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Abstract—Schema matching is a central challenge for data integration systems. Inspired by the popularity and the success of

crowdsourcing platforms, we explore the use of crowdsourcing to reduce the uncertainty of schema matching. Since crowdsourcing

platforms are most effective for simple questions, we assume that each Correspondence Correctness Question (CCQ) asks the crowd

to decide whether a given correspondence should exist in the correct matching. Furthermore, members of a crowd may sometimes

return incorrect answers with different probabilities. Accuracy rates of individual crowd workers can be attributes of CCQs as well as

evaluations of individual workers. We prove that uncertainty reduction equals to entropy of answers minus entropy of crowds and show

how to obtain lower and upper bounds for it. We propose frameworks and efficient algorithms to dynamically manage the CCQs to

maximize the uncertainty reduction within a limited budget of questions. We develop two novel approaches, namely “Single CCQ” and

“Multiple CCQ”, which adaptively select, publish, and manage questions. We verify the value of our solutions with simulation and real

implementation.

Index Terms—crowdsourcing, uncertainty reduction, schema matching
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1 INTRODUCTION

1.1 Background and Motivation

SCHEMA matching refers to finding correspondences
between elements of two given schemata, which is a criti-

cal issue for many database applications such as data integra-
tion, data warehousing, and electronic commerce [35]. Fig. 1
illustrates a running example of the schema matching prob-
lem: given two relational schemataA andB describing faculty
information, we aim to determine the correspondences (indi-
cated by dotted lines), which identify attributes representing
the same concepts in the two. There has been significant work
in developing automated algorithms for schema matching
(please refer to [1], [2], [35], [40] for comprehensive surveys).
Most approaches use linguistic, structural and instance-based
information. In general, it is still very difficult to tackle schema
matching completely with an algorithmic approach: some
ambiguity remains. This ambiguity is unlikely to be removed

because it is believed that typically “the syntactic representa-
tion of schemata and data do not completely convey the
semantics of different databases” [27].

Given this inherent ambiguity, many schema matching
tools will produce not just one matching, but rather a whole
set of possible matchings. In fact, there is even a stream of
work dealing with models of possible matchings, beginning
with [8]. The matching tool can produce a result similar to
the upper part of Table 1, with one matching per row, asso-
ciated with a probability that it is the correct matching.

Given a set of possible matchings, one can create an inte-
grated database that has uncertain data, and work with this
using any of several systems that support probabilistic query
processing over uncertain data, such as [6], [16]. However,
preserving the uncertainty complicates query processing
and increases storage cost. So we would prefer to make
choices earlier, if possible, and eliminate (or reduce) the
uncertainty to be propagated. It has been suggested [33] that
human insights are extremely conducive for reducing the uncer-
tainty of schema matching, so the correct matching can beman-
ually chosen by the user from among the possible matchings
offered by the system. In a traditional back-end database
environment, where the human ‘user’ is a DBA, setting up a
new integrated database, such a system canworkwell.

However, in today’s world, with end-users performing
increasingly sophisticated data accesses, we have to support
users who are interested, say, in combining data from two
different web sources, and hence require an ‘ad hoc’ schema
matching. Such users may not be experts, and will typically
have little knowledge of either source schema. They may not
even know what a schema is. They are also likely to have lit-
tle patience with a system that asks them to make difficult
choices, rather than just giving them the desired answer. In
other words, users may not themselves be a suitable source
of human insight to resolve uncertainty in schemamatching.
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Fortunately, we have crowdsourcing technology as a
promising option today. Many recent works, such as [9],
[17], [18] and [29], have suggested leveraging the crowd
to improve schema matching. Platforms such as Amazon
Mechanical Turk provide convenient access to crowds. The
data concerning an explicit problem can be queried by pub-
lishing questions, named Human Intelligent Tasks (a.k.a
HITs). The work-flow of publishing HITs can be automated
with available APIs (e.g., REST APIs) [10]. To the extent that
our end-user is not an expert, the opinion of a crowd of other
non-experts is likely to be better than that of our end-user.

1.2 Problem Formulation and Contributions
It is well-known that crowdsourcing works best when tasks
can be broken down into very simple pieces. An entire
schemamatching taskmay be too large a grain for a crowd—
each individual may have small quibbles with a proposed
matching, so that a simple binary question on the correctness
of matchings may get mostly negative answers, with each
user declaring it less than perfect. On the other hand, asking
open-ended questions is not recommended for a crowd,
because it may be difficult to pull together a schema match-
ing frommultiple suggestions. We address this challenge by
posing to the crowd questions regarding individual corre-
spondences for pairs of attributes, one from each schema
beingmatched. This much simpler question, in most circum-
stances, can be answered with a simple yes or no. Of course,
this requires that we build the machinery to translate
between individual attribute correspondences and possible
matchings. Fortunately, this has been done before, in [8], and
is quite simple: since schema match options are all mutually
exclusive, we can determine the probability of each corre-
spondence by simply adding up the probabilities of match-
ings in which the correspondence holds.

Our problem then is to choose wisely the correspond-
ences to ask the crowd to obtain the highest certainty of
correct schema matching at the lowest cost. For schema
matching certainty, we choose entropy as our measure—we
are building our system on top of a basic schema-matching
tool, which can estimate probabilities for schema matches it
produces. When the tool obtains a good match, it can associ-
ate a high probability. When there is ambiguity or confu-
sion, this translates into multiple lower probability matches,
with associated uncertainty and hence higher entropy.

Our first algorithm, called Single CCQ (CCQ is short for
Correspondence Correctness Question), determines the sin-
gle most valuable correspondence query to ask the crowd,
given a set of possible schema matchings and associated
correspondences, all with probabilities.

Intuitively, one may try a simple greedy approach, choos-
ing the query that reduces entropy the most. However, there
are three issues to consider. First, the correspondences are
not all independent, since they are related through candidate
matchings. So it is not obvious that a greedy solution is

optimal. Second, even finding the query that decreases
entropy the most can be computationally expensive. Third,
we cannot assume that every person in the crowd answers
every question correctly—we have to allow for wrong
answers too.We address all three challenges below.

Usually, we are willing to ask the crowd about more than
one correspondence, even if not all of them. We could sim-
ply run Single CCQ multiple times, each time greedily
resolving uncertainty in the most valuable correspondence.
However, we can do better. For this purpose, we develop
Multiple CCQ, an extension of Single CCQ, that maintains k
most useful questions to ask the crowd, and dynamically
updates questions according to newly received answers.

In a previous conference paper [44], we addressed this
problem assuming crowds to be always correct. In this
paper we consider more realistic situations: (1) Each CCQ
has a probability to be answered correctly depending on the
hardness of CCQ; (2) Each crowd worker has a probability
to answer a CCQ correctly, which shows the trustworthi-
ness of the worker. Therefore [44] can be viewed as a special
case of our paper (probabilities all equal to 1). Combining
above two situations together, we could compute the proba-
bilities of CCQs to be answered correctly, and publish k
CCQs chosen by our model to crowds with accuracy rates.

To summarize, we have made following contributions,
1. In Sections 3.1 and 4.1, we propose an entropy-based

model to formulate the uncertainty reduction caused by a
single CCQ and multiple CCQs, respectively.

2. For the Single CCQ approach, we propose an explicit
framework to choose a CCQ, and derive an efficient algo-
rithm in Section 3. We introduce an index structure and
pruning technique for efficiently finding the Single CCQ.

3. In Sections 3.3 and 4.3, we prove for both Single CCQ
approach and Multiple CCQ approach that uncertainty
reduction equals to entropy of answer minus entropy of
crowds. In Section 3.3 we give the property of uncertainty
reduction for Single CCQ approach. In Section 4.4 we obtain
optimal upper and lower bounds forMultipleCCQ approach.

4. For the Multiple CCQ approach, we prove its NP-
hardness in Section 4.5, and propose an efficient ð1þ �Þ
approximation algorithm, with effective pruning techniques
in Section 4.6.

5. Section 5 reports and discusses the experimental study
on both simulation and real implementation. We review
and compare our solutions with related work in Section 6.
In Section 7, we conclude the paper and discuss future
work.

Fig. 1. Example of schema matching problem.

TABLE 1
Uncertain Schema Matching

Possible Matchings probability

m1={ <(Professor)Name,[first name, last name] >,
<Position, Position>, <Gender,Sex>, .45
<(Department) Name, Department>}
m2={ <(Professor)Name,[first name, last name] >,
<Gender, Sex>, <(Department) Name, Department>} .3
m3={ <(Department)Name, first name>, <Position, Position>
<Gender,Sex >} .25

Correspondence probability

c1=<(Professor)Name,[first name, last name] > .75
c2=<Position, Position> .7
c3=<Gender,Sex > 1
c4=<(Department) Name, Department> .75
c5=<(Department)Name,first name> .25
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2 PROBLEM STATEMENT

In this section, we give definitions related to the problem
that we are working on in this paper. We also summarize
important notations used throughout the paper in Table 2.

Definition 1 (Correspondence). Let S and T be two given
schemata. A correspondence c is a pair ðAs;AtÞ, where As and
At are two subsets of attributes from S and T respectively.

Remark. Here we consider correspondences between sub-
sets of S and T, which means c could be not only 1:1 match-
ing, but also n:m matching. For example in Table 1, c1 is a
2:1 matching.

Definition 2 (Possible Matching). Let S and T be two given
schemata. Possible matching mi ¼ fc1; c2; . . .; cjmijg is a set of
correspondences between S and T which satisfies that no attri-
bute participate in more than one correspondence.

Remark. For example, in Table 1, m1;m2 and m3 are three
possible matchings. Note that not every set of corre-
spondences is a possible matching. In practice, possible
matchings are generated by schema matching tools with
probabilities to be correct.

Definition 3 (Result Set). For two given schemata S and T, let
the result set R be the set of possible matchings generated by
some semi-automatic tool of schema matching, together with a
probability assignment function P : R! ½0; 1�. Each matching
mi 2 R has the probability PðmiÞ to be correct, and we haveP

mi2R PðmiÞ ¼ 1

Remark. In the example of Table 1, the set fm1;m2;m3g is
result set. In practice, schema matching tools may use
some threshold to eliminate possible matchings with very
low probability, and return only a few higher probability
candidates. If such thresholding is performed, we ignore
the low probability matchings that are already pruned,
and set their probability to zero. We also mention that
[29] discussed another way to establish the probability of
each matching.

Definition 4 (Correspondence Set). Let R be the result set
for two given schemata S and T, the correspondence set C is the
set of all correspondences contained by possible matchings in R,
i.e. C ¼ S

mi2Rmi

Remark. Note that a correspondence can appear in more
than one possible matching, so for any correspondence
c 2 C, let PðcÞ be the probability of c being in the correct
matching, then

PðcÞ ¼
X
mi2R
c2mi

PðmiÞ (1)

As a simple extension, for a set of correspondences
U � C, let PðUÞ be the probability that all correspond-
ences of U are in the correct matching, then

PðUÞ ¼
X
mi2R
U�mi

PðmiÞ (2)

For example in Table 1, fc1; c2; c3; c4; c5g is correspon-
dence set. Since c1 is inm1 andm2, Pðc1Þ ¼ 0:75.

Definition 5 (Uncertainty of Schema Matching). For two
given schemata S and T, given result set R and probability
assignment function PðÞ, we measure the uncertainty of R with
Shannon entropyHðRÞ ¼ �Pmi2R PðmiÞlogPðmiÞ

Remark. Shannon entropy has been widely used in infor-
mation theory and many other fields since 1948 [39] to
measure the uncertainty, disorder or unpredictability of a
system. Another way to measure uncertainty is to use
variance or covariance matrix. For some special cases like
Bernoulli distribution, Shannon entropy has maximal
value or minimal value when its variance is maximal or
minimal. A major reason for utilizing Shannon entropy as
is its non-parametric nature. The probability distribution
of possible matchings is very dynamic, depending not
only on the given schemata, but also on the schema
matching tools. Entropy does not require any assump-
tions about the distribution of variables. Besides, entropy
permits non-linear models, which is important for cate-
gorical variables [21], such as possible matchings.

Definition 6 (Crowd’s Accuracy). Given a crowd worker
W, the crowd’s accuracy (or accuracy for short), denoted by
PW 2 ½0:5; 1�, is the probability that W correctly answers
each HIT.

Remark. While some papers assume that crowdsourced
answers are 100 percent accurate, we adopt a more gen-
eral error model, which requires only that the answer
returned by each crowd worker is always correct with a
probability no lower than 1=2. This is a classical crowd-
sourcing model widely used by a stream of works [5],
[15], [23], [30]. Crowd workers may have different accura-
cies for different domains. The accuracy for a domain can
be easily estimated with a set of sample HITs in which
ground truth is known. Before we ask a CCQ, we could
assume that this CCQ will be answered by a crowd with
accuracy PW . Since we do not know who will answer this
CCQ, PW is likely to represent the hardness of CCQ as an
attribute of the correspondence.

Definition 7 (Entropy of Crowd). Given a crowd worker W
and its accuracy PW , the entropy of W is defined by

HðWÞ ¼ �PW logPW � 1� PWð Þlog 1� PWð Þ (3)

Given the crowd’s accuracy, HðWÞ is a positive constant mea-
suring the randomness of the crowd’s behaviour.

Definition 8 (Correspondence Correctness Question). A
Correspondence Correctness Question (CCQ) asks whether a
correspondence is correct. The CCQ w.r.t a correspondence c is
denoted as Qc, where c 2 C.

TABLE 2
Meanings of Symbols Used

Notation Description

ci, C, Qci correspondence, correspondence set, CCQ w.r.t ci
mi, mij j a possible matching, number of elements inmi

PðciÞ probability of ci being in the correct matching
PðmiÞ probability thatmi is the correct matching
A or Aci the answer or the answer for correspondence ci
R,W , PW result set, a crowd worker, crowd’s accuracy
HðRÞ,HðW Þ,HðAÞ entropy of result set, crowd, answer
DHQc uncertainty reduction by publishing Qc

DA the domain of answers of k CCQs
HðDAÞ joint entropy of k answers
DU the domain of k correspondences

ZHANG ET AL.: REDUCING UNCERTAINTY OF SCHEMA MATCHING VIA CROWDSOURCINGWITH ACCURACY RATES 137

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 27,2020 at 11:22:38 UTC from IEEE Xplore.  Restrictions apply. 



Remark. A running example where we calculate entropy
and conditional probability after we have an answer of
CCQ is given in Section 3.3.1.

Definition 9 (Entropy of Answer). Given result set R,
probability assignment function PðÞ, and crowd’s accuracy
PW 2 ½0:5; 1�, the entropy of answer A corresponding to ques-
tion Qc is defined by

HðAÞ ¼ �PðA ¼ Y ÞlogPðA ¼ Y Þ � PðA ¼ NÞlogPðA ¼ NÞ; (4)

where

PðA ¼ Y Þ ¼ PðcÞPW þ 1� PðcÞð Þ 1� PWð Þ
PðA ¼ NÞ ¼ 1� PðcÞð ÞPW þ PðcÞ 1� PWð Þ: (5)

Definition 10 (Problem Statement). On two given schemata
S and T, let the result set R and probability assignment func-
tion P be generated by some schema matching tools. Each CCQ
is assumed to be answered independently. Let B be the budget of
the number of CCQs to be asked to the crowd. Our goal is to
maximize the reduction ofHðRÞ without exceeding the budget.

3 SINGLE CCQ APPROACH

In this section, we study how to choose a single CCQ well.
To be able to do this, we first address the formalization of
uncertainty reduction. Then we develop the Single CCQ
Approach, a framework to address the uncertainty reduction
problem using a sequence of Single CCQ. Compared with
[44], we give a new proof for uncertainty reduction under
the condition of accuracy probability PW 2 ½0:5; 1�. We
prove the equivalent form of uncertainty reduction and its
property. Finally, we propose efficient algorithms to imple-
ment the computations in this approach.

3.1 Formulation of Uncertainty Reduction
In order to design an effective strategy for manipulating
CCQs, it is essential to define a measurement to estimate the
importance of CCQs before they are answered. Since the
final objective is to reduce uncertainty, we use uncertainty
reduction caused by individual CCQs as the measurement.
In the following, we provide the formulation of the uncer-
tainty reduction in the context of the Single CCQ Approach.

Let Qc be a CCQ w.r.t an arbitrary correspondence c. We
assume crowdsourcing workers provide answers indepen-
dently with accuracy PW 2 ½0:5; 1�. Since Qc is a Yes/No
question, we consider the answerA as a random variable fol-
lowing a Bernoulli distribution. First, we have DA ¼ Y;Nf g
and P ¼ P A ¼ Yð Þ;P A ¼ Nð Þf g, where PðA ¼ Y Þ and PðA ¼
NÞ can be computed by Eq (5). We write PðY Þ and PðNÞ for
short. For two discrete random variables X and Y with p.m.
f. function p, the conditional entropy is defined by

HðY jXÞ ¼
X
x2X

pXðxÞHðY jX ¼ xÞ

¼ �
X
x2X

pXðxÞ
X
y2Y

pY ðyjX ¼ xÞlog pY ðyjX ¼ xÞ:

Let DHQc be the uncertainty reduction caused by Qc, we
have

4HQc ¼ HðRÞ �H RjAð Þ; (6)

where

�H RjAð Þ ¼ PðY Þ
X
mi2R

P mijYð ÞlogP mijYð Þ½ �

þ PðNÞ
X
mi2R

P mijNð ÞlogP mijNð Þ½ �

PðmijY Þ ¼ PðmiÞPðY jmiÞ
PWPðcÞ þ 1� PWð Þð1� PðcÞÞ

PðmijNÞ ¼ PðmiÞPðNjmiÞ
PW ð1� PðcÞÞ þ 1� PWð ÞPðcÞ

(7)

The uncertainty reduction w.r.t a given Qc can be computed
by Eq. (6) provided that we know the values for parameters:
PðcÞ, PðmiÞ, PðY jmiÞ and PðN jmiÞ. PðcÞ can be computed by
Eq. (1). PðY jmiÞ and PðNjmiÞ depend on if c is a correspon-
dence included inmi.

PðY jmiÞ ¼
PW c 2 mi

1� PW c =2 mi;

�

PðN jmiÞ ¼
1� PW c 2 mi

PW c =2 mi:

� (8)

Remark (The harmlessness of random answer). If a
worker W randomly answers a CCQ Qc, i.e., PW ¼ 0:5
and PðY Þ ¼ 0:5, it does not affect the uncertainty of
schema matching. In other word, by Eq. (7), we have
PðmijY Þ ¼ PðmiÞ.
Eq. (7) is applied recursively as multiple answers are

received, to take all of them into account. If multiple answers
all agree, each iteration will make the truth of cmore certain,
whereas disagreeing answers will pull the probability closer
to the middle. In other words, disagreements between work-
ers are gracefully handled. It is easy to perform the algebraic
manipulations to show that, for any two answers A1 and A2,
we have PðmijA1; A2Þ ¼ PðmijA2; A1Þ. This equation indi-
cates that the result of adjustment is independent of the
sequence of the answers. In other words, when we have a
deterministic set of questions (CCQs), it does not matter in
what sequence the answers are used for adjustment. In con-
trast, what matters is to determine the set of CCQs to be
asked, which is the core challenge addressed in this paper.

Algorithm 1. Single CCQ

1: CONS  1 // consumption of the budget
2: Find and publish Qci that maximize DHQc //
3: while there exists a CCQ in the crowd, we constantly

monitor the CCQ do
4: for answer Ai of Qci , accuracy rate PWi

do
5: 8mi 2 R Adjust the PðmiÞ by PðmijAÞ //
6: if CONS < B then
7: Finding Qcj maximizing DHQc //
8: publish Qcj ,
9: CONS ¼ CONS þ 1
10: else
11: terminate (no more budget)
12: end if
13: end for
14: end while

3.2 Framework of Single CCQ
Having developed a technique to find the best Single CCQ,
we can place this at the heart of an approach to solve the
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schema matching problem, as shown in Framework 1. The
idea is to greedily select the single CCQ in each iteration
that will result in the greatest reduction of uncertainty. We
publish this CCQ; when it is answered and returned with
accuracy rate (line 4), we adjust PðmiÞ by PðmijAÞ (line 5),
and then generate a new CCQ (lines 7 and 8).

In the framework of Single CCQ, one can see that an
important task is to find the CCQ with the highest uncer-
tainty reduction as soon as the probability distribution of R
is adjusted (line 7). We can formally pose this as a query as
follows, and focus on efficiently processing such a query in
the rest of this section.

Definition 11 (Single CCQ Selection (SCCQS)). Given
result set R, probability assignment function PðÞ, crowd’s accu-
racy PW 2 ½0:5; 1�, the Single CCQ Selection Query retrieves a
CCQ maximizing the uncertainty reduction DHQc in Eq. (6).

3.3 Query Processing of SCCQS
Based on the formulation in Section 3.1, we are able to com-
pute the uncertainty reduction of each CCQ. So a naive
approach of selection is to traverse all the CCQs. Such tra-
versal results in an algorithm with time complexity
OðjRj2jCjÞ, i.e. the square of the number of possible match-
ings multiplied by the number of correspondences. This can
be a very large number for complex schema.

In this subsection, we first provide a lossless simplifica-
tion, by proving the uncertainty reduction is mathematically
equivalent to the entropy of the answer of a CCQ minus the
entropy of the crowd. Then, in order to further improve the
efficiency, we propose an index structure based on binary
coding, together with a pruning technique.

3.3.1 Simplification of Single CCQ Selection

When we need to determine a strategy of selecting CCQs, a
very intuitive idea is to prioritize the ones that we are more
uncertain. In case of Single CCQ, this idea suggests that we
select the CCQ with probability closest to 0.5. This idea is
trivially correct when all the correspondences are indepen-
dent. However, with the model of possible matchings, there
are correlations among the correspondences. Then, a non-
trivial question is: should we still pick the CCQ with proba-
bility closest to 0.5 with the presence of correlation?

Interestingly, we discover that the answer is positive. By
Theorem 3.1, we prove that the uncertainty reduction DHQc

of a correspondence c is equivalent to the entropy of the
answer HðAÞ minus the entropy of the crowd HðWÞ. In
other words,for a fixed PW , DHQc is only determined by
PðcÞ. As a result, searching for the CCQ that maximize DHQc

has the complexity decreased to OðjRjjCjÞ, by computing
PðcÞ for each c 2 C. In addition, Theorem 3.2 states that we
only need to find the correspondence that has probability
closest to 0.5, based on the fact that DHQc is a symmetric
function of PðcÞ, with symmetry axis PðcÞ ¼ 0:5 and achieves
maximum when PðcÞ ¼ 0:5.

Theorem 3.1. Given result set R, probability assignment func-
tion PðÞ, crowd’s accuracy PW 2 ½0:5; 1�, for correspondence
c 2 C, we have

DHQc ¼ HðAÞ �HðWÞ;

where we recall DHQc in Eq. (6) and HðAÞ, HðWÞ are defined
in Eqs. (4), (3).

Proof. Using Eq. (7) into Eq. (6), we have

4HQc

¼ HðRÞ þ
X
mi2R

PðmiÞPðY jmiÞlogPðmiÞ½ �

þ
X
mi2R

PðmiÞPðY jmiÞlogP Y jmið Þ � PðmiÞPðY jmiÞlogPðY Þ½ �

þ
X
mi2R

PðmiÞPðNjmiÞlogPðmiÞ þ PðmiÞPðNjmiÞlogP Njmið Þ½ �

�
X
mi2R

PðmiÞPðNjmiÞlogPðNÞ½ �

:¼ HðRÞ þ J1 þ J2 þ J3 þ J4 þ J5 þ J6:

By Eq. (8), we obtain that

J1 þ J4 ¼
X
mi2R

PðmiÞlogPðmiÞ ¼ �HðRÞ

and

J2 þ J5

¼
X
mi2R
c2mi

PðmiÞPW logPW þ
X
mi2R
c =2 mi

PðmiÞ 1� PWð Þlog 1� PWð Þ

þ
X
mi2R
c =2 mi

PðmiÞPW logPW þ
X
mi2R
c2mi

PðmiÞ 1� PWð Þlog 1� PWð Þ

¼ �HðWÞ:

(9)

Recall Eq. (1). It follows that

J3 þ J6

¼ �
X
mi2R
c2mi

PðmiÞPW logPðY Þ �
X
mi2R
c =2 mi

PðmiÞ 1� PWð ÞlogPðY Þ

�
X
mi2R
c =2 mi

PðmiÞPW logPðNÞ �
X
mi2R
c2mi

PðmiÞ 1� PWð ÞlogPðNÞ

¼ � PðcÞPW þ 1� PðcÞð Þ 1� PWð Þ½ �logPðY Þ
� 1� PðcÞð ÞPW þ PðcÞ 1� PWð Þ½ �logPðNÞ
¼ HðAÞ:
This completes the proof. tu

Theorem 3.2. The uncertainty reduction of single CQQ is
always non-negative for PW 2 ½0:5; 1�. For any two correspon-
dence c; c0 2 C, if j0:5� PðcÞj � j0:5� Pðc0Þj then DHQc �
DHQ0c � 0. In addition, DHQc ¼ 1� PW if PðcÞ ¼ 0:5

Proof. By Theorem 3.1, DHQc is a function of PðY Þ and PW .
PðY Þ is a function of PðcÞ and PW . We first consider

@4HQc

@PðY Þ ¼ �log
PðY Þ

1� PðY Þ :

We could obtain that

�log PðY Þ
1� PðY Þ ¼ 0, PðY Þ ¼ 0:5:

It is easy to check that DHQc is a symmetric function of
PðY Þ, with symmetry axis PðY Þ ¼ 0:5. Besides, the func-
tion achieves maximum DHQc ¼ 1�HðWÞ when PðA ¼
Y Þ ¼ 0:5, and is monotonic on ½0; 0:5� (increasing) and
½0:5; 1� (decreasing). We also know that PðY Þ ¼ PðcÞPWþ
1� PðcÞð Þ 1� PWð Þ. So PðY Þ is increasing w.r.t. PðcÞ and
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achieves the value 0.5 when PðcÞ ¼ 0:5 or PW ¼ 0:5. Thus
DHQc achieves maximum 1�HðWÞ when PðcÞ ¼ 0:5.
Second we consider

@4HQc

@PW
¼ 2PðcÞ � 1ð Þlog PðcÞ � 2PðcÞ � 1ð ÞPW

2PðcÞ � 1ð ÞPW � PðcÞ þ 1
þ log

PW

1� PW
:

Since DHQc is a symmetric function of PðA ¼ Y Þ, with
symmetry axis PðA ¼ Y Þ ¼ 0:5 and PðA ¼ Y Þ is increas-
ing w.r.t. PðcÞ, we choose PðcÞ ¼ 0 and PðcÞ ¼ 1 in order
to obtain minimum of DHQc . When PðcÞ ¼ 0 or PðcÞ ¼ 1,

we have
@4HQc

@PW
¼ 0 and DHQc ¼ 0. Thus we prove that

DHQc is non-negative. tu
Running Example (Selecting First Two CCQs). Now we

illustrate the process of selecting the first two CCQs in
Framework 1 with the example of Table 1. In line 2, the first
correspondence to be asked is c2, since its probability is clos-
est to 0.5 among fc1; c2; c3; c4; c5g. Explicitly, DHQc2

¼ �0:7�
logð0:7Þ � 0:3 � logð0:3Þ ¼ 0:88. Suppose an answer “a ¼
yes” is received from a crowd worker, whose personal error
rate is 1� PW ¼ 0:2 (line 4). Then we conduct the adjust-
ment according to Eq. (7), and have Pðm1jaÞ ¼ 0:58,
Pðm2jaÞ ¼ 0:10 and Pðm3jaÞ ¼ 0:32. This adjustment is refer-
ring to the first-time execution of line 5. Then, in line 7, the
next CCQ is to be selected. Note that, since the probabilities
of possible matchings are adjusted, probabilities of corre-
spondences should be recomputed by Eq. (1): Pðc1Þ ¼ 0:68,
Pðc2Þ ¼ 0:9, Pðc3Þ ¼ 1, Pðc4Þ ¼ 0:68, Pðc5Þ ¼ 0:32. Therefore,
in line 7, we select the CCQ based on the updated probabili-
ties of correspondences, i.e., c1 would be selected. (There is
a tie among c1; c4 and c5, and we break the tie sequentially.)

3.3.2 Binary Coding and Pruning Techniques

One can see that a basic computation of our algorithm is to
check whether a given correspondence c is in a given possi-
ble matching mi. Since the correspondences included in
each possible matching do not change with the value of
overall uncertainty, we propose to index R with a binary
matrix MR, where element eij ¼ 1ð0Þ representing cj 2
miðcj =2 miÞ. Equipped with this index, we apply a pruning
technique derived from Theorem 3.2.

Now we illustrate the procedure of generating the corre-
spondence with probability closest to 0.5. For each cj, we tra-
versemi and accumulate PðmiÞ if eij ¼ 1. Let cbest so far be the
best correspondence so far, with probability Pðcbest so farÞ.
Then, let cj be the current correspondence, and Pacc be its
accumulated probability after reading some PðmiÞ, then cj can
be safely pruned if we havePacc � 0:5 � jPðcbest so farÞ � 0:5j:

4 MULTIPLE CCQ APPROACH

A drawback of single CCQ is that only one correspondence
is resolved at a time. Each resolution, even if quick, requires
human time scales, and comes with some overhead to pub-
lish the corresponding HIT and tear it down. Gaining confi-
dence in a single schema matching may require addressing
many CCQs. The time required to do this in sequence may
be prohibitive.

An alternative we consider in this section is to issuemulti-
ple (k) CCQs simultaneously. Different workers can then
pick up these tasks and solve them in parallel, cutting down
wall-clock time. However, we pay for this by having some

questions answered that are not at the top of the list—we are
issuing k good questions rather than only the very best one.

Note that there are three possible states for a published
CCQ: (1) waiting - no one has accepted the question yet; (2)
accepted - someone in the crowd has accepted the question
and is working on it; (3) answered - the answer of the CCQ
is available. What’s more important, one can withdraw
published CCQs that are still at state waiting (e.g., forceEx-
pireHIT in Mechanical Turk APIs) [10]. In other words, pub-
lishing a CCQ does not necessarily consume the budget. It is
possible that a CCQ is published, and thenwithdrawn before
anyone in the crowd answers it. In such case, the budget is
not consumed. Because of the dependence between corre-
spondences, we can withdraw or replace some of the pub-
lished CCQs that are at “waiting” state. Equipped with this
power, we propose the Multiple CCQ approach to dynami-
cally keep k best CCQs published at all times.

In the rest of this section, we provide the formulation
and framework of Multiple CCQs, by extending our
results of Single CCQ. Compared with our conference
paper [44], we give new proofs for uncertainty reduction
under more general condition that crowd workers have
accuracy probabilities PWi

2 ½0:5; 1�. These probabilities
can show hardness of CCQs or how professional workers
are. Accuracy probabilities are assumed before we ask
CCQs and are returned with answers after we publish
CCQs. They can be totally different for different corre-
spondences and different crowd workers. We prove the
uncertainty reduction equals to joint entropy of answers minus
sum of entropies of crowds. We also show upper and lower
bounds for uncertainty reduction. Results in [44] can be
viewed as a special case when workers are always correct.
Finally, we prove the NP-hardness of the multiple CCQs
selection problem, and propose an efficient approxima-
tion algorithm with bounded error.

4.1 Formulating Uncertainty Reduction of Multiple
CCQ Approach

For a set of CCQs of size k - SQ ¼ fQc1 ; Qc2 ; . . . ; Qckg, Ac1 ,
Ac2 , . . . , Ack denote answers of k CCQs given by k workers
W1, W2, . . . , Wk with accuracy PW1

, PW2
, . . . , PWk

. We want
to derive the uncertainty reduction caused by the aggrega-
tion of the answers of these k CCQs. Let DA and PA be the
domain and probability distribution of answers respec-
tively. Each element of DA is a possible set of answers for k
CCQs (a sequence of Y and N) with a corresponding proba-
bility in PA. Then first we have

DA ¼ ai ai ¼ AðiÞc1 ; A
ðiÞ
c2
; . . . ; AðiÞck

n o
; AðiÞcj ¼ Y or N

���n o
PA ¼ P a1ð Þ;P a2ð Þ; . . . ;P a2kð Þf g;

where DAj j ¼ 2k. As we know, each correspondence ct has a
probability to show its ground truth, i.e., with PðctÞ to be true
before crowds answer CCQs. We view U ¼ fct; t ¼ 1; . . . ; kg
as a set of random variables which follow Bernoulli distribu-
tion and take value True/False. Note that they are not inde-
pendent and their joint p.m.f. can be calculated by Eq. (2). Let
DU and PU be the domain and probability distribution of
fct; t ¼ 1; . . . ; kg respectively. Each element of DU is a
sequence of T and F with a corresponding probability in PU .
Thuswe have
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DU ¼ ui ui ¼ c
ðiÞ
1 ; c

ðiÞ
2 ; . . . ; c

ðiÞ
k

n o
; c
ðiÞ
t ¼ T or F

���n o
PU ¼ P u1ð Þ;P u2ð Þ; . . . ;P u2kð Þð Þ;

(10)

where DUj j ¼ 2k. By Eq. (2), we have

P uið Þ ¼
X
mj2R
t¼1;...;k

8cðiÞ
t
¼T; ct2mj

8cðiÞ
t
¼F; ct =2 mj

PðmjÞ: (11)

Remark (Complexity). We remark that in computation of
all PðuiÞ, i ¼ 1; . . . ; 2k, each PðmjÞ, j ¼ 1; . . . ; jRj will be
used once and only once. Therefore, the number of ele-
ments with positive probability inDU is less than or equal
to jRj and time complexity of computing all PðuiÞ is
bounded by OðkjRjÞ.

Similar to Eq. (6),we are able to compute the uncertainty
reduction caused by the SQ, denoted byDHSQ .We have

DHSQ ¼ HðRÞ �H R Ac1 ; . . . ; Ack

�� �� �
¼ HðRÞ þ

X
ai2DA

PðaiÞ
X
mj2R

PðmjjaiÞlogPðmjjaiÞ
� �

¼ HðRÞ þ
X
mj2R
ai2DA

PðmjÞPðaijmjÞlog PðmjÞPðaijmjÞ
PðaiÞ :

(12)

Computation of PðaiÞ. For one CQQ ci, Aci is the answer
given by a worker with accuracy PWi

. When Aci is Yes, ci
may be True and worker is correct, or ci is False and worker
is incorrect. It is easy to see that

PðAci ¼ Y Þ ¼ PðciÞPWi
þ 1� PðciÞð Þ 1� PWi

� �
PðAci ¼ NÞ ¼ 1� PðciÞð ÞPWi

þ PðciÞ 1� PWi

� �
:

For k CQQs, the answers in ai are denoted by AðiÞc1 , A
ðiÞ
c2
, . . . ,

AðiÞck . Similarly, PðaiÞ can be computed by Eq. (11).

PðaiÞ ¼
X2k
j¼1

PðujÞqij (13)

where

qij ¼
Y

t¼1;...;k
c
ðjÞ
t
¼T

A
ðiÞ
ct
¼Y

PWt

Y
t¼1;...;k
c
ðjÞ
t
¼T

A
ðiÞ
ct
¼N

1� PWt

� � Y
t¼1;...;k
c
ðjÞ
t
¼F

A
ðiÞ
ct
¼Y

1� PWt

� � Y
t¼1;...;k
c
ðjÞ
t
¼F

A
ðiÞ
ct
¼N

PWt :

Computation of PðaijmjÞ. Similar to Single CCQ, Eq. (8),
PðaijmjÞ depends on whether correspondences are in the
possible matching mi. In definition 10 we assume that each
CCQ is answered independently. Therefore, given that mj

is the correct matching, we know the correct answers for k

CCQs and answers AðiÞc1 , A
ðiÞ
c2
; . . . ; AðiÞck are k independent Ber-

noulli random variables. It follows that

PðaijmjÞ ¼
Y

t¼1;...;k
ct2mj

A
ðiÞ
ct
¼Y

PWt

Y
t¼1;...;k
ct2mj

A
ðiÞ
ct
¼N

1� PWt

� � Y
t¼1;...;k
ct =2 mj

A
ðiÞ
ct
¼Y

1� PWt

� � Y
t¼1;...;k
ct =2 mj

A
ðiÞ
ct
¼N

PWt :

Running Example. In the example of Table 1, we assume
two CCQs c1 and c2 are answered by two workers with
PW1
¼ 0:8 and PW2

¼ 0:6. Domains of correspondences and
answers are

DU ¼ fðT; T Þ; ðT; F Þ; ðF; T Þ; ðF; F Þg
DA ¼ fðY; Y Þ; ðY;NÞ; ðN; Y Þ; ðN;NÞg:

Probability distribution forDU is given by Eq. (11):

Pðui ¼ ðT; T ÞÞ ¼ Pðm1Þ ¼ 0:45

Pðui ¼ ðT; F ÞÞ ¼ Pðm2Þ ¼ 0:3

Pðui ¼ ðF; T ÞÞ ¼ Pðm3Þ ¼ 0:25

Pðui ¼ ðF; F ÞÞ ¼ 0:

Probability distribution for DA is given by Eq. (13): Pðai ¼
ðY; Y ÞÞ ¼ 0:45PW1

PW2
þ 0:3PW1

ð1� PW2
Þ þ 0:25ð1� PW1

ÞPW2
¼

0:342. Similarly, Pðai ¼ ðY;NÞÞ ¼ 0:308, Pðai ¼ ðN; Y ÞÞ ¼
0:198 and Pðai ¼ ðN;NÞÞ ¼ 0:152. Given m1 is the correct
matching, we know that c1 and c2 are T. Thus

Pðai ¼ ðY; Y Þjm1Þ ¼ PW1
PW2
¼ 0:48

Pðai ¼ ðY;NÞjm1Þ ¼ PW1
ð1� PW2

Þ ¼ 0:32

Pðai ¼ ðN; Y Þjm1Þ ¼ ð1� PW1
ÞPW2

¼ 0:12

Pðai ¼ ðN;NÞjm1Þ ¼ ð1� PW1
Þð1� PW2

Þ ¼ 0:08:

4.2 Framework of Multiple CCQ
As shown in Framework 2, the best size-k set of CCQs are
initially selected and published with accuracy rates to show
their hardness, and then we constantly monitor their states.
Whenever one or more answers are available, three opera-
tions are conducted. First, all CCQs at state “waiting” are
withdrawn. Second, the probability distribution is adjusted
with the new answers (lines 8 and 9). Last, we regenerate
and publish a set of CCQs that are currently most contribu-
tive (lines 12 and 15). In general, we keep the best k CCQs in
the crowd, by interactively changing CCQs based on newly
received answers. Note that the number of CCQs may be
less than k when the budget is insufficient (lines 14-16). The
whole procedure terminates when the budget runs out and
all the CCQs are answered (line 3).

In contrast with Single CCQ, the essential query of Multi-
ple CCQ is to find a group of k CCQs, which maximize the
uncertainty reduction. Formally, we have the following
definition:

Definition 12 (Multiple CCQ Selection (MCCQS)).
Given result set R, probability assignment function PðÞ, and an
integer k, the multiple CCQ selection problem is to retrieve a
set of k CCQs, denoted by SQ, such that the uncertainty reduc-
tion, DHSQ , is maximized.

One can see that, if we set k ¼ B (recall B is the budget of
CCQs), the problem of MCCQS selects the optimal set of
correspondences at which to ask CCQs in order to maximize
the uncertainty reduction. Similar to [32] and [43], MCCQS
itself is an interesting and valuable optimization problem to
investigate.

4.3 Simplification of Multiple CCQ Selection
In case of Single CCQ, considering each CCQ as a random
variable, we proved that the uncertainty reduction of a
CCQ is equivalent to entropy of answer minus entropy of
crowd. In Multiple CCQ, analogously, we are interested to
find a relation between uncertainty reduction and entropy
for a size-k set of CCQs. This is complex since the corre-
spondences are correlated.
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Algorithm 2.Multiple CCQ

1: CONS  k // consumption of the budget
2: given initial accuracy rates for all correspondences, find

and publish a set of CCQs - SQ ¼ fQc1 ; Qc2 ; . . . ; Qckg that
maximize DHSQ//(See 4.1)

3: while there exists CCQs in the crowd, we constantly
monitor the CCQs do

4: if receive the one or more answers A1; A2; ::with
accuracy PW1

; PW2
; ::: then

5: withdraw all the CCQs at waiting state
6: k0  the number of CCQs withdrawn
7: k00  the number of answers received
8: for each Ai; PWi

do //Adjustment
9: 8mi 2 R Adjust the PðmiÞ by PðmijA1; A2; ::Þ //
10: end for
11: if CONS þ k00 <¼ B then
12: find a set of CCQs - S0Q of size ðk0 þ k00Þ that currently

maximize DHS0
Q
//(See 4.1)

13: CONS ¼ CONS þ k00

14: else // no sufficient budget for maintaining k CCQs
15: find a set of CCQs - S0Q of size ðB� CONSÞ that

currently maximize DHS0
Q
//(See 4.1)

16: CONS ¼ B� k0

17: end if
18: 8Q0ci 2 S0Q publish Q0ci
19: end if
20: end while

As shown in Theorem 4.1, under the assumption that
crowds give correct answers with accuracy probability, we
prove that the uncertainty reduction by a set of CCQs is
equivalent to their joint entropy (denoted by HðDAÞ) minus
sum of entropies of crowds, while in previous conference
paper [44], the result can be viewed as a special case of
this result when crowds’ accuracies equal to 1. Facilitated
with this theorem, we could reduce MCCQS to a special
case of joint entropy maximization problem. Similarly
with definition 9, the joint entropy HðDAÞ of answers Ac1 ,
Ac2 ; . . . ; Ack w.r.t. CCQs Qc1 , Qc2 ; . . . ; Qck are defined by

HðDAÞ ¼ �
X

ai2DA

PðaiÞlogPðaiÞ; (14)

where PðaiÞ can be computed by Eq. (13).

Theorem 4.1. Given result set R, probability assignment
function PðÞ, a set of CCQs SQ ¼ fQc1 ; Qc2 ; . . . ; Qckg,
answers Ac1 , Ac2 ; . . . ; Ack , accuracies of crowd workers PW1

,
PW2

; . . . ; PWk
in ½0:5; 1�, we have

DHSQ ¼ HðDAÞ �
Xk
t¼1

HðWtÞ

Proof. By Eq. (12), we have

DHSQ

¼ HðRÞ þ
X
mj2R
ai2DA

PðmjÞPðaijmjÞlogPðmjÞ

þ
X
mj2R
ai2DA

PðmjÞPðaijmjÞlogPðaijmjÞ � PðmjÞPðaijmjÞlogPðaiÞ
� �

:¼ HðRÞ þ J1 þ J2 þ J3:

By definition 5, we have

J1 ¼
X
mj2R

X
ai2DA

PðaijmjÞ
" #

PðmjÞlogPðmjÞ

¼
X
mj2R

PðmjÞlogPðmjÞ ¼ �HðRÞ:

By Eq. (14), we have

J3 ¼ �
X

ai2DA

X
mj2R

PðmjjaiÞ
2
4

3
5PðaiÞlogPðaiÞ

¼ �
X

ai2DA

PðaiÞlogPðaiÞ ¼ HðDAÞ:

Given mi, Ac1 ; . . . ; Ack are independent. For J2, by the
property of joint entropy of independent random varia-
bles, we have

X
ai2DA

PðaijmjÞlogPðaijmjÞ ¼ �H Ac1 ; . . . ; Ack

��mj

� �

¼ �
Xk
t¼1

H Act

��mj

� �
:

Therefore, similarly with Eq. (9),

J2 ¼ �
X
mj2R

PðmjÞ
Xk
t¼1

H Act

��mj

� �

¼
Xk
t¼1

X
mj2R

PðmjÞPðAct ¼ Y
��mjÞlogPðAct ¼ Y

��mjÞ
2
4

þ
X
mj2R

PðmjÞPðAct ¼ N
��mjÞlogPðAct ¼ N

��mjÞ
3
5

¼
Xk
t¼1

PWt logPWt þ 1� PWt

� �
log 1� PWt

� �� � ¼ �Xk
t¼1

HðWtÞ:

This completes the proof. tu

4.4 Upper Bound and Lower Bound of Uncertainty
Reduction

In this subsection, we show the upper and lower bounds for
HðDAÞ, which can be applied to improve approximate algo-
rithm. We recall U ¼ fct; t ¼ 1; . . . ; kg, DU , PU Eqs. (10) and
PðuiÞ (11). Now we define joint entropyHðDUÞ by

HðDUÞ ¼ �
X

ui2DU

PðuiÞlogPðuiÞ: (15)

We remark that HðDUÞ measures the uncertainty of k corre-
spondences, while HðDAÞ measures the uncertainty of
answers for k correspondences. Intuitively, this difference is
caused by the fact that crowds make mistakes. If PWi

¼ 1 for
all i ¼ 1; . . . ; k,HðDUÞ ¼ HðDAÞ.

As mentioned in Section 4.1, the number of elements with
positive probability in DU is at most jRj. Time complexity of
computing all PðuiÞ is bounded by OðkjRjÞ. However
jDAj ¼ 2k, by Eq. (13), time complexity of computing all PðaiÞ
will beOð2kÞ. Thuswe hope to boundHðDAÞ byHðDUÞ.
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Theorem 4.2. Under the assumption of Theorem 4.1, let

hðuÞðDAÞ ¼ min HðDUÞ þ
Xk
t¼1

HðWtÞ;�
Xk
t¼1

log 1� PWt

� �( )

and

hðlÞðDAÞ

¼ max �
Xk
t¼1

logPWt; HðDUÞ þ
Xk
t¼1

HðWtÞ
(

þ
Yk
t¼1

PWt log
Yk
t¼1

PWt þ 1�
Yk
t¼1

PWt

 !
log 1�

Yk
t¼1

PWt

 !

� 1�
Yk
t¼1

PWt

 !
min log ð2k � 1Þ; HðDUÞ

� 	)
:

We have

hðlÞðDAÞ � HðDAÞ � hðuÞðDAÞ: (16)

Proof. Upper bound: By the chain rule of conditional
entropy, we have

HðDAÞ ¼ HðDA;DUÞ �HðDU jDAÞ
¼ HðDAjDUÞ þHðDUÞ �HðDU jDAÞ;

(17)

where

HðDAjDUÞ ¼ �
X

uj2DU

PðujÞ
X

ai2DA

PðaijujÞlogPðaijujÞ
" #

:

Given uj, we know the true correspondences and false
ones in U , thus Act , t ¼ 1; . . . ; k are independent. We
obtain that

HðDAjDUÞ

¼
X

uj2DU

PðujÞ
Xk
t¼1

H Act

��uj

� �

¼ �
Xk
t¼1

" X
uj2DU

PðujÞPðAct ¼ Y
��ujÞlogPðAct ¼ Y

��ujÞ

þ
X

uj2DU

PðujÞPðAct ¼ N
��ujÞlogPðAct ¼ N

��ujÞ
#

¼ �
Xk
t¼1

" X
uj2DU

c
ðjÞ
t
¼F

PðuiÞ 1� PWt

� �
log 1� PWt

� �

þ
X
uj2DU

c
ðjÞ
t
¼T

PðuiÞPWt logPWt þ
X
uj2DU

c
ðjÞ
t
¼F

PðuiÞPWt logPWt

þ
X
uj2DU

c
ðjÞ
t
¼T

PðuiÞ 1� PWt

� �
log 1� PWt

� �#

¼
Xk
t¼1

HðWtÞ:

Thus we get

HðDAÞ � HðDUÞ þ
Xk
t¼1

HðWkÞ: (18)

On the other hand, by definition of HðDAÞ Eqs. (14) and
PðaiÞ (13), we have

HðDAÞ ¼ �
X2k
i¼1

X2k
j¼1

PðujÞqijlogPðujÞqij: (19)

Note that
P2k

j¼1 PðujÞ ¼ 1, which means
P2k

j¼1 PðujÞqij is a
linear combination of qij, j ¼ 1; 2; . . . ; 2k. It is easy to see
that

X2k
j¼1

PðujÞqij � min
j

qij ¼
Yk
t¼1

1� PWt

� �
;

where last equation holds because each PWt 2 ½0:5; 1�.
Then we have

HðDAÞ � �
X2k
i¼1

X2k
j¼1

PðujÞqij log
Yk
t¼1

1� PWt

� � ¼ �Xk
t¼1

log 1� PWt

� �
:

Together with Eq. (18), we achieve the upper bound.
Lower Bound. The difference between HðDAÞ and

HðDUÞ is that crowds have probability to make mistakes.
Inspired by this, we consider the indicator function that
crowds make at least one mistake, i.e.

Y ¼ 0 Answers are all correct
1 There is at least one mistake:

�
(20)

Obviously, we have PðY ¼ 0Þ ¼Qk
t¼1 PWt . In order to

obtain lower bound, it is sufficient to bound the term
HðDU jDAÞ in Eq. (17). Thus we rewrite

H DU DAjð Þ
¼ H DU DAjð Þ �H DU DA; Yjð Þ þH DU DA; Yjð Þ
¼ H Y DAjð Þ �H Y DA;DUjð Þ þH DU DA; Yjð Þ

(21)

¼ H Y DAjð Þ þH DU DA; Yjð Þ
� H Yð Þ þH DU DA; Yjð Þ
¼ H Yð Þ þ

X
ai2DA

Pðai; Y ¼ 0ÞH DU ai; Y ¼ 0jð Þ½
(22)

þPðai; Y ¼ 1ÞH DU ai; Y ¼ 1jð Þ�; (23)

where the second equation Eq. (21) is obtained by chain

rule of entropy. Please note that when Y ¼ 0, AðiÞct ¼ Y if

c
ðiÞ
t ¼ T and AðiÞct ¼ N if c

ðiÞ
t ¼ F . Thus in Eq. (22), we have

H DU ai; Y ¼ 0jð Þ ¼ 0:

The entropy is maximized when each possible outcome
has the same probability. Since jDU j ¼ 2k and when
Y ¼ 1, we know that the number of possible outcome is
2k � 1. Therefore in Eq. (23), we have

H DU ai; Y ¼ 1jð Þ � min HðDUÞ; log 2k � 1
� �� 	

:
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Now we write

H DU DAjð Þ
� H Yð Þ þmin HðDUÞ; log 2k � 1

� �� 	 X
ai2DA

Pðai; Y ¼ 1Þ

¼ H Yð Þ þmin HðDUÞ; log 2k � 1
� �� 	

PðY ¼ 1Þ

¼ �
Yk
t¼1

PWt log
Yk
t¼1

PWt � 1�
Yk
t¼1

PWt

 !
log 1�

Yk
t¼1

PWt

 !

þ 1�
Yk
t¼1

PWt

 !
min HðDUÞ; log 2k � 1

� �� 	
:

Substituting this bound into Eq. (17), we achieve that

H DAð Þ � HðDUÞ þ
Xk
t¼1

HðWtÞ þ
Yk
t¼1

PWt log
Yk
t¼1

PWt

þ 1�
Yk
t¼1

PWt

 !
log 1�

Yk
t¼1

PWt

 !

� 1�
Yk
t¼1

PWt

 !
min HðDUÞ; log 2k � 1

� �� 	
:

On the other hand by Eq. (19), we have

HðDAÞ � �
X2k
i¼1

X2k
j¼1

PðujÞqij log
Yk
t¼1

PWt ¼ �
Xk
t¼1

logPWt :

This completes the proof. tu
Remark. When PWt ¼ 1 for all t ¼ 1; . . . ; k, we can check

that

hðlÞðDAÞ ¼ hðuÞðDAÞ ¼ HðDUÞ ¼ HðDAÞ:
When PWt ¼ 0:5 for all t ¼ 1; . . . ; k, we can check that

hðlÞðDAÞ ¼ hðuÞðDAÞ ¼ k ¼ HðDAÞ:
Our result is optimal in the sense that lower bound equals to
upper bound in two extreme cases: When crowds always
give correct answers (PWt ¼ 1) and when crowds always
give random answers without any consideration (PWt ¼ 0:5).

4.5 NP-Hardness of Multiple CCQ Selection
By Theorem 4.1, searching a group of k CCQs with maximal
uncertainty reduction is equivalent to finding k CCQs with
maximal joint entropy. It is known that the joint entropy of a
set of random variables is a monotone sub-modular function. In
general, maximizing sub-modular functions is NP-hard.
Concerning the computation of the value of information, [20]
shows that, for a general reward functionRj (in our problem,
Rj ¼ DHSQ ), it isNPPP � hard to select the optimal subset of

variables even for discrete distributions that can be repre-
sented by polytree graphical models.NPPP � hard problems
are believed to be much harder thanNPC or#PC problems.
In the problem of multiple CCQ selection, every variable is
binary and their marginal distribution is represented by a
binary matrix. As a result, a naive traversal would lead to an
algorithm of OðjRjjCjkÞ complexity, since the search space
(i.e., the number of subsets to select) is always of sizeCk

jCj.
With the Theorem 4.3, we prove that Multiple CCQ

Selection is NP-hard. Encountering this NP-hardness, we

propose a efficient approximation algorithm based on the
sub-modularity of joint entropy.

Theorem 4.3. The Multiple CCQ Selection is NP-hard.

Proof. To reach the proof of Theorem 4.3, it is sufficient to
prove the NP-completeness of its decision version, Deci-
sion MCCQS (DMCCQS), i.e., given result set R, probabil-
ity assignment function PðÞ, an integer k, and a value DH,
decide whether one can find a set SQ of k CCQs such that
DHSQ >¼ DH.

To reach the NP-completeness of DMCCQS, it is suffi-
cient to prove a special case of DMCCQS is NPC. First
we let accuracy rates equal to 1. Moreover we state the
special case of DMCCQS by adding the following con-
straint on R: for each way of partitioning R into two sub-
sets S1 and S2, there exists a correspondence c such that
ð8mi 2 S1; c 2 miÞ ^ ð8mj 2 S2; c =2 miÞ. Equipped with
this constraint, we reduce this special case of DMCCQS
to the set partition problem.

The partition problem is the task of deciding whether
a given multiset of positive integers can be partitioned
into two subsets S1 and S2 such that the sum of the num-
bers in S1 equals the sum of the numbers in S2.

Transformation. Given a set partition problem with
input multiset S, let Sum ¼Px2S x. We create a possible
matching mi for each positive integer xi 2 S, and assign
its possibility PðmiÞ ¼ xi=Sum. Let the correspond-
ences satisfy the constraint, and we set k ¼ 1;DH ¼
�log ð0:5Þ ¼ 1 for DMCCQS.

(¼) ) If there is a yes-certificate for the set partition prob-
lem, then the R can be partitioned into two subsets, each
with aggregate probability 0.5. According to the constraint,
there exists a correspondence c with PðcÞ ¼ 0:5. Then,
selecting SQ ¼ fQcg would achieve uncertainty reduction
HSQ ¼ �0:5log 0:5� 0:5log 0:5 ¼ 1. Therefore,fQcg serves
as yes-certificate for the special case of DMCCQS.

((¼) Assume there is a yes-certificate for the special
case of DMCCQS when k ¼ 1;DH ¼ �log ð0:5Þ ¼ 1. Since
k ¼ 1, HSQ is actually equivalent to Hc. Then by
Theorem 3.2, there exists a correspondence c such that
PðcÞ ¼ 0:5. Therefore, by the constraint, there is a way to
partition R into two subsets, each with aggregate proba-
bility 0.5. Since the mapping from the positive integers to
the possible matchings is one-to-one, we obtain a yes-
certificate for the special case of DMCCQS. tu

4.6 Approximation Algorithm
It is known that the joint entropy of a set of random variables
is a monotone sub-modular function [20]. And the problem of
selecting a k-element subset maximizing a monotone sub-
modular function can be approximated with a performance
guarantee of ð1� 1=eÞ, by iteratively selecting the most
uncertain variable given the ones selected so far [19]. For-
mally, we have the optimization function at the kth iteration:

X :¼ argmax
Qck

DHSk�1
Q
[fQck g: (24)

Let Aðk�1Þ denote answers for Sk�1
Q . By the chain rule of con-

ditional entropy, we have

H DAðk�1Þ ; Ack

� � ¼ H DAðk�1Þ
� �þH Ack DAðk�1Þ

��� �
:

Thus we only need to maximize the conditional entropy at
each iteration, i.e.,
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X :¼ argmax
Ack

H Ack DAðk�1Þ
��� �

and

H Ack DAðk�1Þ
��� �

¼ �
X

ai2DAðk�1Þ

PðaiÞ P Ack ¼ Y
��ai� �

logP Ack ¼ Y
��ai� ��

þP Ack ¼ N
��ai� �

logP Ack ¼ N
��ai� ��

:

(25)

Eq. (25) indicates that, at each iteration, we are searching
for the most uncertain correspondence, given the corre-
spondences selected in previous iterations. In particular,
after the ðk� 1Þth iteration, the possible matchings are at
most split into 2k�1 partitions, each of which corresponds to
an element ai 2 DAðk�1Þ . We aim to find the kth correspon-

dence, in order to further split them to at most 2k partitions,
such that then entropy of resulting partitions is maximized.
Fig. 2 illustrates a partitioning of the first two iterations.
Motivated with this interpretation, we propose to apply an
in-memory index to maintain the list of partitions for each
iteration. One can see that each partition corresponding to
ai is essentially a set of possible matchings. In addition, also
index PðaiÞ associated with each partition.

As a result, the computation of HðAck jDAðk�1Þ Þ for each
candidate correspondence is simply traversing the list of
partitions. Note the number of partitions is at most jRj (i.e.
each partition has only one possible matching), so the over-
all complexity is upper bounded by OðkjRjjCjÞ. However,
there is still room for further pruning of the search space.
Below we derive four pruning techniques to avoid travers-
ing all the partitions. Each pruning indicates a condition
that guarantees certain partitions are unnecessary to be con-
sidered, hence speed up the overall computation. For sim-
plicity, we just use the notation ai to represent the partition
corresponding to ai. Then, for the iteration, we have parti-
tions a1; a2; . . . ; an with probabilities Pða1Þ;Pða2Þ; . . . ;PðanÞ
respectively. Next we present four pruning rules.

Pruning Rule 4.4. If a partition ai has only one matching, ai
can be safely pruned, i.e., we can remove ai from the list
of partitions.

Pruning rule 4.4 utilizes the intuition that the correctness
of a possible matching m can be fully determined by the
selected correspondences, whenm is the only one in its par-
tition. In other words, the remaining correspondences of m
would not contribute any more information, hence should
not be selected.

Pruning Rule 4.5. Let c be a candidate correspondence,
then c can be safely pruned (for the rest of the iterations),
if for all ai, one of the following conditions is met :(1)
8mi 2 ai; c 2 mi, (2)8mi 2 ai; c =2 mi

Similar to Pruning rule 4.4, Pruning rule 4.5 indicates the
condition that the correctness of c can be determined by
selected correspondences.

Next, we introduce Pruning Rules 4.6 and 4.7, which
derive non-trivial upper bounds to enable effective pruning.

Pruning Rule 4.6. LetHbest so far be the best value of Eq. (25)
so far for the current iteration, then for the correspondence
c, let a1; a2; . . . ; am be the partitions c already traversed Let

H0 ¼ �
Xm
i¼1

PðaiÞ PðY jaiÞlogPðY jaiÞ½ þ PðNjaiÞlogPðNjaiÞ�:

Then c can be pruned for the current iteration, if we have

Hbest so far �H0 �
Xn

j¼mþ1
PðajÞlog PðajÞ

2
:

Proof. For the rest of partitions amþ1; amþ2; . . . ; an, the opti-
mal situation is they are all perfectly bisected, that is
8i 2 ½mþ 1; n�, PðY jaiÞ ¼ PðNjaiÞ ¼ 0:5. Therefore, their
contribution to the optimization function has a upper
bound

Xn
j¼mþ1

PðajÞlog PðajÞ
2

:

tu
Pruning Rule 4.7. Let Hbest so far be the best value of

Eq. (25) so far for the current iteration. For a correspon-
dence c, let HðAcjDAðk�2Þ Þ be the conditional entropy com-
puted from a previous iteration. Then, c can be pruned
for the current iteration if

H Ac DAðk�2Þ
��� � � Hbest so far:

Proof. This pruning rule reflects the sub-modularity of the
joint entropy. Sk�2

Q is the set of CCQs selected in the previ-
ous iteration, so Sk�2

Q 	 Sk�1
Q , where Sk�1

Q is the CCQs
selected for the current iteration. Then by sub-modularity,
we have

H DAðk�2Þ ; Ac

� ��H DAðk�2Þ
� � � H DAðk�1Þ ; Ac

� ��H DAðk�1Þ
� �

:

and equivalently, H Ack DAðk�2Þ
��� � � H Ack DAðk�1Þ

��� �
,

which completes the proof. tu
Finally, we use Theorem 4.2 to develop a pruning rule.

Pruning Rule 4.8. Given the selected correspondences Sk�1
Q

in previous (k-1)th iterations, two current potential
selected correspondences c1 and c2, correspondence c2
could be safely filtered if these two correspondences satisfy

hðlÞðDAðk�1Þ [Ac1Þ5hðuÞðDAðk�1Þ [Ac2Þ:

5 EXPERIMENTAL RESULTS

We conducted extensive experiments to evaluate our appr-
oaches, based on both simulation and real implementation.
We focus on evaluating two issues. First, we examine the
effectiveness of our two frameworks in reducing the uncer-
tainty for possible matchings. Second, we verify the correct-
ness of our approaches, by evaluating the precision and
recall of the best matchings.

Fig. 2. Illustration of R partitioning.
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5.1 Experimental Setup
We adopt the schema matching tool OntoBuilder [11], [13],
which is one of the leading tools for schema matching. In
particular, we conduct our experiments on five datasets,
each of which includes five schemata. The schemata are
extracted from web forms from different domains. We
describe the characteristics of each dataset in Table 3. By
OntoBuilder, schemata are parsed into xml schemata, and
attributes refer to nodes with semantic information. We con-
duct pairwise schema matching within each domain, so
there are totally 40 pairs of schemata (10 for each domain).
In OntoBuilder, four schema matching algorithms are
implemented, namely Term, Value, Composition and Prece-
dence. For each pair of schemata, we generate 400 unique
possible matchings (100 for each algorithm). In addition,
each possible matching is associated with a global score,
which indicates the goodness of the matching. We obtain
the probabilities of matchings by normalizing the global
scores. The details of these algorithms can be found in [11].

5.2 Simulation
To evaluate the effectiveness of our two approaches, we first
conduct a simulation of the crowd’s behaviour, based on
our formulation in Section 3.1. First, we manually select the
best matching from the 400 possible matchings, and treat
the selected matching as the correct matching (i.e., ground
truth). So for any correspondence, its correctness depends
on whether it is in the selected matching. Second, for each
published CCQ, we randomly generate an accuracy rate
PW 2 ½0:5; 1� following an uniform distribution. Third, given
a CCQ, we generate the correct yes-no answer with proba-
bility PW (i.e., generate the wrong answer with probability

1� PW , and then return the answer and PW as the inputs
for adjustment (Section 3.1).

First, we present the effectiveness of Single CCQapproach
( Framework 1), by comparing its performance with ran-
domly selecting CCQs. We set the budget B ¼ 50, and each
CCQ is generated after receiving the answer of the previous
one. Fig. 3 illustrates the average change of uncertainty (ver-
tical axis) with the number of answers of CCQs received
(horizontal axis). With the increase of number of CCQs, the
uncertainty converges to zero rapidly. From the experimen-
tal results, our proposed Single CCQ approach (SCCQ) out-
performs the random approach (Random) significantly.
Please note that all the results plotted in Sections 5.2 and 5.3
are averages over 10 runs. The distribution is quite dense
within each domain, but diverse for different domains.

Next, we examine the performance of Multiple CCQ
(Framework 2). Recall that we need to constantly monitor the
CCQs, and update the CCQs whenever new answers are
received. In the simulation of conference paper [44], we check
the states of published CCQs every time unit. Each published
CCQ is initially at state “waiting”. For each time unit, each
CCQ in state “waiting”may change to “accepted”with proba-
bility P0 (remain unchanged with probability 1� P0), where
P0 is a random number generated from ð0; 0:5Þ; and each
CCQ at state “accepted” may change to “answered” with
probability P1 (remain unchanged with probability 1� P1),
where P1 follows a Poisson distribution. Fig. 4 illustrates the
performance of Multiple CCQ by varying k, where we set the
budget B ¼ 50. Recall that k, a parameter of Framework 2,
represents the number of CCQs in the crowd. Whenever a
CCQ is answered, we dynamically updated the k CCQs, to
make sure the kCCQs are the best according to the all received
answers. In particular, when k ¼ 1, Framework 2 becomes the
Single CCQ approach. One can observe that the curves with
smaller k tend to have better performance in terms of reducing
uncertainty. In fact, the larger k is, the less advantage MCCQ
has comparing to a random selection. Recall each time we
select k out of jCj correspondences, andwhen k ¼ jCj, MCCQ
is the same as random selection, i.e, select all of the corre-
spondenceswe have.

As discussed in Section 4, the increase of k leads to less
uncertainty reduction (which is consistent with the result in
Fig. 4), but improves the overall time efficiency. Since there
are multiple uncontrollable factors affecting the completion
time of workers, the time cost of the proposed approaches
are hard to be simulated. Nevertheless, we analyse the

Fig. 3. Single CCQ versus random - simulation.

Fig. 4. Multiple CCQ with different k - simulation.

TABLE 3
Datasets

Notation Source No.of attributes

Hotel hotel searching websites 14-20
Aviation homepages of airline companies 12-18
BookStore the webpages of advanced

search in online book stores 13-21
ComplaintForm the complaint forms of

government websites 27-34
News news websites 43-60
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relation between k and the time cost in the real-world imple-
mentation in Section 5.3.

5.3 Testing on Amazon Mechanical Turk
We implement our two approaches on Amazon Mechanical
Turk (AMT), which is a widely used crowdsourcing market-
place. Empowered with the Amazon Mechanical Turk SDK,
we are able to interactively publish and manage the CCQs.
EachHIT of AMT includes all the attributes of two schemata,
one CCQ, and the URLs of the source web-pages. Each HIT
is priced US$0.05. A screen shot of a HIT can be found in
[45]. One can see that each HIT is essentially a CCQ. For the
rest of this section, the terms “HIT” and “CCQ” are
exchangeable. Since each HIT is associated with a monetary cost,
the budget B indicates the total cost to be spent on the crowd. The
role of budget B is a parameter enabling a system user to control
the financial cost of crowdsourcing a schema matching task.

In analogy to the simulation, Figs. 5 and 6 illustrate the
performances of Single CCQ andMultiple CCQ respectively,
where we set the budget B ¼ 50. In terms of uncertainty
reduction, one can see that the performance is basically con-
sistent with the simulation. A very important finding is that,
in contrast with the simulation, the uncertainty is likely to
increase when the first several CCQs are answered. The
increase can happen when a surprising answer is obtained,
i.e., a yes answer is returned for low-probability correspon-
dence, or vice versa. This phenomenon indicates that, the
budget should be large enough to achieve satisfactory reduc-
tion of uncertainty.

Another important finding is that, the uncertainty con-
vergence to zero in real implementation is much slower
than that in the simulation. A possible reason is that we use
a Bernoulli distribution to model the error rate of workers.
But in reality, the error rate follows a more complex distri-
bution, which may be related to the dataset.

Lastly, we present the overall time cost of Single CCQ
and Multiple CCQ approaches in the real implementations,
where totally 50 CCQs are published and answered. As
shown in Fig. 7, the curves with larger k tend to have less
time cost. Please note that, the case of Single CCQ is indi-
cated with k ¼ 1. When k is increased, we get faster initial
reduction on uncertainty, but the overall reduction tend to
be limited. Actually, there are many uncontrollable factors
would affect the completion time, such as the difficulty of
the CCQs, the time of publication etc.

5.4 Data Quality
In this section, we verify the correctness of our approaches,
by evaluating the precision and recall of the best matching,
i.e., the possible matching with the highest possibility after
the uncertainty reduction. Precision is computed as the ratio
of correct correspondences out of the total number of corre-
spondences in the correct matching (ground truth). Recall is
computed as the ratio of correct correspondences out of the
total number of correspondences in the correct matching.
Since the performances are very similar on different data-
sets, we merge the four datasets into one, and present the
precision and recall averaged from 40 runs.

Fig. 8 illustrates the quality of the best matching after
uncertainty reduction with budget B ¼ 50. The suffixes
“_S” and “_R” represent the data obtained from the simula-
tion and the real-world implementation on AMT, respec-
tively. In the simulation, the precision and recall are almost
100 percent. In the real-world implementation, 50 questions
by SCCQ make precision and recall over 90 percent, which
are significantly better than that of the “machine-only”

Fig. 6. Multiple CCQ with different k on Amazon mechanical turk.

Fig. 5. Single CCQ versus random - on Amazon mechanical turk.

Fig. 7. Time cost with different k on Amazon mechanical turk.

Fig. 8. Data quality with budget constraint- precision & recall.
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methods when k is small. However, in the real implementa-
tion, we find that when k is increased, the precision and
recall tend to be decreased dramatically. In particular, for
cases k ¼ 8 and k ¼ 16, the MCCQ is only slightly better
than the Composition. The reason is twofold: first, comparing
to SCCQ, there is averagely less information for selecting
CCQs in MCCQ; second, due to the NP-hardness, we are
only able to select CCQs that are near-optimal.

Recall that the motivation of MCCQ is to improve
the time efficiency. Therefore, we conducted another set of
experiments where time is the constraint, in order to inves-
tigate the relation between k and data quality. Explicitly,
we preform SCCQ and MCCQ for 50 minutes, without any
limit on the budget. The precision and recall are demon-
strated in Fig. 9. From the experimental results, we con-
clude that the MCCQ with large k has outstanding performance
for time-constrained situations. k should be set to a small value
when the budget is the main constraint; whereas a large value is
suggested for k if time-efficiency is the primary constraint.

5.5 New Experiments
With a more realistic model in this paper, we conduct
experiments of MCCQ again. In simulation, first we ran-
domly generate accuracy rates following uniform distribu-
tion on ½0:5; 1� for all correspondences as their hardness
attribute. We publish k initial CCQs with state “waiting”.
We still check the states of published CCQs every time unit.
For each time unit, each CCQ in state “waiting” may change
to “accepted” with probability P0 and each CCQ at state
“accepted” may change to “answered” with probability P1.
Each answer is returned with an accuracy rate PWi

as the
trustworthiness of the crowd. Accuracy rates PWi

also fol-
lows uniform distribution on ½0:5; 1�. We still set budget
B ¼ 50 and Fig. 10 shows the performance of Multiple CCQ
by varying k. Then in Fig. 11 we apply our MCCQ approach
on Amazon Mechanical Turk. The difference between new
experiments and the old ones in [44] is that we consider ini-
tial accuracy rates and different accuracy rates in each step.
In [44], assumption of theoretical results is that accuracy
rates equal to 1, while in experiments we chose accuracy

rates less than 1. Moreover, in this paper we obtain optimal
upper bound and lower bound for entropy reduction, so
that pruning rules are more efficient. These are major rea-
sons that our new choices for CCQs are comparatively bet-
ter in terms of entropy reduction with less fluctuation.

At last we consider a new dataset with more attributes
and we set B ¼ 70, k ¼ 8. Let X be a beta distribution
Betað2; 2Þ. In Fig. 12, we try different distributions for PWi

.
Line 1 shows PWi

follows uniform distribution on ½0:5; 1�
with mean 0.75 and variance 1=48. In Line 2, PWi

¼
0:5X þ 0:5, thus PWi

2 ½0:5; 1� with mean 0.75 and variance
1=80. In Line 3, PWi

¼ 0:4X þ 0:6, thus PWi
2 ½0:6; 1� with

mean 0.8 and variance 1=125. In line 4, PWi
¼ 0:6X þ 0:4,

thus PWi
2 ½0:4; 1� with mean 0.7 and variance 9=500. Line 5

shows the result in AMT. Comparing the first four lines, we
can see Line 3 perform best as PWi

has biggest mean and
smallest variance. Line 4 perform worst since in practice we
do not choose a crowd worse than 0.5.

6 RELATED WORK

6.1 Uncertainty in Schema Matching
The model of possible matching, namely “probabilistic
schemamappings”, was first introduced in [8]. In their work,
algorithmic approaches generate a set of matchings between
two schemata, with a probability attached to each matching.
After the collection of possible matchings is determined, the
probability of each correspondence can be computed by
summing up the probabilities of possiblematchings inwhich
the correspondence is included. Later, Sarma et al. [37] used
well-known schema matching tools (COMA, AMC, CLIO,
Rondo, etc.) to generate a set of correspondences associated
with confidence values between two schemata. Then, the
possible matchings are constructed from these correspond-
ences and data instances. A more intuitive method of con-
structing possible matchings is proposed in [12]. In detail,
[12] generates top-k schema matchings by combining the

Fig. 9. Data quality with time constraint - precision & recall.

Fig. 10. Multiple CCQ with different k - simulation(new).

Fig. 11. Multiple CCQ with different k on amazon mechanical turk(New).

Fig. 12. MCCQ with different PWi
.
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matching results generated by various matchers, and each of
the kmatchings is associated with a global score. Then possi-
ble matchings are constructed by normalizing the global
scores. Additionally, the model of possible matchings has
been adopted in [14] as a core foundation for answering
queries in a data integration system with uncertainty. Gal
[11] used the top-K schemamappings from a semi-automatic
matchers to improve the quality of the top mapping. [8], [14]
and [34]were devoted to the parallel use of uncertain schema
matchings, and proposed new semantics of queries.

The uncertainty in schema matching has been intensively
studied, primarily focusing on the query processing in the
presence of uncertainty. X.Dong et al. [8] concentrated on
the semantics and properties of probabilistic schema map-
pings. We assume that a set of probabilistic schema match-
ings is provided by an existing algorithm, such as one of
those mentioned above. How to efficiently process uncer-
tain data is an orthogonal issue, which has been well
addressed, such as [16], [41], [42].

A probabilistic matching network model was established
in [29] to reduce uncertainty of schema matching. Authors
developed pay-as-you-go reconciliation approach. Probabil-
ities of correspondences are defined in their model indepen-
dently of schema matching tools. [36] discussed schema
matching prediction which is an assessment mechanism to
support schema matchers in the absence of an exact match.

6.2 Crowdsourcing and Data Integration
Such as schema matching, some queries cannot be answered
by machines only. The recent booming up of crowdsourcing
brings us a new opportunity to engage human intelligence
into the process of answering such queries (see [3], [7], [22] as
survey for crowdsourcing). In general, [10] proposed a query
processing system using microtask-based crowdsourcing to
answer queries. Many classical queries are studied in the con-
text of crowdsourced database, including max [15], filtering
[30], sorting [24] etc. In [31], a declarative query model is pro-
posed to cooperate with standard relational database opera-
tors. In [4], crowdsourcing is used for top-K query processing
over uncertain data. As a typical application related to data
integration, [43] utilized a hybrid human-machine approach
on the problem of entity resolution. [26] studied knowledge
base semantic integration using crowdsourcing.

McCann et al. [25] engages crowdsourcing into schema
matching. In particular, [25] proposed to enlist the multitude
of users in the community to help match the schemata in a
Web 2.0 fashion. The difference between our work and [25] is
threefold: (1) From the conceptual level, “crowd” in [25] refers
to an on-line community (e.g., a social network group); while
we explicitly consider the crowd as crowdsourcing platforms
(e.g., Mechanical Turk). (2) The essential output of [25] is
determined by the “system builders”, which means the end
users still have to get involved in the process of schemamatch-
ing. (3) We focus on the optimization between the cost (the
number of CCQs) and performance (uncertainty reduction).

6.3 Active Learning
Active learning is a form of supervised machine learning,
in which a learning algorithm is able to interact with the
workers (or some other information source) to obtain the
desired outputs at new data points. A widely used techni-
cal report is [38]. In particular, [28], [46] proposed active
learning methods specially designed for crowd-sourced
databases. Our work is essentially different from active

learning in two perspectives: (1) the role of workers in
active learning is to improve the learning algorithm (e.g.,
a classifier); in this paper, the involvement of workers is
to reduce the uncertainty of given matchings. (2) The
uncertainty of answers is usually assumed to be given
before generating any questions; in this paper, the uncer-
tainty of answers has to be considered after the answers
are received, since we cannot anticipate which workers
would answer our questions. To our best knowledge,
there is no algorithm in the field of active learning that
can be trivially applied to our problem.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose two novel approaches, namely Sin-
gle CCQ and Multiple CCQ, to apply crowdsourcing
to reduce the uncertainty of schema matching generated
by semi-automatic schema matching tools. These two app-
roaches adaptively select and publish the optimal set of ques-
tions based on new received answers. Technically,
we significantly reduce the complexity of CCQ selection
by proving that the expectation of uncertainty reduction
caused by a set of CCQs are mathematically equivalent to the
join entropy of answersminus entropy of crowds. In addition,
we obtain optimal bounds for uncertainty reduction, prove
NP-hardness of MCCQ Selection, and design an ð1þ �Þ
approximation algorithm, based on its sub-modular nature.
One challenge we overcome is to investigate difficulties of
CCQs and trustworthiness of crowd-sourced answers by
accuracy rates of crowds.

Uncertainty is inherited in many components in modern
data integration systems, such as entity resolution, schema
matching, truth discovery, name disambiguation etc. We
believe that embracing crowdsourcing as a component of a
data integration system would be extremely conductive for
the reduction of uncertainty, hence effectively improve the
overall performance. Our work represents an initial solution
towards automating uncertainty reduction of schema matc-
hing with crowdsourcing.

A future work regarding toMCCQ is that: in Theorem 4.1,
we distribute k CCQs to crowds each time. We obtain a for-
mula of uncertain reduction under the assumption that we
take back k answers. In reality, we do not know how many
CCQs can be answered. We may withdraw or replace some
CCQs after a waiting time. The choice of next k CCQs is best
only when all k CCQs are answered. Therefore investigating
a more realistic and complete model with answer rates(a dif-
ficult CCQ may has a probability that no one accept it) may
further help reducing thematching uncertainty.
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