
Entity Matching Meets Data Science:
A Progress Report from the Magellan Project

Yash Govind1, Pradap Konda2,
Paul Suganthan G. C.3,
Philip Martinkus1*

1University of Wisconsin, 2Facebook, 3Google

Palaniappan Nagarajan4, Han Li1,
Aravind Soundararajan1,

Sidharth Mudgal4, Jeffrey R. Ballard1
1University of Wisconsin, 4Amazon

Haojun Zhang1, Adel Ardalan5,
Sanjib Das3, Derek Paulsen1,

Amanpreet Saini1, Erik Paulson6
1University of Wisconsin, 3Google,

5Columbia University, 6Johnson Control

Youngchoon Park6, Marshall Carter7,
Mingju Sun7, Glenn M. Fung7,

AnHai Doan1
1University of Wisconsin, 6Johnson Control,

7American Family Insurance

ABSTRACT
Entity matching (EM) finds data instances that refer
to the same real-world entity. In 2015, we started the
Magellan project at UW-Madison, joint with industrial
partners, to build EM systems. Most current EM sys-
tems are stand-alone monoliths. In contrast, Magellan
borrows ideas from the field of data science (DS), to
build a new kind of EM systems, which is an ecosystem
of interoperable tools. This paper provides a progress
report on the past 3.5 years of Magellan, focusing on the
system aspects and on how ideas from the field of data
science have been adapted to the EM context. We argue
why EM can be viewed as a special class of DS problems,
and thus can benefit from system building ideas in DS.
We discuss how these ideas have been adapted to build
PyMatcher and CloudMatcher, EM tools for power users
and lay users. These tools have been successfully used
in 21 EM tasks at 12 companies and domain science
groups, and have been pushed into production for many
customers. We report on the lessons learned, and outline

*The first two authors contributed equally to this project.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3314042

a new envisioned Magellan ecosystem, which consists of
not just on-premise Python tools, but also interoperable
microservices deployed, executed, and scaled out on the
cloud, using tools such as Dockers and Kubernetes.

CCS CONCEPTS
• Information systems → Information integration;
Deduplication; Entity resolution.

KEYWORDS
data integration, entity matching, entity resolution, ma-
chine learning, data science

ACM Reference Format:

Yash Govind, Pradap Konda, Paul Suganthan G. C., Philip

Martinkus, Palaniappan Nagarajan, Han Li, Aravind Sounda-

rarajan, Sidharth Mudgal, Jeffrey R. Ballard, Haojun Zhang,

Adel Ardalan, Sanjib Das, Derek Paulsen, Amanpreet Saini,

Erik Paulson, Youngchoon Park, Marshall Carter, Mingju

Sun, Glenn M. Fung, and AnHai Doan. 2019. Entity Match-

ing Meets Data Science: A Progress Report from the Magel-

lan Project. In 2019 International Conference on Manage-

ment of Data (SIGMOD19), June 30-July 5, 2019, Amster-

dam, Netherlands. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3299869.3314042

1 INTRODUCTION
Entity matching (EM) finds data instances that refer
to the same real-world entity, such as (David Smith,
UW-Madison) and (D. Smith, UWM). This problem has
been a long-standing challenge in data management [1, 2],
and will become even more important as data-driven
applications proliferate.

https://doi.org/10.1145/3299869.3314042

As a result, in Summer 2015, in collaboration with sev-
eral industrial partners, we started the Magellan project
at the University of Wisconsin-Madison, with the goal
of developing EM solutions [3]. Numerous works have
studied EM, but most of them develop EM algorithms.
In contrast, we seek to build EM systems, as we believe
such systems are critical for advancing the EM field.
Among others, they can help evaluate EM algorithms,
integrate R&D efforts, and make practical impacts, the
same way systems such as System R, Ingres, Apache
Hadoop, and Apache Spark have helped advanced the
fields of relational data management and Big Data.
Of course, Magellan is not the first project to build

EM systems. Many such systems have been developed
(we recently discussed 18 non-commercial systems and
15 commercial ones [3]). However, as far as we can tell,
virtually all of these systems have been built as stand-
alone monolithic EM systems, or parts of larger stand-
alone monolithic systems that perform data cleaning and
integration [1–3].
In contrast, Magellan employs a radically different

system building template for EM, by leveraging ideas
from the field of data science (DS). While DS is still
“young”, several common themes have emerged. First, for
many DS tasks, there is a general consensus that it is not
possible to fully automate the two stages of developing
and productionizing DS workflows. As a result, many
step-by-step guides that tell users how to execute the
above two stages have been developed. Second, many
“pain points” in these guides, i.e., steps that are time
consuming for users, have been identified, and (semi)-
automated tools have been developed to reduce user
effort. Finally, tools have been designed to be highly
interoperable, forming a growing ecosystem of DS tools.
Popular examples of such ecosystems include PyData,
the ecosystem of 138,000+ interoperable Python pack-
ages (as of May 2018), R, tidyverse, and many others
[4].

We observed that EM bears strong similarities to many
DS tasks [3] (see Section 3). As a result, we leveraged
the above ideas to build a new kind of EM systems.
Specifically, we develop how-to guides that tell a user
how to execute an EM process step by step, identify the
“pain points” in the guides, then develop tools to address
these pain points. We design tools to interoperate and
form a part of PyData.
As described, the notion of “system” in Magellan

has changed. It is no longer a stand-alone monolithic
system such as RDBMSs or most current EM systems.
Instead, this new “system” is actually an ecosystem of
interoperable EM tools, situated in a larger ecosystem of

DS tools, together with guides that tell users how to use
these tools to perform EM.
Since Summer 2015 we have pursued the above EM

agenda, and developed a small ecosystem of EM tools
and guides. This raised many research challenges, which
we have tried to address [4]. We have applied these tools
to solve 21 real-world EM problems in domain sciences
and industry. Finally, we have proposed to apply the
Magellan system building template to other data inte-
gration tasks, such as schema matching, data cleaning,
and information extraction [4].

In this paper we describe the above progress, focusing
on the system aspects and on how ideas from the field
of data science have been adapted to the EM context.
Specifically, we seek to answer the following questions.

First, is this new system template promising? Is it easy
to build and maintain? Can we use it to solve practical
EM problems? We show that this approach is indeed
promising. With a relatively small team, we can build
and maintain a growing ecosystem of EM tools, and used
it to solve a broad range of EM problems.
Second, are the main components of this new system

truly necessary? We argue that the answer is yes. We
discuss why it is critically important to have how-to
guides, an ecosystem of tools (instead of a few stand-
alone monolithic ones), and tool interoperability.
Third, what is the “right” ecosystem of tools? We

started out building into PyData. Over the past few
years has our “vision” changed? We argue that start-
ing with PyData was the correct decision, but that the
“right” ecosystem will eventually have to be bigger than
PyData. Among others, it will contain interoperable mi-
croservices, which are easily deployable on the cloud,
using containers and execution orchestrators such as
Dockers and Kubernetes. This is a new trend in the field
of DS [5, 6] that we argue can be readily adapted to
building EM tools.
Fourth, what are the system challenges for this new

system template? We discuss challenges that we have ob-
served in terms of building and maintaining such tools, of
making tools interoperate, and of horizontal and vertical
scaling, on and off the cloud.
Fifth, what is the role of machine learning (ML) in

such systems? We argue that ML plays a key role in
building EM tools, but that we must address significant
challenges in order to use it effectively. Among others,
we show that it must be coupled with hand-crafted rules,
effective user interaction, and Big Data scaling, in order
to achieve its full potentials.
Finally, has our work deepened our understanding of

EM? Do we think this new system template is the way
to go for EM? Our answer is a clear yes. We argue that

EM is fundamentally very different from relational data
management, and thus necessitates a very different kind
of system architecture. In particular, EM “in the wild”
appears very messy, with users wanting to try all kinds
of EM workflows, and changing what they want to do
on the fly, depending on what they have just learned.
Put differently, many real-world EM projects are really
a “conversation” between the EM team and the domain
expert team, which moves forward as new results are
produced and discussed. The new system template is
well suited for facilitating this conversation.

The closest work to this paper is [4]. But in that
work we did not discuss the system aspects of Magellan.
Instead, we argued that the same system template (i.e.,
ecosystem and how-to guides) may also apply to other
data integration tasks, such as cleaning, extraction, etc.

During the 70s to 90s our community extensively stud-
ied the system aspects of RDBMSs, and unquestionably
such works helped push the field forward. In contrast,
most existing EM works have focused on algorithmic so-
lutions. We have argued for devoting more attention
to the system aspects of EM, so that we can make
faster progress. This includes building EM systems, dis-
cussing what kinds of system templates are appropriate,
evaluating such systems in practice, and sharing the
lessons learned. This paper contributes to, and signif-
icantly advances this line of system work for EM, by
sharing our experience and lessons learned in building
and evaluating a new kind of EM system in the past few
years. More information about Magellan can be found at
sites.google.com/site/anhaidgroup/projects/magellan.

2 PRELIMINARIES
In this section we briefly introduce the EM problem,
then discuss related work.

The Entity Matching Problem: This problem, also
known as entity resolution, record linkage, data matching,
etc., has received enormous attention (see [1, 2, 7, 8] for
recent books, tutorials, and surveys). A common EM
scenario finds all tuple pairs that match, i.e., refer to the
same real-world entity, between two tables 𝐴 and 𝐵 (see
Figure 1). Other EM scenarios include matching tuples
within a single table, matching into a knowledge base,
matching XML data, etc. [1].
When matching two tables 𝐴 and 𝐵, considering all

pairs in 𝐴×𝐵 often takes very long. So users often exe-
cute a blocking step followed by a matching step [1]. The
blocking step employs heuristics to quickly remove obvi-
ously non-matched tuple pairs (e.g., persons residing in
different states, see Figure 1). The matching step applies
a matcher to the remaining pairs to predict matches.

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1

a2

a3

b1

b2

Matches

(a1, b1)

(a3, b2)

Table A Table B

Figure 1: An example of matching two tables.

Related Work in Entity Matching: The vast body
of work in EM falls roughly into three groups: algo-
rithmic, human-centric, and system. Most EM works
develop algorithmic solutions for blocking and match-
ing, exploiting rules, learning, clustering, crowdsourcing,
external data, etc. [1, 2, 7]. The focus is on improving
accuracy, minimizing runtime, and minimizing cost (e.g.,
crowdsourcing fee), among others [2, 8].
A smaller but growing body of EM work (e.g., those

at HILDA workshops) studies human-centric challenges,
such as crowdsourcing, effective user interaction, and
user behavior during the EM process [9].

The third group of EM work develops EM systems. In
2016 we found 18 non-commercial systems (e.g., D-Dupe,
DuDe, Febrl, Dedoop, Nadeef) and 15 commercial ones
(e.g., Tamr, Informatica, Data Ladder, IBM InfoSphere)
[3, 10]. Most of them are stand-alone monoliths. Our
recent work [3] discusses their limitations and introduces
Magellan, which builds an ecosystem of EM tools. Few
works if any have discussed the system aspects of EM
(e.g., what is the “right” system architecture? what are
the design principles?). Both the book [1] and a recent
work of ours [3] have touched upon some of these issues.

Related Work in Data Integration: The field of
data integration (DI), which subsumes EM, has had a
long history [7, 11]. It developed a range of DI system
architectures in the 90s and 00s: global-as-view (GAV),
local-as-view (LAV), GLAV, peer-to-peer, best-effort,
data space, etc. [7]. Prominent DI system projects at that
time include Garlic, Tsimmis, and Information Manifold
[12–14], and prominent recent commercial efforts include
Tamr and Trifacta [15, 16].

As far as we can tell, most of these works adopt a stand-
alone system architecture, not an ecosystem of tools
as in Magellan. Further, EM was either not discussed
or viewed as just a small set of operators. Thus, our
Magellan work is complementary to these works, and our
ecosystem-of-tool approach can potentially be applied to
other DI problems (e.g., schema matching, data cleaning),
as we discuss in Section 6.

Related Work in Data Science: Magellan borrows
ideas from the field of data science (DS). This field has
been growing rapidly, and system related challenges have
been discussed in a range of communities, from academia

to those of practitioners. There are four DS trends that
that are most relevant to our work in Magellan. First,
there are efforts to build ecosystems of on-premise inter-
operable DS tools. Such ecosystems can be general, e.g.,
R, PyData, tidyverse, or domain-specific (e.g., Biocon-
ductor) [4]. Magellan was inspired by these works.

Second, many DS projects started to adopt a microser-
vice software architecture, where the code is decomposed
into a set of self-contained but interoperable services,
each doing just one task [5]. Tools have been developed to
package such services for easy deployment (e.g., Docker)
and to coordinate their execution (e.g., Kubernetes) [6].
All of these make it ever easier for many DS projects to
move to the cloud. In Section 6 we argue that an ecosys-
tem of EM tools should also move in this direction.
Third, many DS projects use machine learning, and

system aspects of ML deployment have been widely dis-
cussed (e.g., at SysML, NIPS, ICML, SIGMOD, VLDB).
Magellan studies how to use ML for EM. Thus it can
benefit from DS work in this direction and in return can
contribute to it.
The final interesting trend is the growing interest in

academia, especially in the software engineering com-
munity, in studying ecosystems of software tools (e.g.,
[17–27]). So far however there has been very little work
in the database community that studies how to build
ecosystems of data tools. Our hope is that the work in
Magellan will help grow this interest.

3 THE MAGELLAN AGENDA
In this section we first argue that EM can be viewed
as a special class of DS problems. So it can be highly
promising to apply DS system building templates to EM
systems. Next, we describe the system building template
of PyData. Finally, we build on it to suggest a system
building agenda for Magellan.

Viewing EM as a Special Class of DS Problems:
Most current EM works view EM as a problem of two
steps: blocking and matching [1]. (Some recent works did
consider the pre-processing of the data, e.g., data clean-
ing, and post-processing, e.g., clustering and merging
matches [1, 2, 15].)

Using this view, EM systems have typically been built
in a way similar to RDBMSs. Such a system has a set of
logical operations (e.g., blocking, matching) with mul-
tiple physical implementations. Given an EM workflow
(composing of these operations) specified by the user
using a GUI or a declarative language, the system trans-
lates the workflow into an execution plan, then optimizes
and executes this plan.
In Magellan we view EM as a special class of DS

problems, for the following reasons.

They share the same two stages: Many DS problems
focus on developing an accurate DS workflow then pro-
ductionizing it. Many EM problems can also be viewed
as developing an accurate EM workflow (using data sam-
ples) then executing it in production on the entirety of
the data (see Section 4 for an example).

The two stages raise many similar challenges: The de-
velopment stage needs to effectively engage the user to de-
velop an accurate workflow. This often raises challenges
in data exploration, profiling, understanding, cleaning,
model fitting and evaluation, etc. The production stage
needs to execute the workflow on a large amount of
data, raising challenges in scaling, logging, crash recov-
ery, monitoring, etc. These challenges are remarkably
similar for many DS and EM problems.
The two stages use many similar techniques: To ad-

dress the above challenges, many DS and EM problems
use the same set of techniques, e.g., ML, visualization,
effective user interaction, and Big Data scaling such as
Hadoop and Spark.

Thus, we believe EM can be viewed as a special class
of DS problems, which focuses on finding the semantic
matches, e.g., (David Smith, UWM) and (D. Smith,
UW-Madison). If so, perhaps certain system building
templates in the DS world can be effectively applied to
build EM systems. We focus in particular on the system
templates of PyData, which we briefly describe next.

The System Building Template of PyData: While
PyData has been rapidly growing, we are not aware of
any explicit description of its “system template”. But our
examination reveals three important underlying ideas:

How-to guides for users: First, PyData developers do
not assume that DS problems can be solved automati-
cally end to end. Users often must be “in the loop” and
often do not know what to do, how to start, etc. As a re-
sult, developers provide detailed how-to guides that tell
users how to solve a DS problem, step by step. Numerous
guides have been developed, described in books, articles,
Jupyter notebooks, training camps, blogs, tutorials, etc.

It is important to note that such a guide is not a user
manual on how to use a tool. Rather, it is a step-by-
step instruction to the user on how to start, when to
use which tools, and when to do what manually. Put
differently, it is an (often complex) algorithm for the
user to follow. (See Section 4 for an example.)

Tools for pain points of the guides: Even without tools,
users should be able to follow a guide and manually
execute all the steps to solve a DS problem. But some of
the steps can be very time consuming. PyData developers
have identified such “pain point” steps and developed
(semi)automatic tools to reduce the human effort.

Figure 2: The steps of the guide for PyMatcher.

Tools are designed to be atomic and interoperable:
PyData developers put a lot of effort into developing
tools that are atomic (i.e., each tool does just one thing)
and interoperable. This creates a growing ecosystem of
tools over time.

Our Agenda: Using the system template of PyData,
we developed the following agenda for Magellan. First,
we identify common EM scenarios. Next, we develop
how-to guides to solve these scenarios end to end.
Then we identify the pain points in the guides and

develop (semi)automatic tools for the pain points. We
will design tools to be atomic and interoperable, and
design them as a part of the PyData ecosystem. We will
also use ML where appropriate. Developing these tools
will raise research challenges, which we will address.

Finally, we will work with users (e.g., domain scientists,
companies, students) to evaluate our EM systems.
In the past 3.5 years we have tried to realize the

above agenda in two major thrusts: PyMatcher and Cloud-
Matcher, which we describe next.

4 PYMATCHER
We now describe PyMatcher, an EM system developed
for power users (those who know programming, ML,
and EM). We discuss system development, real-world
applications, and lessons learned.

4.1 System Development

Problem Scenarios: In this first thrust of Magellan,
we consider an EM scenario that commonly occurs in
practice. In this scenario, a user 𝑈 wants to match two
tables (e.g., see Figure 1), with as high matching accuracy
as possible, or with accuracy exceeding a threshold (e.g.,
at least 90% precision and recall). 𝑈 is a “power user”
who knows programming, EM, and ML (we consider “lay
users” later in Section 5).

Developing How-to Guide: We developed an initial
guide based on our experience, then kept refining it based

on user feedback and on watching how real users do EM.
As of Nov 2018, we have developed a guide for the above
EM scenario, which consists of two smaller guides for the
development and production stages, respectively. We now
focus on the guide for the development stage (discussing
the guide for the production stage later in this section).
This guide (which is illustrated in Figure 2) heavily

uses ML. To explain it, suppose user 𝑈 wants to match
two tables 𝐴 and 𝐵, each having 1 million tuples. Trying
to find an accurate workflow using these two tables would
be too time consuming, because they are too big. Hence,
𝑈 will first “down sample” the two tables to obtain two
smaller tables 𝐴′ and 𝐵′, each having 100K tuples, say
(see the figure).

Next, suppose the EM system provides two blockers
𝑋 and 𝑌 . Then 𝑈 experiments with these blockers (e.g.,
executing both on Tables 𝐴′ and 𝐵′ and examining their
output) to select the blocker judged the best (according
to some criterion). Suppose 𝑈 selects blocker 𝑋. Then
next, 𝑈 executes 𝑋 on Tables 𝐴′ and 𝐵′ to obtain a set
of candidate tuple pairs 𝐶.

Next, 𝑈 takes a sample 𝑆 from 𝐶, and labels the pairs
in 𝑆 as “match”/“no-match” (see the figure). Let the
labeled set be 𝐺, and suppose the EM system provides
two learning-based matchers 𝑈 and 𝑉 (e.g., decision
trees, logistic regression). Then 𝑈 uses the labeled set
𝐺 to perform cross validation for 𝑈 and 𝑉 . Suppose 𝑉
produces higher matching accuracy (such as 𝐹1 score of
0.93, see the figure). Then 𝑈 selects 𝑉 as the matcher,
and applies 𝑉 to the set 𝐶 to predict “match”/“no-
match”, shown as “+” or “-” in the figure. Finally, 𝑈
may perform quality check (by examining a sample of
the predictions and computing the resulting accuracy),
then go back and debug and modify the previous steps
as appropriate. This continues until 𝑈 is satisfied with
the accuracy of the EM workflow.

Developing Tools for the Steps of the Guide: Over
the past 3.5 years 13 developers have developed tools
for the steps of the above guide (see Appendix A for
details). As of June 2018, PyMatcher consists of 6 Python
packages with 37K lines of code and 104 commands (and
is open sourced [3]). As far as we can tell, PyMatcher is
the most comprehensive open-source EM system today,
in terms of the number of features it supports.

Principles for Developing Tools & Packages: Re-
call that each tool is roughly equivalent to a Python
command, and tools are organized into Python pack-
ages. We adopted five principles for developing tools and
packages:

(1) They should interoperate with one another, and
with existing PyData packages.

(2) They should be atomic, i.e., does only one thing.
(3) They should be self-contained, i.e., they can be used

by themselves, not relying on anything outside.
(4) They should be customizable.
(5) They should be efficient for both human and ma-

chine.
We now illustrate these principles. As an example of
facilitating interoperability among the commands of dif-
ferent packages, we use only generic well-known data
structures such as Pandas dataframe to hold tables (e.g.,
the two tables 𝐴 and 𝐵 to match, the output table after
blocking, etc.).

Designing each command, i.e., tool, to be “atomic” is
somewhat straightforward. Designing each package to
be so is more difficult. Initially, we designed just one
package for all tools of all steps of the guide. Then as
soon as it was obvious that a set of tools form a coherent
stand-alone group, we extracted it as a new package.
However, this extraction is not always easy to do, as we
will discuss soon.

Ignoring self-containment for now, to make tools and
packages highly customizable, we expose all possible
“knobs” for the user to tweak, and provide easy ways for
him/her to do so. For example, given two tables 𝐴 and 𝐵
to match, PyMatcher can automatically define a set of fea-
tures (e.g., 𝑗𝑎𝑐𝑐𝑎𝑟𝑑(3𝑔𝑟𝑎𝑚(𝐴.𝑛𝑎𝑚𝑒), 3𝑔𝑟𝑎𝑚(𝐵.𝑛𝑎𝑚𝑒))).
We store this set of features in a global variable 𝐹 . We
give users ways to delete features from 𝐹 , and to declar-
atively define more features then add them to 𝐹 .
As an example of making a tool, i.e., a command, 𝑋

efficient for a user, we can make 𝑋 easy to remember
and specify (i.e., it does not require the user to enter
many arguments). Often, this also means that we provide
multiple variations for 𝑋, because each user may best
remember a particular variation.
Command 𝑋 is efficient for machine if it minimizes

runtime and space. For instance, let 𝐴 and 𝐵 be two
tables with schema (id,name,age). Suppose𝑋 is a blocker
command that when applied to 𝐴 and 𝐵 produces a set
of tuple pairs 𝐶. Then to save space, 𝑋 should not use
(A.id, A.name, A.age, B.id, B.name, B.age), but only
(A.id, B.id) as the schema of 𝐶.

If so, we need to store the “metadata information”
that there is a key-foreign key (FK) relationship between
tables 𝐴, 𝐵 and 𝐶. Storing this metadata in the tables
themselves is not an option if we have already elected to
store the tables using Pandas dataframe (which cannot
store such metadata, unless we redefine the dataframe
class). So we can use a stand-alone catalog 𝑄 to store
such metadata for the tables.

But this raises a problem. If we use a command 𝑌 of
some other package to remove a tuple from table 𝐴, 𝑌 is

not even aware of catalog 𝑄 and so will not modify the
metadata stored in 𝑄. As a result, the metadata is now
incorrect: 𝑄 still claims that a FK relationship exists
between tables 𝐴 and 𝐶. But this is no longer true.
To address this problem, we can design the tools to

be self-contained. For example, if a tool 𝑍 is about to
operate on table 𝐶 and needs the metadata “there is
a FK constraint between 𝐴 and 𝐶” to be true, it will
first check that constraint. If the constraint is still true,
then 𝑍 will proceed normally. Otherwise, 𝑍 outputs a
warning that the FK constraint is no longer correct,
then stops or proceeds (depending on the nature of the
command). Thus, 𝑍 is self-contained in that it does not
rely on anything outside to ensure the correctness of the
metadata that it needs.

Trade-Offs Among the Principles: It should be
clear by now that the above principles often interact
and conflict with one another. For example, as discussed,
to make commands interoperate, we may use Pandas
data frames to hold the tables, and to make commands
efficient, we may need to store metadata such as FK
constraints. But this means the constraints should be
stored in a global catalog. This makes extracting a set of
commands to create a new package is difficult, because
the commands need access to this global catalog.

There are many examples like this, which together sug-
gest that designing an “ecosystem” of tools and packages
that follow the above principles require making trade-
offs. We have made several such trade-offs in designing
PyMatcher. But obtaining a clear understanding of these
trade-offs and using it to design a better ecosystem is
still ongoing work.

The Production Stage: So far we have focused on the
development stage for PyMatcher, and have developed
only a basic solution for the production stage. Specifically,
we assume that after the development stage, the user has
obtained an accurate EM workflow 𝑊 , which is captured
as a Python script (of a sequence of commands). We
have developed tools that can execute these commands
on a multi-core single machine, using customized code or
Dask (which is a Python package developed by Anaconda
that can be used to quickly modify a Python command
to run on multiple cores, among others). We have also
developed a how-to guide that tells the user how to scale
using these tools.

4.2 Real-World Applications
From 2016 to date PyMatcher has been successfully ap-
plied to multiple real-world EM applications in both in-
dustry and domain sciences. It has been pushed into pro-
duction in most of these applications, and has attracted

Table 1: Real-world deployment of PyMatcher.

significant funding (e.g., $950K from UW-Madison, $1.1M
from NSF, and $480K from industry). It has also been
used by 400+ students in 5 data science classes at UW-
Madison. Finally, it has resulted in multiple publications,
both in the database field and in domain sciences [4].
Table 1 summarizes the real-world applications. The

1st column shows that PyMatcher has been used in a
variety of companies and domain sciences. The 2nd col-
umn shows that PyMatcher has been used for 3 purposes:
debugging an EM pipeline in production (Walmart),
building a better EM pipeline than an existing one (eco-
nomics, land use), and integrating disparate datasets
(e.g., Recruit, Marshfield Clinic, limnology).

The 3rd column shows the main results. This column
shows that PyMatcher found EM workflows that were
significantly better than the EM workflows in production
in three cases: Walmart, Economics (UW), and Land Use
(UW). The 4th column indicates that, based on those
results, PyMatcher has been put into production in 6 out
of 8 applications. This is defined as either (a) PyMatcher
is used in a part of an EM pipeline in production, or
(b) the data resulted from using PyMatcher has been
pushed into production, i.e., being sent to and consumed
by real-world customers.

The 5th column shows that in all cases that we know
of, PyMatcher does not require a large team to work on
it (and the teams are only part-time). The final column
lists additional notable results. (Note that funding from
UW came from highly selective internal competitions.)
To illustrate the above applications, Appendix B de-

scribes in more details “Land Use”, the latest application
in which PyMatcher has been put into production.

4.3 Lessons Learned
We now discuss the lessons learned from working with
the above applications.

How-to Guide: Recall that these guides are captured
in documents and Jupyter notebooks that tell the user
how to execute the EM process step by step. We find
these guides indispensible. They provide assurance to our
customers that we can help them do EM end to end. They
provide a common vocabulary and roadmap for everyone
on the team to follow, regardless of their background.
Even for the EM steps where we currently do not have
tools, the guide still helps enormously, because it tells
the customers what to do, and they can do it manually
or find some external tools to help with it. We simply
cannot emphasize enough how important it is to have
such guides.
Surprisingly, our initial how-to guides (e.g., [3]) were

woefully inadequate. Users kept trying new things, and
there are so many aspects of EM that have been under-
explored (see below). As a result, we had to constantly
revise and expand our guides.

Messy EM: A related point is that EM is so much
messier than we thought. Fundamentally it was a “trial
and error” process, where users kept experimenting un-
til they find a satisfactory EM workflow. As a result,
users tried all kinds of workflows, customization, data
processing, etc.

In all of the applications that we have worked with, it
was impossible to tell what users wanted to try next, or
what complications would come up next. For example,
in the “Land Use (UW)” project described earlier, after
blocking and matching two tables 𝐴 and 𝐵, users realized
they should have added more data to these tables. They
also scared us when they said, after we had done a lot
of matching, that despite already doing EM for 3 years,
they were still unsure about how the match definition
applies to certain tuple pairs. A recent paper of ours

Figure 3: The workflow of Falcon, where a lay user labels tuple pairs as match/no-match in Steps 2○,
3○, and 5○.

Figure 4: (a) A decision tree learned by Falcon
and (b) blocking rules extracted from the tree.

describes similar and many more “horror stories” in the
“Economics (UW)” project [28].

Monolithic Systems vs. Ecosystems of Tools: Be-
cause EM is so messy and users want to try so many
different things, we found that an ecosystem of tools is
ideal. For every new scenario that users want to try, we
can quickly put together a set of tools and a mini how-to
guide that they can use. This gives us a lot of flexibility.

Many “trial” scenarios require only a part of the entire
PyMatcher ecosystem. Having an ecosystem allows us to
very quickly pull out the needed part, and popular parts
end up being used everywhere. For example, the packages
py stringmatching and py stringsimjoin (described in
Appendix A) are so useful in many projects (not just in
EM) that they ended up being installed on Kaggle, a
popular data science platform.

Extensibility is also much easier with an ecosystem. For
example, recently we have developed a new matcher that
uses deep learning to match textual data [29]. We used
PyTorch, a new Python library, to develop it, released
it as a new Python package in the PyMatcher ecosystem,
then extended our guide to show how to use it. This
smoothly extended PyMatcher with relatively little effort.
Clearly we can try to achieve the above three desir-

able traits (flexibility/customizability, partial reuse, and
extensibility) with monolithic stand-alone systems for
EM, but our experience suggests it would be significantly
harder to do so than with an ecosystem of tools.

Challenges: Our experience identifies the following
major challenges. First, it is difficult to design the ecosys-
tem of tools to satisfy the five principles describe earlier
(which state that tools and packages must be interopera-
ble, atomic, self-contained, customizable, and efficient).
We have only just started to understand these issues,
and have developed only preliminary solutions.

Second, PyData, the ecosystem of on-premise Python
packages, is a great starting point, but is not the eventual
ecosystem for PyMatcher. For example, EM often requires
a set of users to label a set of tuple pairs (as match/no-
match). Such labeling is best done via a cloud-based tool.
As another example, the production stage needs tools
that can process data fast on a machine cluster. Such
tools do not fit the mold of on-prem Python packages. We
discuss our view of the eventual ecosystem for PyMatcher
in Section 6.
Third, machine learning “in the wild” is surprisingly

difficult, even though so far we have used only main-
stream, well-known ML techniques. We definitely need
more support, such as how to minimize labeling effort,
how to label accurately with multiple people, how many
training examples to sample, how to debug ML algo-
rithms, etc.
The final (related) point is that training users in

ML/EM (so that they can use PyMatcher) is difficult.
We learned this in multiple projects, where training do-
main scientists took forever. As a result, we believe that
if the EM need is one-shot, short-term, or exploratory,
then self-service EM systems that require no ML/EM
knowledge from users would be the best way to proceed.
The CloudMatcher thrust of Magellan, which we describe
next, builds such self-service systems.

5 CLOUDMATCHER
We discuss CloudMatcher development, real-world appli-
cations, and lessons learned.

5.1 System Development

Problem Scenarios: We use the term “lay user” to
refer to a user who does not know programming, ML, or
EM, but understands what it means to be match (and
thus can label tuple pairs as match/no-match). Our goal
is to build a system that such lay users can use to match
two tables 𝐴 and 𝐵. We call such systems self-service
EM systems.

Developing an EM System for a Single User: In
a recent work [30] we have developed Falcon, a self-
service EM system that can serve a single user (in [30]
we call this system “hands-off” instead of “self-service”).

Figure 5: Self-service EM with CloudMatcher.

Since CloudMatcher builds on Falcon, we begin by briefly
describing Falcon.
To match two tables 𝐴 and 𝐵, like most current EM

solutions, Falcon performs blocking and matching, but
it makes both stages self-service (see Figure 3). In the
blocking stage (Figure 3.a), it takes a sample 𝑆 of tuple
pairs (Step 1○), then performs active learning with the
lay user on 𝑆 (in which the user labels tuple pairs as
match/no-match) to learn a random forest 𝐹 (Step 2○),
which is a set of 𝑛 decision trees. The forest 𝐹 declares
a tuple pair 𝑝 a match if at least 𝛼𝑛 trees in 𝐹 declare
𝑝 a match (where 𝛼 is pre-specified).
In Step 3○, Falcon extracts all tree branches from

the root of a tree (in random forest 𝐹) to a “No” leaf
as candidate blocking rules. For example, the tree in
Figure 4.a predicts that two book tuples match only
if their ISBNs match and the number of pages match.
Figure 4.b shows two blocking rules extracted from this
tree. Falcon enlists the lay user to evaluate the extracted
blocking rules, and retains only the precise rules. In Step
4○, Falcon executes these rules on tables 𝐴 and 𝐵 to
obtain a set of candidate tuple pairs 𝐶. This completes
the blocking stage (Figure 3.a). In the matching stage
(Figure 3.b), Falcon performs active learning with the
lay user on 𝐶 to obtain another random forest 𝐺, then
applies 𝐺 to 𝐶 to predict matches (Steps 5○ and 6○).
As described, Falcon is well suited for lay users, who

only have to label tuple pairs as match/no-match. We
implemented Falcon as CloudMatcher 0.1 and deployed as
shown in Figure 5, with the goal of providing self-service
EM to domain scientists at UW. Any scientist wanting
to match two tables 𝐴 and 𝐵 can go the homepage of
CloudMatcher, upload the tables, then label a set of tuple
pairs (or ask crowd workers say on Mechanical Turk to
do so). CloudMatcher uses the labeled pairs to block
and match, as described earlier, then returns the set of
matches between 𝐴 and 𝐵.

Developing an EM System for Multiple Users:
We soon recognized however that CloudMatcher 0.1 does
not scale, because it can execute only one EM workflow
at a time. So we designed CloudMatcher 1.0, which can
efficiently execute multiple concurrent EM workflows
(e.g., submitted by multiple scientists at the same time).

Developing CloudMatcher 1.0 was highly challenging [31].
Our solution was to break each submitted EM workflow
into multiple DAG fragments, where each fragment per-
forms only one kind of task, e.g., interaction with the
user, batch processing of data, crowdsourcing, etc. Next,
we execute each fragment on an appropriate execution
engines. We developed 3 execution engines: user interac-
tion engine, crowd engine, and batch engine. To scale,
we interleave the execution of DAG fragments coming
from different EM workflows, and coordinate all of the
activities using a “metamanager”. See a recent workshop
paper [31] for more details.

Providing Multiple Basic Services: CloudMatcher
1.0 implemented only the above rigid Falcon EM work-
flow. As we interacted with real users, however, we ob-
served that many users want to flexibly customize and
experiment with different EM workflows. For example,
a user may already know a blocking rule, so he or she
wants to skip the step of learning such rules. Yet another
user may want to use CloudMatcher just to label tuple
pairs (e.g., to be used in PyMatcher).
So we developed CloudMatcher 2.0, which extracts a

set of basic services from the Falcon EM workflow and
makes them available on CloudMatcher, then allows users
to flexibly combine them to form different EM workflows
(including the original Falcon one). Appendix C shows the
list of services that we currently provide. Basic services
include uploading a dataset, profiling a dataset, edit the
metadata of a dataset, sampling, generating features,
training a classifier, etc. We have combined these basic
services to provide composite services, such as active
learning, obtaining blocking rules, and Falcon (see the
bottom of the table). For example, the user can invoke
the “Get blocking rules” service to ask CloudMatcher
to suggest a set of blocking rules that he/she can use.
As another example, the user can invoke the “Falcon”
service to execute the end-to-end Falcon EM workflow.

5.2 Real-World Applications
From 2017 to date CloudMatcher has been successfully
applied to multiple EM applications, and has attracted
commercial interest. It has been in production at Amer-
ican Family Insurance since Summer 2018, and is being
considered for production at two other major companies.
Table 2 summarizes CloudMatcher’s performance on

13 real-world EM tasks. The first two columns show that
CloudMatcher has been used in 5 companies, 1 non-profit,
and 1 domain science group, for a variety of EM tasks.
The next two columns show that CloudMatcher was used
to match tables of varying sizes, from 300 to 4.9M tuples.
Ignoring the next two columns on accuracy, let us

zoom in on the three columns under “Cost” in Table

Table 2: Real-world deployment of CloudMatcher.

2. The first column (“Questions”) lists the number of
questions CloudMatcher had to ask, i.e., the number of
tuple pairs to be labeled. This number ranges from 160
to 1200 (the upper limit for the current CloudMatcher).
In the next column (“Crowd”), a cell such as “$72”

indicates that for the corresponding EM task, Cloud-
Matcher used crowd workers on Mechanical Turk to
label tuple pairs, and it cost $72. A cell “-” indicates
that the task did not use crowdsourcing. It used a single
user instead, typically the person who submitted the EM
task, to label, and thus incurred no monetary cost.

In the third column (“Compute”), a cell such as “$2.33”
indicates that the corresponding EM task used AWS,
which charged $2.33. A cell such as “-” indicates that
the EM task used a local machine owned by us, and thus
incurred no monetary cost.

Turning our attention to the last three columns under
“Time”, the first column (“User/Crowd”) lists the total
labeling time, either by a single user or by the Mechanical
Turk crowd. We can see that when a single user labeled,
it was typically quite fast, with time from 9m to 2h.
When a crowd labeled, time was from 22h to 36h (this
does not mean crowd workers labeled non-stop and took
that long, it just meant Mechanical Turk took that long
to finish the labeling task). These results suggest that
CloudMatcher can execute a broad range of EM tasks
with very reasonable labeling time from both users and
crowd workers. The next two columns under “Time”
show the machine time and the total time.

We now zoom in on the accuracy. The columns “Pre-
cision” and “Recall” show that in all cases except three,
CloudMatcher achieves high accuracy, often in the 90

percentage. The three cases of limited accuracy are “Ve-
hicles”, “Addresses”, and “Vendors”. A domain expert
at American Family Insurance (AmFam) labeled tuple
pairs for “Vehicles”. But the data was so incomplete
that even he was uncertain in many cases on whether
the tuple pair match. At some point he realized that he
had incorrectly labeled a set of tuple pairs, but Cloud-
Matcher provided no way for him to “undo” the labeling,
hence the low accuracy. This EM task is currently being
re-executed at AmFam.

For “Vendors”, it turned out that the portion of data
that consists of Brazilian vendors is simply incorrect:
the vendors entered some generic addresses instead of
their real addresses. As a result, even users cannot match
such vendors. Once, we removed such vendors from the
data, the accuracy significantly improved (see the row for
“Vendors (no Brazil)”). It turned out that “Addresses”
had similar dirty data problems, which explained the
low recall of 76-81%.

5.3 Lessons Learned
We now discuss the lessons learned from working with
the above applications.

The Promise of Self-Service EM: The idea of just
having to label a set of tuple pairs sounded very appeal-
ing, and our customers were enthusiastic about using
CloudMatcher. CloudMatcher also seemed to perform well
on a broad range of EM tasks. We concluded that self-
service EM is a great way to start the “EM journey”. If
a user has only one-shot or short-term EM needs, then
perhaps it is best to start out trying CloudMatcher. If
CloudMatcher already achieves the desired accuracy, then

great. Otherwise, the user can look into using PyMatcher,
the more powerful system.

Challenges in Data Cleaning and Labeling: Our
experience also made clear that data cleaning is critical
for EM (e.g., see the “Vendors” and “Addresses” cases).
It is important that we can detect dirty data, isolate it,
and then clean it, to maximize EM accuracy. But how
to do so in a self-service fashion is still unclear.

We also want to reduce the number of pairs that users
must label. In the case of matching two sets of strings
(a special case of EM), we have developed Smurf, which
removes the need to label to learn blocking rules. It only
needs labeling to learn a random forest-based matcher
[32]. This drastically reduces the labeling effort by 43-
76%, yet achieving the same accuracy. We are currently
extending Smurf to match tuples, and incorporating it
into CloudMatcher.

Challenges in Developing a Monolithic System:
Our biggest challenge, however, is that CloudMatcher has
been slowly growing into a big stand-alone monolithic
EM system, exactly the kind of system we would like
to avoid building. Its code base is large (47K LOC, as
discussed in Appendix D), and its many modules are
highly interdependent. We found that it is increasingly
hard to understand, maintain, and extend CloudMatcher.
This is exacerbated by developing it in academia, where
most students do not stay for long.
Another problem with CloudMatcher being a mono-

lithic system is that we cannot easily use “pieces” of it.
For example, most basic services of CloudMatcher (e.g.,
learning blocking rules, executing blocking rules, label-
ing tuple pairs, etc.) would be very helpful for both the
development and production stages of PyMatcher. But
to use any one of them, a PyMatcher user would need to
install the entire CloudMatcher, too much overhead. It
is also cumbersome to quickly get data into and out of
CloudMatcher for some of these services (e.g., to move
data between CloudMatcher and PyMatcher).

The above problems are not new. They commonly arise
in stand-alone monolithic systems. But as we built and
worked with CloudMatcher, we experienced them first
hand. This experience further motivated the Magellan
approach of developing ecosystems of interoperable tools.

Toward Cloud-Based Interoperable Microservices:
To address the above “monolithic system” challenges,
we are leveraging ideas from a recent trend in building
data science systems. Specifically, many DS projects have
started to adopt a microservice software approach, where
the code is decomposed into a set of microservices, which
are self-contained but interoperable services, each doing
just one task [5]. Tools have been developed to easily

deploy such services (e.g., Docker) and to coordinate
their execution on the cloud (e.g., Kubernetes) [6].
In short, many DS projects are moving to the cloud,

and a support infrastructure is emerging to help build
“cloud native” applications, which are composed of inter-
operable microservices that can be smoothly deployed,
executed, and scaled out on the cloud.
We are currently exploring how to redesign Cloud-

Matcher in this direction. Specifically, we want to extract
each basic service of CloudMatcher (e.g., data profiling,
learning blocking rules, labeling, etc. see Table 4) as a
microservice, then develop ways to combine their execu-
tion on the cloud (e.g., AWS) to provide the end-to-end
EM service to users. The new CloudMatcher will be a set
of interoperable microservice tools, and thus will follow
a system architecture similar to that of PyMatcher.

6 DISCUSSION
Building on our discussion of PyMatcher and Cloud-
Matcher, we now discuss what we have learned regarding
a number of questions raised in the introduction.

Promise of the New Approach: Our experience
has been that it is relatively easy to build and maintain
such systems. PyMatcher was built mostly by 2 Ph.D.
students, with the help from several hourly paid students
and 1-2 other Ph.D. students. CloudMatcher was built
mostly by 2 Ph.D. students, with the help from several
hourly students.
PyMatcher was relatively easy to manage because its

tools are self-contained Python packages, which can be
developed, modified, released, and maintained in a way
that is fairly independent of other packages. Initially,
CloudMatcher was also relatively easy to manage, as its
code base was highly modular and small. But in the past
one year it has become increasingly harder to manage,
as its monolithic code base has grown. Our hope is that
by rebuilding CloudMatcher as a set of much smaller
microservices, we will significantly reduce the complexity
of managing it.
Our real-world deployment of PyMatcher and Cloud-

Matcher has clearly demonstrated that they can be used
to solve a range of practical EM problems.

The New Envisioned Magellan Ecosystem: We
started out building into PyData. Over the past few
years, however, our vision has changed. Figure 6 illus-
trates the new envisioned Magellan ecosystem. In this
new ecosystem, we still have PyData tools and PyMatcher
tools such as py stringmatching, py entitymatching, etc.
These tools are on-premise. They can be downloaded and
used on a local machine, the way numerous DS projects
are being done today.

Figure 6: The new envisioned ecosystem of tools
for Magellan.

But we will also have microservice tools that inter-
operate and cloud native. The new CloudMatcher will
compose of multiple such services. We will build many
other services, to perform data cleaning, profiling, brows-
ing, etc. for EM. Most of these services can be easily
deployed, executed, and scaled out on the cloud. Some
of the tools and services will be self-service, i.e., very
easy for lay users to use.

System Challenges: As described, this is a very dif-
ferent kind of “data systems” than what we have used
to, such as RDBMSs. Such a data system is in fact an
ecosystem of tools and microservices that is “at home”
on the cloud. Building such ecosystem will raise numer-
ous challenges, some of which we have discussed in this
paper. Examples include satisfying and doing trade-offs
among the five principles described in Section 4, hori-
zontal and vertical scaling of services on the cloud, and
understanding and managing interoperability challenges
(e.g., data structures, metadata, missing values, data
type mismatch, package version incompatabilities, etc.).

Machine Learning & Data Science: Our work
makes clear that ML can be very beneficial to EM, mainly
because it provides an effective way to capture complex
matching patterns in the data, and to capture domain
expert’s knowledge about such patterns. ML is clearly
at the heart of EM workflows supported by PyMatcher
and CloudMatcher. In many real-world applications we
have worked with, ML helps significantly improve recall
while retaining high precision, compared to rule-based
EM solutions.
Yet to our surprise, deploying even traditional ML

techniques to solve EM problems already raises many
challenges, such as labeling, coping with new data, etc.
Our experience using PyMatcher also suggests that the
most accurate EM workflows are likely to involve a com-
bination of ML and rules. More generally, we believe

ML must be used effectively in conjunction with hand-
crafted rules, visualization, and good user interaction,
in order to realize its full potential.

In this paper we have shown how powerful ideas in DS
can be used to solve EM. In the reverse direction, EM
tools as developed in this paper can also be naturally
integrated into the DS ecosystem of tools, and thus help
solve DS problems (e.g., in data wrangling).

Understanding of EM & the New System Tem-
plate: Our experience with Magellan (especially in
working with a broad range of real-world users) has sig-
nificantly deepened our understanding of EM “in the
wild” and the new system template.

We now understand that EM in the wild is very messy,
with users wanting to try all kinds of EM workflows
and scenarios, and changing what they want to do on
the fly, depending on what they have just learned. Put
differently, many EM projects in the wild are really a
“conversation” between the EM team and the domain
expert team, and this conversation moves forward as
new results are produced and discussed.
If this is the case, then it follows that it is critical to

have how-to guides that tell both teams how to conduct
this conversation, what to do first, what to do second,
and so on.

Having multiple interoperable tools would allow users
to quickly assemble new EM workflows and try out new
things. It is also easier to develop, modify, and release
independent self-contained tools than a large monolithic
system. Fundamentally, the benefits of an ecosystem
of EM tools (vs. monolithic systems) are the same as
those that have been articulated in the past few years
for microservice software architectures.

7 CONCLUSIONS
We have described Magellan, a project to build EM
systems. We have discussed how Magellan borrowed
ideas from the field of data science, to build a novel
kind of EM systems. We described PyMatcher and Cloud-
Matcher, EM tools for power users and lay users, and
real-world applications of these tools. We reported on
the lessons learned, and outline a new more powerful
Magellan ecosystem, with on-premise Python packages
and cloud-native microservices.

Going forward, we are working on extending PyMatcher
and re-designing CloudMatcher as a set of interoperable
cloud-native microservices. We are also looking for more
real-world applications to “test drive” Magellan. Finally,
we plan to apply the Magellan system building tem-
plate to other data integration problems, such as schema
matching, data exploration, and information extraction.

REFERENCES
[1] Peter Christen. Data Matching. Springer, 2012.

[2] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassil-

ios S. Verykios. Duplicate record detection: A survey. IEEE
TKDE, 19(1):1–16, 2007.

[3] Pradap Konda et al. Magellan: Toward building entity match-
ing management systems. PVLDB, 9(12):1197–1208, 2016.

[4] AnHai Doan et al. Toward a system building agenda for

Data Integration (and Data Science). IEEE Data Eng. Bull.,
41(2):35–46, 2018.

[5] Sam Newman. Building microservices : designing fine-grained

systems. O’Reilly Media, Sebastopol, CA, 2015.
[6] Kelsey Hightower. Kubernetes : up and running: dive into

the future of infrastructure. O’Reilly Media, Sebastopol, CA,

2017.
[7] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. Principles

of Data Integration. Morgan Kaufmann, 2012.

[8] George Papadakis et al. Web-scale, Schema-Agnostic, End-
to-End Entity Resolution. In The Web Conference (WWW),
Lyon, France, April, 2018.

[9] Workshop on Human-In-the-Loop Data Analytics, http://
hilda.io/.

[10] George Papadakis et al. The return of JedAI: End-to-End
entity resolution for structured and semi-structured data.
PVLDB, 11(12):1950–1953, 2018.

[11] IEEE Data Engineering Bulletin, Special Issue on Large-Scale
Data Integration, 2018, http://sites.computer.org/debull/

A18june/issue1.htm.

[12] Mary Tork Roth et al. The Garlic Project. In Proceedings
of the 1996 ACM SIGMOD International Conference on

Management of Data, page 557, 1996.
[13] Sudarshan S. Chawathe et al. The TSIMMIS Project: Inte-

gration of heterogeneous information sources. In IPSJ, pages

7–18, 1994.
[14] Alon Y. Levy et al. The world wide web as a collection

of views: Query processing in the information manifold. In

VIEWS, pages 43–55, 1996.
[15] Michael Stonebraker et al. Data Integration: The current

status and the way forward. IEEE Data Eng. Bull., 41(2):3–9,

2018.
[16] Joseph M. Hellerstein et al. Self-Service Data Preparation:

Research to practice. IEEE Data Eng. Bull., 41(2):23–34,
2018.

[17] Cláudia Maria Lima Werner. Building software ecosystems

from a reuse perspective. In International Workshop on
Software Ecosystems, 2009.

[18] Tom Mens et al. Analysing the evolution of social aspects of

open source software ecosystems. In International Workshop
on Software Ecosystems, volume 746, pages 1–14, 2011.

[19] Rodrigo dos Santos et al. A proposal for software ecosystems

engineering. CEUR Workshop Proceedings, 746, 2011.
[20] Eric Yu et al. Understanding software ecosystems: A strategic

modeling approach. CEUR Workshop Proceedings, 746, 01

2011.
[21] F.W. Santana et al. Towards the analysis of software projects

dependencies: An exploratory visual study of software ecosys-
tems. CEUR Workshop Proceedings, 987:1–12, 01 2013.

[22] J. Yates Monteith et al. Hadoop and its evolving ecosystem.

CEUR Workshop Proceedings, 987, 06 2013.
[23] Spauwen Ruvar et al. Towards the roles and motives of open

source software developers. CEUR Workshop Proceedings,

987, 06 2013.
[24] J. Yates Monteith et al. Scientific research software ecosystems.

ACM International Conference Proceeding Series, 08 2014.

[25] International Workshop on Software Ecosystems, http://
ceur-ws.org.

[26] Workshop on Software Ecosystem Architectures, http://wea.

github.io/.
[27] ACM International Workshop on Software-Defined Ecosys-

tems, https://dl.acm.org/citation.cfm?id=2756594.

[28] Pradap Konda et al. Performing entity matching end to end:
A case study. In EDBT, 2019.

[29] Sidharth Mudgal et al. Deep learning for entity matching: A

design space exploration. In SIGMOD, 2018.
[30] Sanjib Das, Paul Suganthan G.C., AnHai Doan, Jeffrey F.

Naughton, Ganesh Krishnan, Rohit Deep, Esteban Arcaute,
Vijay Raghavendra, and Youngchoon Park. Falcon: Scaling up

hands-off crowdsourced entity matching to build cloud services.
In Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, pages 1431–1446, New
York, NY, USA, 2017. ACM.

[31] Yash Govind et al. Cloudmatcher: A cloud/crowd service for
entity matching. In BIGDAS, 2017.

[32] Paul Suganthan G. C. et al. Smurf: Self-Service String Match-

ing Using Random Forests. PVLDB, 12(3), 2019.

A DEVELOPING TOOLS FOR
PYMATCHER

We developed the tools for PyMatcher as follows. For each
main step of the how-to guide (see Column A of Table
3), we first examined existing packages to find tools, i.e,
commands, that can be used to support the step. Column
B shows the major existing packages that we use. For
example, for the step “read/write data”, we find that
the popular Pandas package provides many read/write
commands that users can use. For “data exploration”,
we recommend commands in Pandas, pandas-profiling,
and OpenRefine. For “blocking”, we use Dask to scale
up blocking commands. For “selecting a matcher”, we
use scikit-learn and pytorch, etc.

Next, we wrote our own Python code to develop more
tools to support the steps of the guide (see Column
C). For example, for “blocking”, we developed multiple
blockers: attribute equivalence, hash-based, rule-based,
etc.
While developing the blockers, we found that they

heavily use a large set of string tokenizers and simi-
larity measures. So we wrote a Python package called
py stringmatching that implements these. Matching two
sets of strings is also heavily used by the blockers, so
we wrote another package called py stringsimjoin that
implements multiple methods to match two large sets of
strings fast [11] (see Column C).
Finally, we identified “pain points” of the steps and

developed tools to address them (see Column D). For
example, intelligently down sampling two tables (e.g.,

http://hilda.io/
http://hilda.io/
http://sites.computer.org/debull/A18june/issue1.htm
http://sites.computer.org/debull/A18june/issue1.htm
http://ceur-ws.org
http://ceur-ws.org
http://wea.github.io/
http://wea.github.io/
https://dl.acm.org/citation.cfm?id=2756594

Step of the

How-to

Guide (A)

Use Existing

Packages (B)

Write Our Own

Code (C)

Develop Tools

for Pain Points

(D)

Number of

Commands

(E)

Read/Write

Data
pandas 6

Down

Sample
Down sampler 1

Data

Exploration

pandas

pandas-profiling

pandas-table

OpenRefine

2

Blocking
Dask

joblib

Multiple blockers

py_stringmatching

py_stringsimjoin

Blocking

debugger
21

Sampling pandas 1

Labeling PyQt5 GUI labeler 2

Creating

Feature

Vectors

joblib py_stringmatching

Automatic

feature creation

Manual feature

creation

12

Matching

scikit-learn

PyTorch

XGBoost

Matching

debuggers

Deep learning-

based matcher

20

Computing

Accuracy
pandas 4

Adding

Rules

Rule

specification

and execution
9

Managing

Metadata

Catalog

management
22

Main Packages: py_stringmatching, py_stringsimjoin, py_entitymatching,

py_labeler, DeepMatcher

Table 3: Developing tools for the steps of the
guide.

𝐴 and 𝐵 to 𝐴′ and 𝐵′, see Figure 2) is tricky. So we
developed a tool for it [3]. Debugging a blocker to assess
its accuracy is very challenging. So we developed such a
tool for the “blocking” step [3]. Column D lists the main
“pain points” tools that we have developed. Working with
users (see below) has helped us identify many more pain
points, and we are still in the process of developing tools
for them.

The last column, Column E, lists the number of com-
mands (where each command can be roughly viewed as
a tool that users can use) we have provided for each step
of the PyMatcher how-to guide. The bottom of the table
lists the five major packages that collectively make up
the PyMatcher “ecosystem”.

B SAVING THE AMAZON FOREST
We now describe “Land Use”, the latest application in
which PyMatcher has been put into production.

The Amazon forest in Brazil is shrinking rapidly, be-
cause cattle ranchers often clear the forest on their prop-
erties to obtain more grazing lands. Brazil has many laws

Table 4: List of services in CloudMatcher.

against this but it is very difficult to enforce them. To ad-
dress this problem, many companies (e.g., McDonald’s)
have promised to not buy beef from slaughterhouses that
obtain cows from “bad” ranches (where deforestation
happens). While promising, it has been very difficult to
track this. A bad ranch 𝑋 often sells cows to a ranch
𝑌 , which later sells them to a ranch 𝑍, which sells to
a slaughterhouse 𝑈 . 𝑈 can check that ranch 𝑍 is not
“bad”, but cannot check the entire supply chain, all the
way to the origin ranch 𝑋.

To address this problem, since 2008 Professor Holly
Gibbs and her team at UW-Madison has pioneered a
Big Data solution. Briefly, they can regularly obtain
data about the sell/buy transactions among the ranches,
and about ranches with deforestation (via analyzing
satellite images). Combining these two kinds of data
helps determine if a bad ranch is in a particular supply
chain. This approach can revolutionize research in the
land use community and make major real-world impacts.

But to make it work, her team must integrate data from
multiple sources (e.g., Brazilian governments, private
foundations, slaughterhouse records, etc.). This requires
matching cattle ranches across the sources. For the past
three years her team has hired a company to do such
matching, but the accuracy remains unsatisfactory.
Since Mar 2018 a student from our group has been

working with her team (1 programmer, 2 domain experts)
to apply PyMatcher to match ranches. In Aug 2018 we
showed that PyMatcher can achieve much higher recall
than the company solution, while slightly reducing pre-
cision. As a result, PyMatcher was put into production.
In Nov 2018, it was used to match the first batch of new
data, which consists of millions of ranches, and achieved
significantly better accuracy than the company solution
(see the row “Land Use (UW)” in Table 1). The matching
result has been sent to land use researchers all over the
world. A paper is planned for a major land use journal,
and the project received data science funding from UW
(which funds only 10 of the 54 proposals received).

C LIST OF SERVICES OF
CLOUDMATCHER

Table 4 shows the list of services that we currently pro-
vide.

D SYSTEM CHARACTERISTICS OF
CLOUDMATCHER

CloudMatcher has been developed since June 2016, and
CloudMatcher 2.0 is the latest version. It is a combination
of Python (27K LOC) and Java (6.5K LOC). So far
7 developers have contributed to the code base (47K
LOC), which also includes frontend written in HTML5,
Javascript, CSS3 (13.5K LOC). CloudMatcher provides 18
basic services and 2 composite services. We use Hadoop
for the most compute-intensive operations and HDFS as
the shared filesystem.

To serve many users/requests, we use Nginx as the web-
server, Gunicorn as the Python HTTP server and our
web-app component is written using the popular Django
web framework. We store state for the web application
and the workflows/tasks in a PostgreSQL database. We
use Celery as our task queue with RabbitMQ as the
message broker (using binary-only AMQP message for-
mat). For portability, we run our Postgres instance and
our Task Queue in Docker containers to make our de-
velopment and production environments identical. The
meta-manager is implemented using Twisted (an asyn-
chronous event-driven engine for network application
development) and we use Networkx library to handle
workflow graphs/DAGs.

We typically deploy CloudMatcher on a 4-node Amazon
EMR cluster, where each node has a 4-core Intel Xeon
E5-2686 2.30GHz processor and 16GB of RAM.

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Magellan Agenda
	4 PyMatcher
	4.1 System Development
	4.2 Real-World Applications
	4.3 Lessons Learned

	5 CloudMatcher
	5.1 System Development
	5.2 Real-World Applications
	5.3 Lessons Learned

	6 Discussion
	7 Conclusions
	References
	A Developing Tools for PyMatcher
	B Saving the Amazon Forest
	C List of Services of CloudMatcher
	D System Characteristics of CloudMatcher

