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Abstract

Entity alignment is a fundamental and vital task in Knowl-
edge Graph (KG) construction and fusion. Previous works
mainly focus on capturing the structural semantics of enti-
ties by learning the entity embeddings on the relational triples
and pre-aligned ”seed entities”. Some works also seek to in-
corporate the attribute information to assist refining the enti-
ty embeddings. However, there are still many problems not
considered, which dramatically limits the utilization of at-
tribute information in the entity alignment. Different KGs
may have lots of different attribute types, and even the same
attribute may have diverse data structures and value granular-
ities. Most importantly, attributes may have various ”contri-
butions” to the entity alignment. To solve these problems, we
propose COTSAE that combines the structure and attribute
information of entities by co-training two embedding learning
components, respectively. We also propose a joint attention
method in our model to learn the attentions of attribute types
and values cooperatively. We verified our COTSAE on sever-
al datasets from real-world KGs, and the results showed that
it is significantly better than the latest entity alignment meth-
ods. The structure and attribute information can complement
each other and both contribute to performance improvement.

Introduction
In the past few decades, more and more knowledge graphs
(KGs) have been built in the domain of finance, entertain-
ment, government, science, and biomedicine, as they could
play essential roles in information retrieval, recommen-
dation system, machine comprehension, and knowledge-
based QA-system. Different institutions construct their KGs
according to different needs and data sources, that lead-
s to the diverse forms of KGs, even in the same do-
main. However, these KGs also have many repetition-
s and can complement each other. Before merging dif-
ferent KGs into a more unified one, the primary task is
to identify the entities in different KGs that refer to the
same real-world object, which is called entity alignmen-
t. For example, the entity ”www.dbpedia.org/resource/The-
Three-Troubledoers” in Dbpedia KG and the entity
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”www.wikidata.org/entity/Q7769108” in Wikidata KG both
refer to the American movie ”The Three Troubledoers.” En-
tity alignment is to find these entity pairs between KGs by
learning the semantics of entities.

According to (Lacostejulien et al. 2013), the semantic of
entity is implicated by two kinds of information. One is the
relations between the entities, which is also called structure
information; the other is the attribute information describing
the self-characteristics of the entities. Two kinds of informa-
tion are independent of each other in one KG, but describe
the internal and external semantics of entities, respectively.
Due to the different application scenarios, some KGs may
focus on the construction of entity relations, and some KGs
pay more attention to the integrity of entity attributes.

Currently, the works of entity alignment mainly focus on
the utilization of structural information. They try to learn
the entity embeddings to represent the structural semantic-
s on the relational triples 〈h, r, t〉 in KGs. For example,
JAPE(Hao et al. 2016) uses TransE(Bordes et al. 2013) to
interpret a relationship r as a transition from its head entity
h to its tail entity t,~h+~r ≈ ~t. They use the pre-aligned ”seed
alignments” as the ”bridge” of embedding spaces by keeping
the embeddings of the ”seed entities” same in different KGs.
Then entities with similar embeddings could be considered
as the same entities to be aligned. Since such methods do
not depend on the content of the KGs, they are mostly used
to solve the cross-lingual entity alignment. However, TransE
model only constrains that the learned representations must
be compatible within each relationship triple, which causes
the disorganized distribution of some entities due to the s-
parsity of their relationship triples (Sun, Wei, and Li 2017).
Moreover, it is difficult for the seed entities to guarantee the
coverage of all relation types, which also severely limits the
accuracy of such works.

The attribute information can give an alternative view
of entities especially in the mono-lingual entity alignment.
Recently, using attribute embeddings to align entities con-
centrates on the attribute types (Sun, Wei, and Li 2017;
Hao et al. 2017; Xu et al. 2019). For example, in attribute
triple (Tom,age,12), the ”age” is an attribute type of the enti-
ty ”Tom”, and ”12” is the value of ”age”. AttrE(Trsedya, Qi,
and Zhang ) needs to match the attribute types before utiliz-



ing attribute values, which is not practical for the attributes
with different naming conventions in many large-scale KGs.
Meanwhile, the attributes of an entity is treated equally in
these, which leads to bad performance of entity alignment
by learning a large number of noise attributes. In short, there
are still many problems in the use of entity attribute infor-
mation for embedding-based entity alignment:

• The attribute information is pretty challenging to use as
different KGs may have lots of different attribute types,
and the name of the same attribute type may also be d-
ifferent due to naming conventions. Attribute values are
diverse in data structure and value granularity.

• Different attributes contributes differently to the entity
alignment, and there are often a large number of ”noise”
attributes that are unrelated to the entity alignment but in-
terfering with the alignment.

• Attribute and structure information describes the internal
and external semantics of an entity, and they are indepen-
dent of each other in the KGs. Actually, there are differ-
ent emphasis on these two information in different KGs.
The structure information of some KGs may be sparse, or
some KGs may be lack of attribute information. If learn-
ing them into one unified embedding space by constrain-
ing the embeddings from different information consistent,
e.g., AttrE (Trsedya, Qi, and Zhang ), sparse structure in-
formation will limit the learning of structure embedding,
which definitely affects the learning of attribute embed-
ding.

To solve the above challenges, we propose the COTSAE,
which is a Co-Training model including two embedding
components to integrate structure and attribute information
in this paper. One component is the KG representation learn-
ing model TransE (Bordes et al. 2013) to learn the struc-
tural embedding of entities. The other component is a nov-
el Pseudo-Siamese network with joint attention to learn the
weights of attributes and bi-directional gated recurrent unit
encoder (Bi-GRU) to characterize attribute values. In COT-
SAE, both structure and attribute information can be used
to generate possible entity alignment, for example, when the
structure information of KGs is difficult to get new entity
alignments, the attribute information can be used to comple-
ment it for further entity alignment. Similarly, when the at-
tribute information is insufficient, the structure information
can also assist it in the entity alignment. The main contribu-
tions of our approach are list as followed:
• We propose a novel Pseudo-Siamese network to make full

use of the attribute types and values in KGs. To learn the
importance of attributes for entity alignment, we propose
a joint attention method in which the attribute type and
its corresponding value learn one attention weight joint-
ly. We also use the Bi-GRUs to capture the forward and
backward sequence information of attribute values.

• We propose COTSAE, a Co-Training framework learn-
ing entity embeddings using the TransE componen-
t and Pseudo-Siamese network alternately to integrate the
structure and attribute information. In each iteration, it
selects entity pairs with similar embeddings as the new

”seed alignments”, and supplements the structure and
attribute information of the entities in training dataset.
These two informations can complement and reinforce
each other in the iterative entity alignment.

• We validated COTSAE on large-scale and small-scale
datasets constructed from real-world KGs, respectively.
Experiments show that COTSAE is superior to other en-
tity alignment methods apparently. The results of entity
alignment based only on structure information or attribu-
tion information indicates that the two types of informa-
tion can effectively enhance each other.

The rest of the paper is organized as follows. We first dis-
cuss the related works and then introduce our approach in
the section that follows. After that, we present the experi-
mental results and conclude the paper in the last section.

Related Work
KG Embedding In the past few years, knowledge graph
embedding models have been widely used in the KG com-
pletion task. It indicates that the embedding model can effec-
tively use the structural information in the knowledge graph
to predict the missing entities or relationships. The transla-
tion model proposed by TransE (Bordes et al. 2013) regards
the relationship in the triple (h, r, t) as a translation between
the head entity h and the tail entity t: ~h+~r ≈ ~t. TransE is s-
traightforward and effective, but it is difficult to model com-
plex relationships (e.g., one-to-many relations). Researchers
have proposed many improved models upon TransE, such
as TransH(Zhen et al. 2014), TransR(Lin et al. 2015) and
TransD(Ji et al. 2015), etc. Compared with the TransE, these
models embed entity and relation into different embedding
spaces which increases the ability of the model to express
complex relationships. In addition to the translation mod-
el, there are also many non-translation models(Socher et al.
2013; Dettmers et al. 2017).

Embedding-based entity alignment The embedding-
based methods for entity alignment are generally divided
into the embedding learning phase and the entity alignment
phase. The embedding learning phase uses knowledge repre-
sentation learning methods such as the TransE to learn enti-
ty embeddings for KGs. The entity alignment phase obtains
matched entity pairs by calculating the similarity of each t-
wo entity embeddings. MtransE(Chen et al. 2016) uses the
TransE model to learn the embeddings of entities in the t-
wo KGs and then learns a transformation function connect-
ing two embedding spaces for the entity alignment. Some
works use semi-supervised learning to overcome the spar-
sity of ”seed alignments” for the entity alignment. In IP-
TransE(Hao et al. 2017) and BootEA(Sun et al. 2018), the
newly discovered entity alignments in the iterative process
are added to the training dataset to optimize the following
process. BootEA(Sun et al. 2018) also adds an error cor-
rection mechanism to avoid the impact of error accumula-
tion. Some works attempt to improve the entity represen-
tation learning model to make it more suitable for the en-
tity alignment. (Liang et al. 2018; Kipf and Welling 2016;
Hamilton, Ying, and Leskovec 2017) utilize the graph neural



Figure 1: Brief Framework of the COTSAE

network (e.g., GCN) to propagate the profiles/labels/degrees
information of nodes, and learn the node embeddings for n-
ode classification. To better obtain the information of neigh-
bor entities and consider the multi-hop path, GCN-Align(X-
u et al. 2019) uses the graph convolution network to ob-
tain the embeddings of the entities. RSN4EA(Guo, Sun, and
Hu 2019) uses the sampled multi-hop paths as the train-
ing dataset to learn the representations of the entities. These
works mainly rely on relationship triples, which may cause
the disorganized distribution of some entities due to the s-
parsity of their relationship triples. Many related works in-
corporate other information in the KG with structural in-
formation to improve the performance of the entity align-
ment. JAPE(Sun, Wei, and Li 2017) learns the embeddings
of attributes to capture the correlations of attributes using
the Skip-Gram method. Then it combines the structure em-
bedding and attribute embedding to find similar entities.
KDCoE(Chen et al. 2018) utilizes the entity descriptions
as the supplementary data to refine the entity embeddings.
It used Co-training method to iteratively train two embed-
ding models on multi-lingual KG structures and entity de-
scriptions respectively. In AttrE(Trsedya, Qi, and Zhang ),
the attribute triples (h, a, v) is also treated like the relation-
al triples and learn the entity embeddings by the objective
function ~h + ~a ≈ ~v. The attribute value v here is processed
as a sequence of characters. MuitiKE (Zhang et al. 2019)
learns the representations of the entities in the three views:
name, attribute and structure. The combination strategies are
proposed to integrate three view-specific embeddings to get
the latest performance of the entity alignment. The attribute
is crucial information, especially in the mono-lingual entity
alignment. Most of the previous works focus on the attribute
type-level information of the entities, which is blurred for
the entity alignment. The AttrE(Trsedya, Qi, and Zhang )
method considers the utilization of attribute values, but it
needs to match the attribute types in advance, which is not

practical for the attributes with different naming conventions
in many large-scale KGs. MultiKE(Zhang et al. 2019) uses
externally trained word embeddings to refine the learning of
attribute values. But it still treats all attributes of the entity
equally, which inevitably limit the performance of the entity
alignment due to the large percentage of ”noise” attributes.

Proposed Approach
We start with the definition of the entity alignment , and then
we present an overview of our proposed model COTSAE.
We detail the components of the proposed model afterward,
including the training dataset generation, the TransE compo-
nent and the Pseudo-Siamese network. Finally, we introduce
the entity alignment process briefly.

Problem Definition
Let E1 be the entity set of KG1 and E2 be the entity set
of KG2. The aim of entity alignment is to find every entity
pairs A = {(e1, e2)|e1 queals to e2, e1 ∈ E1, e2 ∈ E2}. In
general, a subset pre-aligned entity pairs P of A is used as
”seed alignments” for training data. The rest of A denoting
the unaligned entities are what we aim to align. We model
entity alignment as a classification problem of using entities
in e2 to label entities in e1(Sun et al. 2018). By convention,
we consider the so-called one-to-one entity alignment: an
entity can be associated with at most one label(Sun et al.
2018; Lacostejulien et al. 2013; Zhang et al. 2015).

Approach Overview
The brief framework of our COTSAE is depicted in Figure
1. Firstly, given two KGs (KG1,KG2) with structure and
attribute information and ”seed alignments” P , we construc-
t the Basic Training Dataset (BTD) for two model compo-
nents respectively. Then in each iteration, the entity embed-
dings are learned either on the structure information of the



BTD using the TransE component or on attribute informa-
tion of the BTD using the Pseudo-Siamese neural network.
After that, all candidate alignments are generated in the for-
m of the bipartite graph by computing the embedding sim-
ilarities of entity pairs and filtering them with a threshold
γ. Finally the new entity alignments of this iteration can
be obtained to form the Additional Training Dataset (AT-
D) which is the complements of the BTD using the best bi-
partite graph matching algorithm. In the COTSAE model,
utilizing the structure and attribute information alternately
to align the entities can make these two informations com-
plement and reinforce each other by extending the training
dataset iteratively.

Iterative Co-training & Training Data Generation
As is shown in Figure 1, training dataset includes BTD and
ATD; both of them contain structure and attribute informa-
tion for TransE component and Pseudo-Siamese Network
component, respectively. The co-training of the two com-
ponents is conducted iteratively on the KGs, where a small
amount of ”seed alignments ”P is also provided. The enti-
ties involved in ”seed alignment” are the anchors help find
potential alignments. At each iteration, the component mod-
els alternately take turns of the train-and-predict process. In
train process, the TransE component or the Pseudo-Siamese
Network is trained for several epochs with early-stopping on
the BDT and ADT. The ADT is empty at the first iteration.
After training, the model predicts new entity alignments for
ADT to supplement the BDT. Both components conduct the
above train-and-predict process alternately, therefore gradu-
ally reinforce the entity alignment, until two components no
longer predict new entity alignments.

Following (Sun et al. 2018), the new relational triples are
generated by exchanging the ”seed entities” with its pre-
aligned entities in relational triples. Given the ”seed align-
ments” P = {(e1, e2)|e1 ∈ E1, e2 ∈ E2, e1 equales to e2},
The new relational triples are SP =

⋃
(e1,e2)∈P S(e1,e2),

where S(e1,e2) is:

{(e2, r, t)|(e1, r, t) ∈ S+1 } ∪ {(h, r, e2)|(h, r, e1) ∈ S+1 }∪
{(e1, r, t)|(e2, r, t) ∈ S+2 } ∪ {(h, r, e1)|(h, r, e2) ∈ S+2 }.

S+1 and S+2 denote the relational triples of KG1 and KG2.
Therefore the positive samples of structure information
S+ = S+1 ∪ S+2 ∪ SP . We also use the ε-Truncated Uniform
Negative Sampling method following (Bordes et al. 2013)
to generate the negative relational triples S− for the training
dataset. We sample the negative triples from the top-n near-
est neighbors in the relational embedding space, where n is
decided by the ε.

Same as structural triples, the attribute triples
is: A+ =

⋃
(e1,e2)∈P A(e1,e2), where A(e1,e2) is

{(e1, a, v)|(e1, a, v) ∈ A+
1 } ∪ {(e2, a, v)|(e2, a, v) ∈ A+

2 }.
But the input data of our Pseudo-Siamese Neural Network is
the attribute types and values separately instead of attribute
triples. The attribute triples describe more detailed and
accurate information about entities, which is harder to
learn than the relational triples. Thus we use the nearest

Figure 2: Proposed Pseudo-Siamese Network Architecture
for Attribute Information

neighbor as the exchange of each ”seed entity” to generate
the negative samples A− instead of sampling from a limited
scope. To lighten the ”semantic drift” when extending the
BTD with ATD, we do not generate the negative samples
for both structure and attribute information in ATD.

TransE Component
The intuition of using structural information to align entities
is that two alignable entities are likely to have similar rela-
tions with other entities. Based on this, TransE is employed
to learn structural embeddings for the entity alignments. To
reduce the ”semantic drift” of embeddings in each iteration
and better capture the semantics of entities in the unified s-
pace, we use two absolute thresholds γ1, γ2 > 0 as the mar-
gins to for the scores function d(h+r, t) = ‖~h+~r−~t‖22. Ac-
cording to (Sun et al. 2018), we minimize the two-margin-
based objective function:

LS =
∑

(h,r,t)∈S+

∑
(h′,r′,t′)∈S−

[d(h+ r, t)− γ1]+

+µ1 [γ2 − d(h′ + r′, t′)]+

(1)

where [.] = max(0, .) and µ1 is a hyper-parameter to control
the weight of negative samples.

In each iteration of COTSAE, the input of TransE com-
ponent is the structure information from BTD and ATD.
TransE component learns a low-dimensional embedding to
describe the structural information of entities in KGs.

Pseudo-Siamese Neural Network
We leverage attribute information based on the observation
that the to-be-aligned entities usually have high similarity in
their attributes. However, the attribute information is chal-
lenging to use due to its complexity, heterogeneity, and a
large percent of noise. We proposed a novel method based
on Pseudo-Siamese Neural Network with two identical but
not same modeling streams, which considers both attribute
type and attribute values.



After first been proposed in (Bromley et al. 1993), the
Siamese Neural Networks have been used successfully for
various tasks, such as person re-identification (Yi et al.
2014), speaker verification(Ke and Salman 2011), and face
identification(Yi, Wang, and Tang 2014). The Siamese Net-
work often consists of two sub-networks with shared pa-
rameters that process each data patch independently. The
Pseudo-Siamese Network is essentially a Siamese Network,
but without sharing parameters, i.e., In COTSAE, we set dif-
ferent sub-networks includding the attribte type embeddings
and value embeddings to handle attribute types and values
with different lengths and granularities. The sub-networks
for the two KGs only share the parameters of the character
embedding.

In our Pseudo-Siamese network, the entity embeddings
are learned on the attribute information of two KGs and then
evaluates the similarity between the entity embeddings us-
ing some trained metrics. As is depicted in Figure 2, the Bi-
GRUs are used to capture the character-level information of
attribute values. We calculate the attention of attributes with
attribute type and share the attention weights with the cor-
responding attribute values, which is called the joint atten-
tion method. We compute the Euclidean distance of entities
from KG1 and KG2, d(~e1, ~e2) = ‖~e1 − ~e2‖2. And the loss
function of our Pseudo-Siamese Neural Network is the con-
trastive loss :

La =
1

2K

K∑
i=0

y(i)d(e
(i)
1 , e

(i)
2 )

2
+ (1− y(i))max(γ3

− d(e(i)1 , e
(i)
2 ))2

(2)

where K is the size of training dataset. (e(i)1 , e
(i)
2 ; y(i)) is i-

th training sample, in which e(i)1 is the entity of KG1, e(i)2

is the entity of KG2 and y(i) is the alignment label of this
entity pair. γ3 is the margin of the contrastive loss.

Character-Level Attribute Value Embedding The same
attribute value may appear in different forms in two KGs,
e.g., 50.9989 vs. 509988 as the area of a city entity; ”Barack
Obama” vs. ”Barack Hussein Obama” as the name of a per-
son entity, etc. In mono-lingual KGs, the attribute value can
be seen as a sequence of characters with the same vocabu-
lary. Therefore we use bi-directional Gated Recurrent Unit
(Bi-GRU) network to encode the attribute value from two
direction into the single embeddings.

The GRU cell is defined by the following equations:

zi = σ(Wz[ci, hi−1]) (3)

ri = σ(Wr[ci, hi−1]) (4)

h̃i = tanh(Wh[ci, ri � hi−1]) (5)

hi = (1− zi)� hi−1 + zi � h̃i (6)
where z and r are the update gate and the reset gate of the
GRU cell.Wz , Wr and Wh are weight matrices.

The Bi-GRU consists of a forward GRU and a backward
GRU. The forward GRU reads the input character embed-
dings, e.g., the attribute value ~v = (~c0, ~c2, ..., ~cn), from left
to right and the backward GRU reads character embeddings

reversely. The output of forward GRU and backward GRU
is:

~hf = GRU(cn,~hf−1) ; ~hb = GRU(c0,~hb+1) (7)

The initial states of the Bi-GRU are set to zero vectors.
After reading the character embeddings, we concatenate the
final hidden states of two-directional GRU networks to for-
m the attribute value embedding, ~v =

[
~hf ;~hb

]
. Then the

entities e1 and e2 can get their attribute value embeddings
~V1 = (~v10 , ~v

1
1 , ..., ~v

1
M1

) and ~V2 = (~v20 , ~v
2
1 , ..., ~v

2
M2

).

Joint Attention for Attribute types and Values There is
a large percent of ”noise” attributes in an entity that con-
tribute little to the entity alignment. For example, entity ”Ti-
tanic” in DBPedia has an attribution ”IMDB ID” to record
its ID in the IMDB website, but the ”IMDB ID” attribute
does not exist for ”Titanic” in YAGO. Here ”IMDB ID” in
DbPedia can be seen as a noise attribute which is not essen-
tial for aligning the entity ”Titanic”. To learn the importance
of different attributes for an entity, we proposed a joint at-
tention method, which makes the attribute type and attribute
value shared one attention weight.

Given attribute type embedding A = (~a0,~a1, ...,~aM ) of
entity e with M attributes, we calculate the attention weight
αi of i-th attribute:

αi = softmax(ATWa~ai) (8)

where Wa denotes the weight matrix of ~ai. Here we use the
attribute type embedding to get the attention weight, and the
weight of attribute value should be consistent with that of its
attribute type:

etype =

M∑
i=0

αi~ai ; evalue =

M∑
i=0

αi~vi (9)

where ~ai is the i-th attribute type embedding and ~vi is its
responding attribute value embedding.

Therefore we can get the final entity embedding by con-
catenating the attribute type embedding and attribute value
embedding: ~e1 = [e1type||e1value] and ~e2 = [e2type||e2value] .

Entity Alignment
We can learn the entity’s embedding by either the TransE
component or the pseudo-siamese network, and obtain the
similarity matrics of every entity pairs. Firstly, we use the
threshold γ4 to filter entity pairs and construct a bipartite
graph of entity alignment by adding an edge to each poten-
tial pair of entities. Then, the best bipartite graph matching
algorithm is used to find the global optimum result of this
iteration as the new entity alignments for the next iteration.
It is hard to ensure that the additional training set is com-
pletely correct. When it contains a large amount of error in-
formation, it will affect the following training of our model,
leading to the error accumulation called ”semantic drift” of
the entity alignment. Therefore, when the result of the enti-
ty alignment in different iterations conflicts(Sun et al. 2018),
the additional training set is continuously modified accord-
ing to the similarity of the entity pairs.



Table 1: Statistics of the entity alignment datasets
Datasets #Ent. #Rel. #Attr. #Rel tr. #Attr tr.

DWY15K

DBP-WD-N
DBpedia 15,000 253 343 38,421 69,641
Wikidata 15,000 144 613 40,159 128,737

DBP-WD-D
DBpedia 15,000 220 236 68,598 70,548
Wikidata 15,000 135 435 75,465 125,752

DBP-YG-N
DBpedia 15,000 219 324 33,571 66,279
YAGO3 15,000 30 34 34,660 56,319

DBP-YG-D
DBpedia 15,000 206 246 71,257 78,990
YAGO3 15,000 30 34 97,131 58,412

DWY100K

DBP-WD
DBpedia 100,000 330 351 463,294 381,166
Wikidata 100,000 220 729 448,774 789,815

DBP-YG
DBpedia 100,000 302 334 428,952 451,646
YAGO3 100,000 31 23 502,563 118,376

Experiments
In this section, we report our experiments and results com-
pared with several state-of-art methods on a set of real-
world KG datasets. We used Tensorflow to develop our ap-
proach COTSAE1. Our experiments were conducted on a
server with an Intel Xeon E5-2620 2.1 GHz CPU, 4 NVIDI-
A GeForce Titan xp GPU and 128 GB memory.

Datasets
To verify the performance of our model on the KGs with
different data scales and entity sampling distributions, we
use two datasets:

• DWY15K contains four couples of datasets with differ-
ent entity sampling distribution extracted from DBpedi-
a, Wikidata and YAGO3, denoted by DBP-WD-Norm,
DBP-WD-Dense, DBP-YG-Norm, and DBP-YG-Dense.
Each dataset has 15 thousand reference entity alignmen-
t. The entities and structural triples are from (Guo, Sun,
and Hu 2019) which guarantee the degree distributions of
the sampled entities following the original KGs. We then
extract all the attribute triples that involve the entities in
the alignments from the original KGs(DBpedia, Wikidata,
and YAGO3).

• DWY100K contains two large-scale datasets which are
also extracted from DBpedia, Wikidata and YAGO3.
Each dataset has 100 thousand reference entity alignmen-
t. The entities and structural triples are from (Sun et al.
2018). Similarly, we extract all the attribute triples that
involve the entities in the alignments from the original
KGs(DBpedia, Wikidata, and YAGO3).

The statistical data of DWY15K and DWY100K is shown in
Table 1. Each dataset provides 30% entities as ”seed align-
ments” by default and leaves the remaining for evaluating
entity alignment performance.

Experiment Setting
For comparison, we chose several state-of-art embedding-
based approaches to entity alignment: MTransE (Chen et

1https://github.com/ykpku/COTSA

Table 2: Entity Alignment Results on DWY100K
Approaches

DP-WD DP-YG
Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

MTransE 28.12 51.59 0.363 25.15 49.29 0.334
IPTransE 34.85 63.84 0.447 29.74 55.76 0.386
BootEA 74.79 89.84 0.801 76.10 89.44 0.808

GCN-Align 47.70 75.96 0.577 60.05 84.14 0.686
JAPE 31.84 58.88 0.411 23.57 48.41 0.320
AttrE 38.96 66.77 0.487 23.24 42.70 0.300

MulKE 91.45 95.19 0.928 88.03 95.32 0.906
COTSAE a 81.75 92.71 0.818 78.29 91.86 0.831

COTSAE sa(NGram) 81.35 93.89 0.857 89.40 96.46 0.919
COTSAE sa(BiGRU) 84.09 95.16 0.876 85.88 95.21 0.892

COTSAE san 92.68 97.86 0.945 94.39 98.74 0.961

al. 2016), IPTransE (Hao et al. 2017), JAPE (Sun, Wei, and
Li 2017), BootEA (Sun et al. 2018), GCN-Align (Xu et al.
2019), AttrE (Trsedya, Qi, and Zhang ), and MultiKE(Zhang
et al. 2019), which have been discussed in the Related Work
section. As the textual descriptions of sampled entities are
needed, which is not available, we skipped KDCoE(Chen et
al. 2018). In order to compare(Zhang et al. 2019) consider-
ing the name, attribute, and relations of entities, we also add
the name information by just computing the edit distance of
entities at the beginning of our approach. We tried our best
to tune the hyper-parameters for all the methods.

The hyper-parameters of COTSAE were used as below.
For the TransE component model, we followed (Sun et al.
2018) and set γ1 = 0.01, γ2 = 2.0, and µ1 = 0.2. And
10 negative relational triples were sampled for each positive
triple. The entity dimensions of entities and relations were
set to 75. The learning rate is set to 0.01, and the batch size
is 2000. In Pseudo-Siamese Neural Network, we choose the
most 51 frequent used characters, and the character embed-
ding size is set to 32. The embedding size of attribute type is
set to 64. The learning rate of Pseudo-Siamese Neural Net-
work is set as 0.001, and the batch is set as 64. We set the
weight size of joint attention as 32 and the size of the hidden
layer of Bi-GRUs as 64.

Due to the different convergence rate of TransE compo-
nent and Pseudo-Siamese Neural Network, in each itera-
tion of COTSAE, we first train the TransE component for
10 epoches and generate new negative samples every 5 e-
poches according to the entity embeddings. Then we train
the Pseudo-Siamese Neural Network for 20 epochs and gen-
erate its negative sample every 10 epoches.

By convention, we chose Hits@k and mean reciprocal
rank (MRR) as our metrics. Hits@k measures the percent-
age of correct alignment ranked at top k. MRR is the average
of the reciprocal ranks of results.

For an ablation study, We built a set of variants of COT-
SAE: COTSAE a uses only the attribute information in
the Pseudo-Siamese Neural Network for entity alignment
and expend training set iteratively. COTSAE sa is a com-
plete model of the COTSA method, containing structural
and attribute information with Co-Training method. In At-
trE (Trsedya, Qi, and Zhang ), N-gram-based compositional
function achieves better performance than using the LSTM-
based function while mapping attribute values sequence



Table 3: Entity Alignment Results on DWY15K

Approaches
DP-WD-N DP-YG-N DP-WD-D DP-YG-D

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR
MTransE 22.3 50.1 0.32 24.6 54.0 0.34 38.9 68.7 0.49 22.8 51.3 0.32
IPTransE 23.1 51.7 0.33 22.7 50.0 0.32 43.5 74.5 0.54 23.6 51.3 0.33
BootEA 32.3 63.1 0.42 31.3 62.5 0.42 67.8 91.2 0.76 68.2 89.8 0.76

GCN-Align 17.7 37.8 0.25 19.3 41.5 0.27 43.1 71.3 0.53 31.3 57.5 0.40
RSNs 38.8 65.7 0.49 40.0 67.5 0.50 76.3 92.4 0.83 82.6 95.8 0.87
JAPE 21.9 50.1 0.31 23.3 52.7 0.33 39.3 70.5 0.50 26.8 57.3 0.37
AttrE 11.9 30.5 0.18 17.3 33.5 0.23 43.3 72.5 0.56 26.7 46.1 0.33

COTSAE a 35.7 38.9 0.37 36.4 47.0 0.41 60.8 90.9 0.61 63.5 71.6 0.67
COTSAE sa(NGram) 41.3 69.9 0.51 53.4 77.1 0.61 74.7 91.2 0.81 90.3 97.4 0.93
COTSAE sa(BiGRU) 42.3 70.3 0.51 44.7 70.3 0.53 82.3 95.4 0.87 87.3 96.6 0.91

COTSAE san 70.9 90.4 0.77 73.8 93.9 0.81 92.2 98.3 0.94 97.6 98.9 0.98

Figure 3: Hits@1 results w.r.t. epochs required by alternative
components to converge

to their vector representations. Thus we build the COT-
SAE sa(NGram) with N-gram-based compositional func-
tion to compare with the COTSAE sa(BiGRU) model. To
compare with MultiKE (Zhang et al. 2019), we also estab-
lish COTSAE san, which adds the name information of the
entity based on COTSAE sa. Detailly, we first used the ed-
it distance to calculate the similarity of entity names. When
the entity pairs with similarity higher than 0.98 are used as
the pre-aligned entity, then conduct the COTSAE model to
align the remaining entities.

Entity Alignment Results
Tables 2 and Table 3 show the alignment results of the
proposed COTSAE models comparing to other embedding
based methods on the DWY15K and DWY100K datasets.
We found that the performances of COTSAEs are signifi-
cantly better than the state-of-art methods. In the compar-
isons, MTransE, IPTransE, BootEA, GCN-Align, and RSNs
only use the structural information of the entities in the KG.
Our COTSAE sa is better than these methods because we
take advantage of the attribute information of entities, which
gives more help for accurate alignment when the structural
information is insufficient. Except for the structural infor-
mation, JAPE utilizes the type-level attributes, which is a
kind of fuzzy attribute information, and in some cases may
even have an adverse effect. AttrE combines the structure
and attribute information in mono-lingual entity alignments.

Figure 4: Hits@1 results w.r.t. proportion of ”seed align-
ments”

However, it requires pre-aligning the attribute types using
the edit distance, which does not work in many complicated
large-scale KGs. At the same time, we can see that Multi-
KE, which uses three kinds of information such as name, at-
tribute, and entity structure, has achieved latest results. The
entity name is very accurate information in DBpedia, Wiki-
Data, and Yago data which is also verified in MultiKE’s
experiments. When our COTSAE san considers the entity
name before alignments using simple edit distance, better
performance of entity alignment is achieved, which means
that our COTSAE sa can effectively utilize the structure and
attribute information in KGs. The results obtained by merely
using the attribute information (e.g., COTSAE a) are better
than using the structural information(e.g., BootEA), indicat-
ing that in the mono-lingual entity alignment, the attribute
information is more important than the structural informa-
tion. From Tables 2 and Table 3, we also find that on DP-
WK datasets the performance of COTSAE sa with Bi-GRU
function is better and on DP-YG datasets the performance
of COTSAR sa with N-Gram is better. In Table 2, the accu-
racy of the entity alignment is relatively low on dense KGs,
and our COTSAE sa is still more than 4 percentage points
better than other methods with only structure and attribute
information.



Discussion
In Figure 3, The accuracy of each training iteration on the
test dataset is demonstrated. When the two components of
COTSAE do not converge in the early stage of training, the
alignment results did not appear to fluctuate violently, in-
dicating that the COTSAE effectively lighten the ”seman-
tic drift” problem. And when the entity alignment tends to
be stable after training on the structural information, the at-
tribute information gives a new ”growth momentum” to it.
And the structural information also promotes the results of
entity alignment on the attribute information. It shows that
the structural and attribute information can reinforce each
other in the entity alignment process. In the above experi-
ments, 30% entities in the KGs were used as seeds. Howev-
er, the acquisition of aligned entities is costly. We also set
up experiments that reduce the proportion of seed entities in
the dataset and observe the decline of the alignment results.
Figure 4 shows that our COTSAE still achieves the best per-
formance when the proportion of aligned seeds is reduced.

Conclusion
In this paper, we proposed COTSAE, a Co-Training model
that integrates structure and attribute information for enti-
ty alignment in KGs. The attribute embedding componen-
t of COTSAE is based on the pseudo-siamese neural net-
work to encode character-level attribute information. More-
over, we also proposed the joint attention method to ensure
that attribute type shares the attention weight with its corre-
sponding attribute value. Our proposed model outperforms
the baselines consistently, especially in terms of hits@1 for
the alignment of entities on real-world knowledge graphs.

Acknowledgments
This research was supported by the National Key R&D
Project of China (No. 2017YFB1002000) and the Nation-
al Natural Science Fund for Distinguished Young Scholars
(Grant No. 61525201).

References
Bordes, A.; Usunier, N.; Garcadurn, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling multi-
relational data. In International Conference on Neural Information
Processing Systems.
Bromley, J.; Bentz, J. W.; Bottou, L.; Guyon, I.; Lecun, Y.; Moore,
C.; Sckinger, E.; and Shah, R. 1993. Signature verification using
a siamese time delay neural network. In International Conference
on Neural Information Processing Systems.
Chen, M.; Tian, Y.; Yang, M.; and Zaniolo, C. 2016. Multilingual
knowledge graph embeddings for cross-lingual knowledge align-
ment.
Chen, M.; Tian, Y.; Chang, K.-W.; Skiena, S.; and Zaniolo, C.
2018. Co-training embeddings of knowledge graphs and entity de-
scriptions for cross-lingual entity alignment. In Twenty-Seventh
International Joint Conference on Artificial Intelligence IJCAI-18.
Dettmers, T.; Minervini, P.; Stenetorp, P.; and Riedel, S. 2017.
Convolutional 2d knowledge graph embeddings.
Guo, L.; Sun, Z.; and Hu, W. 2019. Learning to exploit long-term
relational dependencies in knowledge graphs.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive represen-
tation learning on large graphs. In Advances in Neural Information
Processing Systems, 1024–1034.
Hao, Y.; Zhang, Y.; He, S.; Kang, L.; and Zhao, J. 2016. A joint
embedding method for entity alignment of knowledge bases. In
China Conference on Knowledge Graph & Semantic Computing.
Hao, Z.; Xie, R.; Liu, Z.; and Sun, M. 2017. Iterative entity align-
ment via joint knowledge embeddings. In International Joint Con-
ference on Artificial Intelligence.
Ji, G.; He, S.; Xu, L.; Kang, L.; and Zhao, J. 2015. Knowledge
graph embedding via dynamic mapping matrix. In Meeting of the
Association for Computational Linguistics the International Joint
Conference on Natural Language Processing.
Ke, C., and Salman, A. 2011. Extracting speaker-specific infor-
mation with a regularized siamese deep network. In International
Conference on Neural Information Processing Systems.
Kipf, T. N., and Welling, M. 2016. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint arX-
iv:1609.02907.
Lacostejulien, S.; Palla, K.; Davies, A.; Kasneci, G.; Graepel, T.;
and Ghahramani, Z. 2013. Sigma: Simple greedy matching for
aligning large knowledge bases. In Acm Sigkdd International Con-
ference on Knowledge Discovery & Data Mining.
Liang, J.; Jacobs, P.; Sun, J.; and Parthasarathy, S. 2018. Semi-
supervised embedding in attributed networks with outliers. In Pro-
ceedings of the 2018 SIAM International Conference on Data Min-
ing, 153–161. SIAM.
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learning
entity and relation embeddings for knowledge graph completion.
In Twenty-ninth Aaai Conference on Artificial Intelligence.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. Y. 2013. Reason-
ing with neural tensor networks for knowledge base completion. In
International Conference on Neural Information Processing Sys-
tems.
Sun, Z.; Hu, W.; Zhang, Q.; and Qu, Y. 2018. Bootstrapping entity
alignment with knowledge graph embedding. In Twenty-Seventh
International Joint Conference on Artificial Intelligence IJCAI-18.
Sun, Z.; Wei, H.; and Li, C. 2017. Cross-lingual entity alignment
via joint attribute-preserving embedding.
Trsedya, B. D.; Qi, J.; and Zhang, R. Entity alignment between
knowledge graphs using attribute embeddings.
Xu, K.; Wang, L.; Yu, M.; Feng, Y.; Song, Y.; Wang, Z.; and Yu, D.
2019. Cross-lingual knowledge graph alignment via graph match-
ing neural network.
Yi, D.; Lei, Z.; Liao, S.; and Li, S. Z. 2014. Deep metric learning
for person re-identification. In International Conference on Pattern
Recognition.
Yi, S.; Wang, X.; and Tang, X. 2014. Deep learning face represen-
tation by joint identification-verification.
Zhang, D.; Rubinstein, B. I. P.; Gemmell, J.; Zhang, D.; and Ru-
binstein, B. I. P. 2015. Principled graph matching algorithms for
integrating multiple data sources. IEEE Transactions on Knowl-
edge & Data Engineering 27(10):2784–2796.
Zhang, Q.; Sun, Z.; Hu, W.; Chen, M.; Guo, L.; and Qu, Y.
2019. Multi-view knowledge graph embedding for entity align-
ment. CoRR abs/1906.02390.
Zhen, W.; Zhang, J.; Feng, J.; and Zheng, C. 2014. Knowledge
graph embedding by translating on hyperplanes. In Twenty-eighth
Aaai Conference on Artificial Intelligence.


