1/dmax results in a stochastic matrix and
corresponds to an absorbing Markov chain [Seneta, 2006],
which preserves the original affinity relations of the associa-
tion graphGrw. We call this approach an “affinity-preserving
random walk” as it is used in [Cho et al., 2010], which aims at
a graph matching problem in the image processing field, and
the word “affinity” there means the similar degree between
two nodes of an image. The transition matrix P and absorb-
ing Markov chain of this affinity-preserving random walk are
formulated as follows.

P =

(
W/dmax (1-d)/dmax

0T 1

)
,

(
x(n+1)T x

(n+1)
abs

)
=
(

x(n)T x
(n)
abs

)
P, (2)

where W/dmax is a |V rw| × |V rw| substochastic matrix, and
1 is a |V rw| × 1 vector with all elements 1 and 0 with all
elements 0. Because the steady state distribution of the ab-
sorbing Markov chain is always (0T 1), it cannot be used
for node ranking in the same way as PageRank [Page et al.,
1999]. For the purpose of ranking nodes on the absorbing
Markov chain, we denote X(n) as the node where a random
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walker in the absorbing Markov chain of Eq.(2) stays at time
n and define the conditional distribution x̄(n) as

x̄(n)ia = P (X(n) = via|X(n) 6= vabs) =
x(n)ia

1− x(n)abs

, (3)

which refers to the distribution of unabsorbed node via ∈
Garw at time n. If x̄(n+1) = x̄(n) = x̄, we call x̄ a quasi-
stationary distribution of the absorbing Markov chain. This
corresponds to a steady-state distribution in the Markov chain
without absorbing nodes. x̄ is a |V rw|×1 real vector, and the
element x̄h ∈ x̄ represents the final probability that the ran-
dom walker visits the unabsorbed node Via ∈ V arw.

3.3 Finding mappings from walking results
Because each unabsorbed node in graph Garw consists of en-
tities e1i ∈ O1 and e2a ∈ O2, we say that the larger the visit
probability of the unabsorbed node Via ∈ V arw is, the more
likely is the mapping that it represents. To extract mappings
from the steady-state probabilities of nodes in graph Garw,
we first construct a bipartite graph Gb = (V 1, V 2;Eb), and
the weight of Eia ∈ Eb is set to the visit probability of the
unabsorbed node Via ∈ V arw. This bipartite graph is dis-
played in Figure 1 (Gb). Suppose the number of entities in
ontologies O1 and O2 is N1 and N2, respectively; then, an
N1 ×N2 matrix S can be derived from the weighted bigraph
Gb. In the matrix S, the value of element Sia will be set to 0 if
the edge Eia 6∈ Eb or the visit probability of the unabsorbed
node Via ∈ Garw otherwise. We then use the Stable Marriage
(SM) algorithm [Hopcroft and Karp, 1973; He, 2006], which
has been widely used for finding 1:1 mappings in bigraphs, to
extract the final mappings from the matrix S.

3.4 Mapping-Oriented Random Walks
In the affinity-preserving random walks presented in Sec.3.2,
the 1:1 matching constraint has not been considered in the
random walk process and has only been used in the last step
of extracting final mappings. Because the calculation process
of affinity-preserving random walks is iterative, taking the 1:1
matching constraint as a post-processing separate step may
gradually submerge some true mappings and highlight some
pseudo mappings. For example, in Figure 1, suppose the class
entities c11 and c12 correspond to class entities c21 and c22, re-
spectively, and the similarities of class entity pairs (c11, c

2
1)

and (c12, c
2
2) are much larger than those of class entity pair

(c12, c
2
2). Then, during the affinity-preserving random walks,

the true mapping< c12, c
2
2 >will be gradually submerged and

the pseudo mapping < c11, c
2
1 > will be highlighted.

How, then, can we consider the 1:1 matching constraint
in the affinity-preserving random walk? Inspired by the per-
sonalization approach widely used in webpage ranking meth-
ods [Haveliwala, 2002; Langville and Meyer, 2004], which
strengthens the effects of inlier nodes in random walks, we
achieve this goal by adopting a jump in the random walk:
The random walker moves by traversing an edge with prob-
ability α or by performing a jump to some other nodes with
probability 1−α. The variable α represents the bias between
the two possible actions, i.e., following an edge or jumping.

Algorithm 2: MORW for Ontology Matching
Input: The weight matrix, W; The starting and

maximum number of iteration, B and M ; The
mapping-oriented factor, α;

Output: The steady-state distribution, x̄;
1 dmax ← maxidi;
2 P←W/dmax;
3 Initialize the starting probability x as uniform;
4 for i← 1, 2, ...,M do
5 if i < B then
6 x̄← Px;
7 else
8 t← selectingBySM( x̄ );
9 r← amplifyingElements( x̄, t );

10 r← r/
∑

rai;
11 x̄← αPx + (1− α)r;
12 x̄← x̄/

∑
x̄ai;

13 if ||x̄− x||2 < ε then
14 return x̄;
15 x← x̄;
16 return x̄;

The probability distribution when adopting the personalized
jump is updated as follows.(

x(n+1)T x
(n+1)
abs

)
= α

(
x(n)T x

(n)
abs

)
P+(1−α)rT ,

(4)
where a mapping-oriented jump vector r is added to the
affinity-preserving random walk of Eq.(2). That is, we use the
jumps for generating a biased random walk to the 1:1 match-
ing constraint. Particularly, we first apply the Stable Mar-
riage (SM) algorithm to select potential mappings (i.e., inlier
nodes), then amplify the distribution of these inlier nodes by
ex×maxx and normalize x. This procedure is equivalent to at-
tenuating small values of x and amplifying large values of x
and made the unreliable mappings contribute insignificantly,
which has been denoted by the selectingBySM function and
amplifyingElements function in Algorithm 2. Accordingly,
our mapping-oriented random walk is formulated by(

x(n+1)T x
(n+1)
abs

)
= α

(
x(n)T x

(n)
abs

)
P+

(1− α)
(
f(x(n)T W)T 0

)
, (5)

where f(·) denotes the mapping-oriented function incorpo-
rating 1:1 constraints. Note that this is a dynamic Markov
chain for which the jump distribution is dynamically varying
and dependent on the present distribution of x, unlike conven-
tional jumps in random walks [Haveliwala, 2002; Langville
and Meyer, 2004]. As the f(·) generates a jump distribu-
tion close to a good solution, the subsequent random walks
strengthen the distribution and move toward the final so-
lution. The quasi-stationary distribution of the mapping-
oriented random walk is computed using the iteration method
as summarized in Algorithm 2, in which the parameter B is
used to reduce the influence of disturbance from the initial
uniform distribution x.
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4 Experiments
4.1 Data sets and evaluation criteria
Because the annual OAEI (Ontology Alignment Evaluation
Initiative) campaign has become an authoritative contest in
the area of ontology matching, we use the datasets from OAEI
to evaluate our proposed approach. All of the ontologies in
the dataset are described in OWL-DL language.

Development dataset: the Standard Benchmark 2012
dataset, which OAEI provides for participants to develop their
systems before entering the competition, is used as the devel-
opment dataset in our experiments. This dataset contains one
reference ontology and 109 target ontologies. We use this
dataset to set the parameters in our approaches.

Testing dataset: (1) the Benchmark-Biblio 2012 dataset,
which contains one reference ontology and 94 target ontolo-
gies; and (2) the Benchmark-Biblioc 2013 dataset, which has
five sub-datasets with one reference ontology and 93 target
ontologies in each sub-dataset. We use these two datasets to
evaluate the effectiveness of our approach.

In the matching scenario, each target ontology should be
mapped to the reference ontology. We followed the standard
evaluation criteria from the OAEI campaign, calculating the
precision, recall and F-measure for each test. The version
computed here is the harmonic mean of precision and recall.

4.2 Experiments on the Development dataset
We conduct experiments on the development dataset to
check the correctness and rationality of our proposed ap-
proaches and select the final values of parameters in the ap-
proaches. The compared approaches are: (1) VSM (vec-
tor space model), which uses TFIDF vectors (as described
in Sec.3.1.) to measure the similarities between classes and
properties by cosine similarity and then applies Stable Mar-
riage (SM) algorithm to extract the final mappings without
random walk. This approach can be viewed as a baseline.
(2) RNRW (Row-Normalized Random Walk), for which the
transition probability matrix is a row-normalized affinity ma-
trix. (3) APRW (Affinity-Preserving Random Walk), which
is described in Sec.3.2. (4) MORW (Mapping-Oriented Ran-
dom Walk), which is presented in Sec.3.4. The final settings
of our approach are as follows: The maximum number of it-
eration M is 300, the number of starting iteration B is 50, the
mapping-oriented factor α is 0.7, and the minimum error ε is
1E-60. Table 1 reports the comparison results.

Approach Prec. Rec. F-m.
VSM 0.866 0.738 0.773

RNRW 0.764 0.722 0.730
APRW 0.856 0.815 0.823
MORW 0.864 0.823 0.830

Table 1: Experiments on the Development dataset.

As shown in Table 1, the F-measure reached 77.3% even
in the case of the vector space model (VSM) for matching. In
our random walk-based approaches, the similarities, which
have been employed by VSM, are used to create the transi-
tion probability matrix. When the 1:1 matching constraint

Benchmark-Biblio 2012 Benchmark-Biblioc 2013
Prec. Rec. F-m. Prec. Rec. F-m.

VSM 0.875 0.724 0.766 0.872 0.722 0.764
RNRW 0.647 0.647 0.647 0.670 0.670 0.670
APRW 0.858 0.859 0.858 0.856 0.856 0.856
MORW 0.866 0.866 0.866 0.864 0.864 0.864

Table 2: Experiments on the test datasets.

has not been considered in the process of random walk (i.e.,
in the APRW approach), the matching F-measure is 82.3%.
When we take this constraint into account during the random
walk (i.e., in the MORW approach), the F-measure improved
by approximately 1% on the whole dataset. The F-measure
of RNRW is even lower than that of VSM, and this shows
that the settlement of the Internet democracy problem is very
important in our approach.

4.3 Experiments on the test dataset
We conduct experiments on the test datasets to evaluate the
effectiveness of our approach. We use the same model set-
tings as in the experiment conducted on the development
dataset. The experimental results are presented in Table 2.

As we can see from Table 2, due to the improper row nor-
malization, RNRW perform even worse than the VSM base-
line by about 10 percent in F-measure on both test datasets.
However, by introducing the absorbing node in the associ-
ation graph and incorporating the 1:1 matching constraints,
both APRW and MORW outperform the VSM baseline by
large margins. MORW perform slightly better than APRW
consistently on both datasets. To determine whether the dif-
ference is significant, we conduct significance test using the
sample evaluation method, which was proposed by Van Hage
et al. [2007] to assess ontology-matching performances. The
test results on both datasets show that the performance dif-
ference between APRW and MORW is significant at a confi-
dence level of 95% and justify the necessity of the additional
jumping technique used in MORW.

4.4 Comparison with OAEI Participants
We compare our final ontology matching approach MORW
with other multi-strategy matching systems on the two test-
ing datasets. Figure 2 shows the results of the top five match-
ing systems according to their F-measure on the Benchmark-
Biblio 2012 dataset and Benchmark-Biblioc 2013 dataset.

As shown in Figure 2, our MORW outperforms most of
the participants except for the MapSSS system, for which the
F-measure is 0.87 in 2012, and the YAM++ and CroMatcher
systems, for which the F-measures are 0.89 and 0.88 in 2013,
respectively. Unlike MapSSS, our approach does not use any
external resources such as Google queries in its current ver-
sion. In the YAM++ approach, the gold standard datasets
that are taken from the Benchmark dataset published in OAEI
2009 are used to generate training data to train a decision
tree classifier. And in the classifying phase, each pair of el-
ements from two ontologies is predicted as being matched
or not according to its attributes. However, our approach is
entirely an unsupervised ontology matching approach, but it
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Figure 2: Comparison with other OAEI systems.

does not exclude using training data to help initialize the tran-
sition probability of the Markov chain to further improve the
performance. Unfortunately, despite consulting a great deal
of materials, we do not know any of the details for the Cro-
Matcher approach, at least at the present time.

5 Related work
In addition to the graph-based approaches described in the in-
troductions, there are also other approaches such as linguistic
matching, hybrid matching, machine learning-based match-
ing and probabilistic matching.

Linguistic matching is the construction of virtual docu-
ments. V-Doc [Qu et al., 2006] is an example of a linguistic
matcher. It exploits the RDF graph to extract the descrip-
tion information from three types of neighboring entities,
including subject neighbors, predicate neighbors and object
neighbors. Hybrid matching uses linguistic information (e.g.,
name, label, and description) and structural information (e.g.,
key properties and taxonomic structure) to find correspon-
dences between entities. For example, Falcon-AO++ [Jauro
et al., 2014] is a hybrid matching system that supports the in-
teractive contribution of a domain expert in the matching pro-
cess. There are several works that exploit the machine learn-
ing techniques for ontology matching. Doan et al. [2003] cre-
ated a well-known machine learning-based ontology mapping
system, in which the joint probability distribution of the con-
cepts is measured to find similar concepts. In [Eckert et al.,
2009], string-based, linguistic and structural measures (in to-
tal 23 features) were used as inputs to train an SVM classi-
fier to align ontologies. Mao et al. [2010] proposed a neural
network-based approach to search for a global optimal solu-
tion that can satisfy ontology constraints to the greatest extent
possible to find mappings. CSR (Classification-based learn-
ing of Subsumption Relations) is a generic method for auto-
matic ontology matching between concepts based on super-
vised machine learning [Spiliopoulos et al., 2010]. It specifi-
cally focusses on discovering subsumption correspondences.
SMB (Schema Matcher Boosting) is an approach to combin-
ing matchers into ensembles [Gal, 2011]. It is based on a
machine learning technique called boosting, which is able to
select (presumably the most appropriate) matchers that par-

ticipate in an ensemble. Some researchers have explored us-
ing a probabilistic scheme for ontology matching. iMatch
[Albagli et al., 2009] is a probabilistic interactive ontology
matching system based on Markov networks. It first builds a
specific Markov network for a given pair of ontologies, and
the topology of the network is defined based on constraints
and rules; then, it uses initial match distributions to initial-
ize the evidence potentials of the network, and ultimately,
it exploits probabilistic reasoning in the Markov network to
compute the final alignment. CODI is a probabilistic-logical
ontology matching system [Niepert et al., 2010; Huber et al.,
2011]. It is based on Markov logic networks and provides
a declarative framework for matching classes, properties and
individuals. The matching problem is reduced to a maximum
a posteriori inference in the Markov logic network, which is
in turn solved by using integer linear programming.

Our approach belongs to the graph-based ontology match-
ing approaches. The main characteristics of our approach
are the following: (1) edge weights in our association graph
are measured by the affinity between entities rather than be-
ing assigned based on experience as in other graph-based ap-
proaches such as Similarity Propagation[Li et al., 2009; Ngo
et al., 2012b]; (2) our affinity-preserving random walk ap-
proach differentiates the potential true and false mappings in
order to weaken the adverse effect of pseudo-mapping nodes,
while in previous graph-based approaches, these mappings
have been treated equivalently; (3) in the random walk view,
our mapping-oriented random walk approach adopts the per-
sonalization strategy of PageRank algorithms [Haveliwala,
2002] by dynamically adding jumps for the matching con-
straints, which has only been used in the final step in most
of the previous approaches. This can simultaneously update
and exploit the confidences of candidate mappings to further
improve the performance.

6 Conclusions

In this paper, we propose a novel ontology matching approach
based on random walks. In particular, inspired by the per-
sonalization strategy of PageRank algorithms, we propose an
affinity-preserving random walk to avoid the Internet democ-
racy problem in our task. Furthermore, to incorporate the
matching constraints into the random walks dynamically, a
mapping-oriented random walk approach is proposed. We
evaluate our approach on the public datasets from OAEI cam-
paigns, and the experimental results show that the matching
quality of our approach nears the highest levels. In future
work, we plan to integrate external resources such as search
engines and labeled data into our approach to help with the
calculations of the transition probability matrix.
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