
Recovering Exchanged Data

Gösta Grahne
Concordia University

Montreal, Canada, H3G 1M8
grahne@cs.concordia.ca

Ali Moallemi
Concordia University

Montreal, Canada, H3G 1M8
moa_ali@encs.concordia.ca

Adrian Onet
∗

Concordia University
Montreal, Canada, H3G 1M8
adrian_onet@yahoo.com

ABSTRACT

The inversion of data exchange mappings is one of the thorni-
est issues in data exchange. In this paper we study inverse
data exchange from a novel perspective. Previous work has
dealt with the static problem of finding a target-to-source
mapping that captures the “inverse” of a source-to-target
data exchange mapping. As we will show this approach has
some drawbacks when it comes to actually applying the in-
verse mapping in order to recover a source instance from a
materialized target instance. More specifically (1): As is
well known, the inverse mappings have to be expressed in a
much more powerful language than the mappings they in-
vert. (2): There are simple cases where a source instance
computed by the inverse mapping misses sound information
that one may easily obtain when the particular target in-
stance is available. (3): In some cases the inverse mapping
can introduce unsound information in the recovered source
instance.

To overcome these drawbacks we focus on the dynamic
problem of recovering the source instance using the source-
to-target mapping as well as a given target instance. Sim-
ilarly to the problem of finding “good” target instances in
forward data exchange, we look for “good“ source instances
to restore, i.e. to materialize. For this we introduce a new
semantics to capture instance based recovery. We then show
that given a target instance and a source-to-target mapping
expressed as set of tuple generating dependencies, there are
chase-based algorithms to compute a representative finite set
of source instances that can be used to get certain answers to
any union of conjunctive source queries. We also show that
the instance based source recovery problem unfortunately
is coNP-complete. We therefore present a polynomial time
algorithm that computes a “small” set of source instances
that can be used to get sound certain answers to any union
of conjunctive source queries. This algorithm is then ex-

∗Contact author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2757-2/15/05 ...$15.00.
http://dx.doi.org/10.1145/2745754.2745770.

tended to extract more sound information for the case when
only conjunctive source queries are allowed.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation

General Terms
Algorithms; Theory

Keywords
Chase; Date Exchange; Data Repair; Incomplete databases;
Complexity

1. INTRODUCTION
Data exchange mappings are now widely used in translat-

ing data from one database (the source database) into data
in another database (the target database) that has a schema
distinct from the source database. A data exchange map-
ping M is specified by a triple (S,T,Σ), where S and T
are relational schemas such that S ∩T = ∅, and Σ is a set
of constraints (typically, formulas in some logic) expressing
the relationship between S (the source schema) and T (the
target schema). A data exchange mapping M is identified
with the set of pairs (I, J), where I is an instance over S,
J is an instance over T, and I ∪ J ⊧ Σ. We will henceforth
express this by writing (I, J) ∈M.

In their seminal paper [13], Fagin et al. proposed the lan-
guage of tuple generating dependencies (tgds) to represent
such schema mappings. The language of tgds was shown to
be rich enough to capture most mappings occurring in prac-
tice. We recall that a tgd is a first order formula of the form
∀x̄∀ȳ (α(x̄, ȳ) → ∃z̄ β(x̄, z̄)), where α and β are conjunc-
tions of relational atoms and x̄, ȳ and z̄ are sequences of vari-
ables. For simplicity, when representing tgds we will omit
the universal quantifiers. Source-to-target tgds (s-t tgds) are
those tgds where α contains only relation names from S and
β contains only relation names from T.1

In the framework for managing data exchange mappings,
Bernstein [10] proposed a set of operators for the mappings.
The operators included composition, merging, matching and

1Additionally, one may also specify target constraints. In
this paper we however only consider constraints Σ, where Σ
is a (finite) set of s-t tgds.

105

inverse. Two of these operators has gained a lot of attention
in the database community, namely the composition [14, 22,
5, 3, 17, 4, 18] and the inversion of schema mappings [12, 15,
8, 5, 6, 17, 16, 7]. In the case of composition, the semantics
of [14] has been widely adopted as standard. As mappings
actually are binary relations, the standard composition of
M and M′ is simply M ○M′, where ○ is relational com-
position. In contrast, due to the fact that a straightforward
application of the standard algebraic concept of mapping in-
version renders most schema mappings non-invertible, sev-
eral alternative semantics have been proposed. In [12], Fa-
gin et al. defined M′ to be an inverse of a mapping M, if
M○M′ = {(I, I ′) ∶ I ⊆ I ′}, where I and I ′ are instances over
S. This semantics, later named Fagin-inverse, turned out
to be too restrictive, as even simple source-to-target tgds do
not have Fagin-inverses. In a subsequent work Fagin et al.
[15] introduced the notion of quasi-inverse that does not dif-
ferentiate between source instances that are equivalent for
data exchange. Loosely speaking, M′ is a quasi-inverse of
M, ifM○M′○M =M. Even with this relaxation the quasi-
inverse remains rather restrictive. To overcome the restric-
tions, Arenas et al. [8] introduced the notion of a recovery. A
mappingM′ is a recovery of a mappingM if (I, I) ∈M○M′

for any instance I over S. As there can be several recoveries
of a given mapping, Arenas et al. considered the notion of a
maximum recovery. A mapping M′ is a maximum recovery
of M if M′ is a recovery of M, and for all recoveries M′′

of M it holds that M ○M′ ⊆M ○M′′. This new operation
of maximum recovery relaxed the previous inverse opera-
tions, and in [8] it was shown that any mapping specified by
a set of source-to-target tgds has a maximum recovery. In
the same paper it was also shown that large classes of map-
pings, including ones containing target dependencies, have
maximum recoveries. Unfortunately, the maximum recov-
ery mappings of mappings specified by source-to-target tgds
cannot be specified for target-to-source tgds. In [6] Arenas
et al. showed that in case one is interested in sound (in the
recovery semantics) certain answers for conjunctive queries,
the maximum recovery mapping of a mapping expressed by
a set of source-to-target tgds can be expressed by a set of
target-to-source tgds generalized so that the body of these
tgds allows the presence of the inequality predicate (≠) and
a special predicate that identifies constants. More recently
Fagin et al. [16] introduced the notion of extended-recovery
mappings that also deals with source instances that contain
nulls. In this case it is shown that all mappings specified by
source-to-target tgds have an extended-recovery mapping,
and that the recovery mapping can be represented by a set
of target-to-source tgds with inequalities and the constant
predicate allowed to occur in the body, and with disjunctions
and Skolem functions in the head (actually second order dis-
junctive tgds).

Although all these inverses play an important role in the
development of the model management framework of Bern-
stein [10], they are less likely to be used in practice due
their complicated structure involving disjunctions, and due
to the fact that when actually restoring a source database
from a target database, the inverse mapping does not neces-
sarily recover the source completely. For example, let the
source-to-target mapping be specified by dependency set
Σ = {R(x, y) → S(x), P (y)}. In this case the maximum
recovery mapping will consist of the following set of target-

to-source tgds Σ′ = {ξ′1, ξ′2}, where:

ξ′1 = S(x)→ ∃y R(x, y);
ξ′2 = P (y)→ ∃x R(x, y).

(1)

Consider target instance J = {S(a), P (b1), . . . , P (bn)}. In
this case chasing J with Σ′ will yield source instance

I = {R(a, Y),R(X1, b1), . . . ,R(Xn, bn)}, (2)

where y and the xi’s are nulls. It is however easy to see that
the information contained in Σ and J allows us to deduce
that the source instance actually must be

I ′ = {R(a, b1),R(a, b2), . . . ,R(a, bn)}. (3)

We would therefore expect the conjunctive source query
Q(x) = {(x) ∶ R(x, b2)} to return tuple (a), which is not the
case if the recovered source is I in (2). Similar anomalies
plague the other semantics as well. This means that these
semantics are not complete even when considering only con-
junctive queries.

Another practical issue with the proposed inverse seman-
tics is that these semantics do not seem to be“data-exchange
sound.” As an example consider the following set of full s-t
tgds Σ = {ξ1, ξ2, ξ3}, where:

ξ1 = R(x)→ T (x);
ξ2 = R(x)→ S(x);
ξ3 =M(x)→ S(x).

(4)

For this example both the maximum recovery [8] and the
extended-recovery mapping [16] are logically equivalent with
Σ′ = {ξ′1, ξ′2}, where:

ξ′1 = T (x)→ R(x);
ξ′2 = S(x)→ R(x) ∨M(x).

(5)

If we now consider target instance J = {S(a)} and use Σ′

to restore the source database, we will obtain the following
three possible source instances: I1 = {R(a)}, I2 = {M(a)}
and I3 = {R(a),M(a)}. It is easy to observe that neither
I1 nor I3 can be source instances that would yield target
instance J in a data exchange process using Σ and using the
extended-chase procedure from [11].

In this paper we will consider the problem of recovering
the source instance when the source-to-target mapping and
the target instance are given. In the semantics considered a
source instance I is a recovery of a target instance J under
a set of s-t tgds Σ if the following holds:

1. I ∪ J ⊧ Σ, and

2. all tuples from J are justified through Σ by the exis-
tence of some tuples in I.

The second requirement guarantees that all the tuples in J
were obtained from instance I. Thus the empty instance
will not be considered as recovery even though we have that
∅∪J ⊧ Σ for any target instance J and any set of s-t tgds Σ.
We note that not all target instances are recoverable given
a set of s-t tgds. Consider for example the dependencies in
equation (4) and target instance J = {T (a)}.

It is easy to see that in the general case there might be
an infinite number of recovered source instances. We show

106

that there is a chase-based method to construct a finite set
of such recoveries, and that this set may be used to get
the certain answer for any source UCQ. This chase will be
applied with the set of target-to-source tgds obtained from
the initial source-to-target tgds by inverting the arrows in
the tgds. As we will see our chase is not the standard chase
[9, 13]; as it is a more involved computation. There are three
main cases that need to be covered by our chase process
in order to ensure the soundness (wrt the semantics) and
completeness (wrt UCQ certain answers) of the recovered
set of instances.

As a first case consider the following source-to-target tgds

Σ = {R(x)→ S(x);
M(y)→ S(y)}

and target instance J = {S(a)}. By reversing the arrows
we get

Σ−1 = {S(x)→ R(x);
S(y)→M(y)}

Using the standard chase on J with Σ−1 will return instance
I = {R(a),M(a)}. Even though I is a recovery it is not the
only one, as I1 = {R(a)} and I2 = {M(a)} also are recoveries
of J under Σ. In order to achieve this our chase method will
not apply all the existing triggers (homomorphisms from
the body of the tgds to the instance) but only enough to be
sure that the target instance is covered. The set of triggers
chosen will determine the recovery. We note that the target
instance and the recovery do not need to be a model of Σ−1.
In our example neither I1 nor I2 is a model of Σ−1 and J .

For the second case consider target instance J = {S(a)}
and Σ from equation (4). It is easy to see that when chasing
instance J with Σ−1 we should not trigger the tuple generat-
ing dependency S(x)→ R(x). This is because a tuple R(a)
in the source instance requires a tuple T (a) in target in-
stance J . Since T (a) ∉ J the soundness of the recovery is vi-
olated. This led us to the notion of subsumption constraints
that we obtain from the set of s-t tgds Σ. The subsumption
constraints will ensure that such unsound recoveries do not
occur.

Finally, for the third case consider the set of source-to-
target tgds Σ = {ξ1, ξ2}, where:

ξ1 = R(x,x, y)→ T (x);
ξ2 = R(v,w, z)→ S(z).

(6)

Let J = {T (a), S(b)} be the target instance. By simply chas-
ing instance J with Σ−1 we will obtain source instance I =
{R(a, a,X),R(Y,Z, b)}, where X,Y and Z are nulls. It is
easy to see that I is not a recovery of J under Σ because the
existence of tuple R(a, a,X) in the source instance requires
the existence of tuple S(X) in the target instance. In this
case the chase process needs to be “smart enough” to “see”
that the recoveries are instances of the form I1 = {R(a, a, b)},
I2 = I1 ∪ {R(Y2, Z2, b)}, I3 = I2 ∪ {R(Y3, Z3, b)}, . . .,
In = In−1 ∪ {R(Yn, Zn, b)}, . . ., where the Yi’s and Zi’s are
distinct nulls.

The results. First we precisely define the instance recov-
ery semantics, that is, what makes a source instance a valid
recovery given a set of source-to-target tgds and a target
instance. This semantics contains both the universal solu-
tions [13] and canonical solutions [20]. Next we show that

the problem of testing if a target instance J is recoverable
under a set of source-to-target tgds Σ is an NP-complete
problem (the same complexity also holds when testing if J
is a universal or canonical solution for some source instance
I and Σ). We then show that in order to obtain complete
certain answers for any UCQ query over the source schema
it is sufficient to compute a finite number of recoveries. The
downside is that the problem of testing if a tuple t is in the
certain answer of such a UCQ is coNP-complete, and that
the hardness result holds even when the query considered is
a conjunctive one. On the other hand, we show that there
is a simple tractable algorithm that computes a source in-
stance that is part of any recovery. Such a source instance
can be used to compute sound certain answers to any UCQ.
Next the method is extended, retaining tractability, to ob-
tain a source instance that has a homomorphism into every
recovery. This source instance can be used to compute sound
certain answers to any CQ. We also compare our recoveries
with the instances obtained by chasing the target with the
inverse/recovery mappings considered in the literature.

Interestingly enough, query answering over the recovered
instances is a generalization of query answering over mate-
rialized views. Our current work extends the previous work
[1] by considering s-t tgds instead of the full GAV depen-
dencies used for views. Also we introduce tractable cases
for both the UCQ and CQ query classes.

2. PRELIMINARIES
In this section we introduce the basic technical preliminar-

ies and definitions. More information on relational database
theory can be obtained from e.g. [2]. We will consider the
complexity classes P, NP and coNP. For the definition of
these classes we refer to [23].

A finite mapping f , where f(ai) = bi, for i = 1, . . . , n, will
be represented as {a1/b1, a2/b2, . . . , an/bn}. The composi-
tion of mappings f and g is f ○ g, defined as (f ○ g)(x) =
f(g(x)). If f is a mapping with domain A, and S ⊆ A, the
restriction of f to S is denoted f ∣S .

A schema R is a finite set {R1, . . . ,Rn} of relational sym-
bols, each Ri having a fixed arity ki. Let Cons be a count-
ably infinite set of constants, and Nulls a countably infinite
set of nulls, such that Cons∩Nulls = ∅. An instance I of
R is an interpretation that assigns to each relational sym-
bol Ri a finite ki-ary relation RIi ⊂ (Cons∪Nulls)ki . An
instance I over R is usually identified with the set of tuples
{Ri(ā) ∶ ā ∈ RIi ,Ri ∈ R}. We denote with ∣I ∣ the size of I, i.e.
the number of tuples in I, and with dom(I) we denote the
set of all constants and nulls that occur in I. An instance I,
such that dom(I) ⊆ Cons is called a ground instance. If I
and J are two instances over the same schema R, we denote
with I ⊆ J the fact that RIi ⊆ RJi , for all i ∈ {1, . . . , n}.

Let I and J be instances over a schema R. A homomor-
phism from I to J is a mapping h on Cons∪Nulls, identity
on Cons, and extended to tuples and relations in the natural
way, such that h(RIi) ⊆ RJi , for all i ∈ {1, . . . , n}. The exis-
tence of a homomorphism between instance I and instance
J is denoted I → J .

In data-exchange systems the mapping between the source
and the target schema is usually expressed as a set of source-
to-target tuple generating dependencies (s-t tgds). An s-t tgd

107

ξ is a first order formula of the form

∀x̄∀ȳ α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), (7)

where α(x̄, ȳ) is a conjunction of atoms over the source
schema, β(x̄, z̄) is a conjunction of atoms over the target
schema, and x̄, ȳ and z̄ are sequences of variables. In case
z̄ = ε, the tgd is called a full tgd. Similarly, in case ȳ = ε the
tgd is called a quasi-guarded tgd. Moreover, by vars(ξ) we
mean the set of all variables in x̄, ȳ, and z̄. When there is
no danger of confusion we will also regard a sequence x̄ as a
set, and write x2 ∈ x̄, when for example x̄ = (x1, x2, x3). We
will also often view a conjunction of atoms as a set of atoms,
i.e. as an instance where each variable corresponds to a null
value. A source instance I and target instance J is said to
satisfy dependency ξ, denoted (I, J) ⊧ ξ, if I ∪ J is a model
of ξ in the model-theoretic sense. This is extended to sets
of s-t tgds Σ, by stipulating that (I, J) ⊧ Σ if (I, J) ⊧ ξ for
all ξ ∈ Σ. For an s-t tgd ξ of the form (7), by ξ−1 we denote
the following first order formula, called the reverse of ξ:

∀x̄∀z̄ β(x̄, z̄)→ ∃ȳ α(x̄, ȳ). (8)

Note that if ξ is quasi-guarded, then ξ−1 is a full tgd. For
a set Σ of s-t tgds we define Σ−1 = {ξ−1 ∶ ξ ∈ Σ}. In the
rest of the paper, we assume without loss of generality, that
for each set of s-t tgds every two tgds from that set do not
share any variables. For simplicity, we will often omit the
universal quantifiers when representing tgds.

Given a source instance I and an s-t tgd ξ of the form
α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), with Chase(ξ, I) we denote the target
instance constructed as follows: Start with Chase(ξ, I) = I.
For each homomorphism h such that h(α(x̄, ȳ)) ⊆ I, ex-
tend h to h′ such that h′(z) is a new null that was not
used before, for each z ∈ z̄. Then add tuples h′(β(x̄, z̄)) to
Chase(ξ, I). The chase process is extended to a set Σ of
s-t tgds by Chase(Σ, I) = ⋃ξ∈Σ Chase(ξ, I). It was shown
in [13] that Chase(Σ, I)→ J for any target instance J such
that (I, J) ⊧ Σ. If H is a set of homomorphisms from the
bodies of tgds in Σ to I, we denote by ChaseH(Σ, I) the sub-
set of Chase(Σ, I) obtained by using only homomorphisms
from H.

A conjunctive query Q over schema R is an expression of
the form {(x̄) ∶ ∃ȳ α(x̄, ȳ)}, where α(x̄, ȳ) is a conjunction
of atoms over R and x̄, ȳ are sequences of variables. Given
an instance I over schema R, the result of the conjunctive
query Q on I is:

Q(I) = {(h(x̄)) ∶ h(α(x̄, ȳ)) ∈ I
for some homomorphism h}.

(9)

With Q(I)↓ we denote the set of those tuples from Q(I)
that do not contain any values from Nulls. A query with
no free variables is called a Boolean query. The class of all
conjunctive queries is denoted CQ. A union Q of conjunctive
queries over schema R is an expression of the form

{(x̄) ∶ ∃ȳ (α1(x̄, ȳ1) ∨ α2(x̄, ȳ2) ∨ . . . ∨ αn(x̄, ȳn)), (10)

where ȳ = ȳ1∪ ȳ2∪ . . .∪ ȳn and each αi(x̄, ȳi) is a conjunction
of atoms over R. The result of applying Q on an instance I
is defined as

Q(I) = {(h(x̄)) ∶ h(α(x̄, ȳi)) ∈ I
for some 1 ≤ i ≤ n and homomorphism h}.

(11)

With UCQ is denoted the class of all union of conjunctive
queries.

3. INSTANCE BASED RECOVERY
In this section we introduce the notion of instance based

recovery, not be confused with the notion of a recovery map-
ping introduced by Arenas et al. in [8]. We focus on recov-
ering a source instance I, given a target instance J and an
s-t mapping M. This is in contrast with [12, 15, 8, 5, 6,
17, 16, 7] that consider the problem of computing a gen-
eral target-to-source mapping M′, given a source-to-target
mapping M. While such a mapping M′ can be used to
compute a source instance from a given target instance, the
above cited papers mostly focus on the role of M′ in model
management. It turns out that our semantics differs from
the semantics previously considered. We argue that our se-
mantics is the natural one for practical data recovery, i.e.
for restoring a source instance. In this paper we will focus
only on mappings specified by a set of s-t tgds.

Definition 1. (Minimal solution) Given a set of s-t
tgds Σ, a source instance I, and a target instance J , we
say that J is a minimal solution with respect to Σ and I, if
(I, J) ⊧ Σ and for any J ′ ⊂ J , it is the case that (I, J ′) /⊧ Σ.

Example 1. Consider Σ = {S(x) → ∃y T (x, y)}, and
target instance J1 = {T (a, b), T (b, c)}. In this case J1 is
a minimal solution wrt Σ and I1 = {S(a), S(b)}, but J1 is
not a minimal solution wrt Σ and I2 = {S(a)}, even though
(I2, J1) ⊧ Σ. Note that there are target instances that are not
a minimal solution wrt Σ and any source instance I. For ex-
ample, J2 = {T (a, b), T (a, c)} is not a minimal solution wrt
Σ for any source instance I.

Definition 2. (Justified solution) Given a set of s-t
tgds Σ, a target instance J is said to be justified by source
instance I under Σ, if

1. (I, J) ⊧ Σ, and

2. J → J ′, for some minimal solution J ′ wrt Σ and I.

It is easy to see that the universal solutions [13] and the
canonical solutions [20] are justified solutions. On the other
hand, there exists justified solutions that are neither univer-
sal nor canonical solutions. E.g. instance J1 in Example 1
is a justified solution by source instance I1 under Σ, but
is not a universal or canonical solution for I1 and Σ. Note
that all the results to be presented hold even if one considers
only universal solution (or canonical solution) based seman-
tics, i.e. only universal (canonical) solutions are considered
as recoverable. Using the notion of justified solutions, it
is clear that it is not possible to find recoveries for all tar-
get instances. The following definition describes the target
instances for which one may compute recoveries.

Definition 3. (Valid for recovery) Given a set of s-t
tgds Σ, a target instance J is said to be valid for recovery
under Σ, if there exists a source instance I such that J is
justified by I under Σ. Such a source instance I is said to
be a recovery for J under Σ. With REC(Σ, J) we denote the
set of all recoveries for J under Σ. We thus have

REC(Σ, J) = {I ∶ J is justified for I under Σ}.

Note that the above semantics is more restrictive than
the corresponding data-exchange semantics in [13]. Thus,

108

we will not allow mappings that contain empty source in-
stances and non-empty target instances. This restriction is
natural as it considers only pairs of instances (I, J) such
that each tuple in J is “justified“ by the presence of some
tuples in I. With this we have the certain answer for Σ and
target instance J defined as

CERT(Q,Σ, J) = ⋂
I ∈REC(Σ,J)

Q(I).

Definition 4. (C-universal recovery) Let C be a class
of queries. A set I of source instances is said to be a C-
universal recovery, if

CERT(Q,Σ, J) = ⋂
I∈I

Q(I),

for every source query Q ∈ C,

Because of their importance and frequency of use, the
classes of CQ- and UCQ-universal recoveries have been widely
studied in most of papers recently published on schema map-
ping and inversion. Accordingly, in this paper we focus only
on the class of CQ- and UCQ-universal recoveries.

4. HOMOMORPHISMS
Let ξ be an s-t tgd of the form α(x̄, ȳ) → ∃z̄ β(x̄, z̄),

where α and β are conjunctions of predicates over source
and target instance, respectively. By head(ξ) we mean the
set of atoms in β(x̄, z̄) and by body(ξ) we mean the set of
atoms in α(x̄, ȳ). Given a target instance J , with HOM(ξ, J)
we denote the set of all homomorphisms h ∶ dom(head(ξ))→
dom(J), with h(β(x̄, z̄)) ⊆ J . That is,

HOM(ξ, J) = {h ∶ h(β(x̄, z̄)) ⊆ J}.
We extend this definition to a set Σ of source-to-target tgds,
by HOM(Σ, J) = ⋃ξ∈Σ HOM(ξ, J). Note that because each
tgd in Σ contains distinct variables, each homomorphism
h ∈ HOM(Σ, J) uniquely identifies a source-to-target tgd in
Σ, which we denoted by ξh.

To better visualize the notions introduced in this section
we illustrate all the definitions through the following running
example:

Example 2. Let Σ = {ξ, ρ, σ}, where:

ξ = R(x,x, y)→ ∃z S(x, z);
ρ = R(u, v,w)→ T (w);
σ =D(k, p)→ T (p).

For target instance J = {S(a, b), T (c), T (d)}, the set of all
homomorphisms is:

HOM(Σ, J) = {h1 = {x/a, z/b}, h2 = {w/c}, h3 = {w/d},
h4 = {p/c}, h5 = {p/d}}.

Note in the previous example that both homomorphisms
h2 and h4 cover the same tuple T (c) in J . This brings us to
the following definition.

Definition 5. (Covering of a target instance.) Let
Σ be a set of s-t tgds and J a target instance. Then

COV(Σ, J) = {H ⊆ HOM(Σ, J) ∶ ⋃
h∈H

h(head(ξh)) = J}.

Example 3. Returning to the set of s-t tgds Σ, target in-
stance J , and set of homomorphisms HOM(Σ, J) from Ex-
ample 2 we have

COV(Σ,J) = {{h1, h2, h3},{h1, h2, h3, h4},{h1, h2, h5},
{h1, h4, h5},{h1, h2, h3, h4, h5},{h1, h2, h3, h5},
{h1, h3, h4},{h1, h2, h4, h5},{h1, h3, h4, h5}}.

The intuition behind the covering notion is that the tuples
in the target instance can be generated, in a data-exchange
process, only using variable mappings from the homomor-
phisms in one of these coverings. For example, by chasing
source instance I = {R(a, a, c),D(a, d)} it will generate tar-
get instance J by using the covering {h1, h2, h5}.

In this example we also observe that the source instance
may not contain the tuple R(a, a, a), even if homomorphism
h1 will cover tuple S(a, b). This is because, based on the
second dependency, the target instance would need to contain
tuple T (a) as well. This gives the intuition for the notion of
subsumption constraint introduced by the next definitions.

Definition 6. (Minimal subsummit of a tgd) Let Σ
be a set of s-t tgds, {ξ1, . . . , ξn} ⊆ Σ and ξ0 a s-t tgd in
Σ ∖ {ξ1, . . . , ξn}. We say that {ξ1, . . . , ξn} is a subsummit
for s-t tgd ξ0, if there are mappings θi ∶ vars(ξi)→ V , where
V = Vars∖⋃ni=0 vars(ξi), such that when each θi is extended
to be identity on constants and homomorphically to sets of
atoms, it holds that

θ0(body(ξ0)) ⊆ θ1(body(ξ1)) ∪ . . . ∪ θn(body(ξn))

We also require that each θi, for i = 1, . . . , n, maps each vari-
able y that occurs in body(ξi) but not in head(ξi) to a unique
variable in V . If in addition the inclusion does not hold for
any proper subset of {ξ1, . . . , ξn}, we say that {ξ1, . . . , ξn} is
a minimal subsummit of ξ0 with {θ0, θ1, . . . , θn}.

Intuitively, the previous definition states that if a source
instance I, recovered from a target instance J , triggers the
s-t tgds {ξ1, . . . , ξn} in a chase process, then instance I will
also trigger dependency ξ0.

Example 4. Consider the set of source-to-target tgds Σ
and instance J from Example 2. It easy to see that for ho-
momorphisms θ0 = {u/r1, v/r1,w/r2} and θ1 = {x/r1, y/r2}
we have θ0(body(ρ)) ⊆ θ1(body(ξ)), meaning that {ξ} is a
minimal subsummit for ρ with {θ0, θ1}. Intuitively the sub-
summit is stating that the existence of a tuple of the form
R(r1, r1, r2) in a source instance recovered by the existence
of a tuple in the target instance under relation S and tgd ξ,
will also trigger tgd ρ and thus a corresponding tuple T (r1)
will need to exists in the target instance. Note that {ρ} can’t
be a subsummit for ξ for any set of homomorphisms because
variables u and v needs to be mapped to distinct values.

We next define the relationship between subsummits and
homomorphisms.

Definition 7. (Subsumption constraints.) Let Σ
be a set of s-t tgds. Then

SUB(Σ) = {θ1, θ2, . . . , θn → θ0 ∶ {ξ1, . . . , ξn} ⊆ Σ is a

minimal subsummit of ξ0 ∈ Σ with {θ0, θ1, θ2, . . . , θn}}.

109

From Example 4 we have constraint {θ1 → θ0} ⊆ SUB(Σ).
On the other hand, from the same example we also have
{θ0 → θ1} /⊆ SUB(Σ). We next define what it means for a
set of homomorphisms to satisfy a subsumption constraint.

Definition 8. (Model of SUB) Let H be a set of ho-
momorphisms and ζ a subsumption constraint of the form
θ1, θ2, . . . , θn → θ0. We say that H is a model of ζ, denoted
H ⊧ ζ, if for all i ∈ {1, . . . , n} and mappings m, such that
(m ○ θi)∣vars(head(ξhi

)) = hi ∈H there exists an extension m′

of m such that (m′ ○ θ0)∣vars(head(ξh0
)) = h0 ∈H.

A subsumption constraint ζ is said to be tautological if for
any set H of homomorphisms we have H ⊧ ζ. From now
on we will consider the set SUB(Σ) containing only non-
tautological subsumption constraints. The previous defini-
tion is extended to sets Υ of subsumption constraints, by
H ⊧ Υ iff H ⊧ ζ, for all ζ ∈ Υ.

Example 5. Continuing our Example 2 we have, by re-
moving all tautological subsumption constraints, that the set
SUB(Σ) equals {θ1 → θ0}. For the set of homomorphisms
H = {h1, h4, h5} ∈ COV(Σ, J) we have that H /⊧ SUB(Σ).
This is because the existence of h1 = {x/a, z/b} in H, based
on subsumption constraint {θ1 → θ0}, requires the existence
of a homomorphism over variables in ρ in H. Intuitively this
restriction states that by using only the homomorphisms in
H we will not be able to construct a source instance that
will be a recovery for J even if H is a cover for target in-
stance J . On the other hand, the covering {h1, h2, h3} is a
model of SUB(Σ).

Let H be a set of homomorphisms, Σ a set of s-t tgds,
and I an instance. Recall that ChaseH(Σ, I) denotes the
result of applying the standard chase with Σ on I, with
the restriction that only homomorphisms from H are used
to trigger dependencies. For example consider instance I =
{R(a),R(b)}, and the set of source-to-target dependencies

Σ = {R(x)→ ∃y T (x, y);
R(z)→ ∃v V (z, v)}.

Let the set of homomorphisms H = {{x/a},{x/b}}. Then
we have ChaseH(Σ, I) = {T (a,X1), T (b,X2)}, where X1

andX2 are new null values. If we considerH ′ = {{x/a},{z/b}},
we have ChaseH′(Σ, I) = {T (a,X3), V (b,X4)}, where X3

and X4 are new nulls.
The idea is to compute a recovery ChaseH(Σ−1, J), for

each H ∈ COV(Σ, J), such that H ⊧ SUB(Σ). However, as
seen in the following example, this does not yet guarantee
that the result is a recovery of J wrt Σ.

Example 6. Let Σ and J be the set of s-t tgds and tar-
get instance from Example 2, and let H1 = {h1, h2, h3}.
Then H1 ∈ COV(Σ, J) and H1 ⊧ SUB(Σ). Nevertheless,
ChaseH

1
(Σ−1, J) = I ′, where I ′ = {R(a, a,X1), R(X2,X3, c),

R(X4,X5, d)}, is not a recovery of J wrt Σ because we have
that (I ′, J) /⊧ Σ.

We note that Chase(Σ, I ′) = J ′, where target instance
J ′ = {S(a, a,Z1), T (X1), T (c), T (d)}. Also there are two
homomorphisms g1 and g2 from J ′ to J , where homomor-
phisms g1 = {Z1/b,X1/c} and g2 = {Z1/b,X1/d}. We can

note that g1(I ′) = {R(a, a, c),R(X2,X3, c),R(X4,X5, d)} and
g2(I ′) = {R(a, a, d),R(X2,X3, c),R(X4,X5, d)} are both re-
coveries of J .

This leads to the following algorithm.

Definition 9. Let Σ be a set of source-to-target tgds and
J a target instance valid for recovery under Σ. Suppose
COV(Σ, J) = {H1, . . . ,Hn}. Let ChaseHi(Σ−1, J) = Ii, for
each Hi ⊧ SUB(Σ), and let Chase(Σ, Ii) = Ji. Furthermore,
let {gi1, . . . , gimi} be all homomorphisms from Ji to J that
are the identity on dom(J). Then define the set of instances

Chase−1(Σ, J) = ⋃
1≤i≤n

⋃
1≤j≤mi

{gij(Ii)}.

With this we are now ready to state the main theorem of
this section.

Theorem 1. Let Σ be a set of s-t tgds and J a target
instance valid for recovery under Σ. Then

Chase−1(Σ, J) ⊆ REC(Σ, J).
Proof. (sketch) It is easy to note that for any set of

homomorphisms H ∈ COV(Σ, J) such that H ⊧ SUB(Σ, J)
we have that

Chase(Σ,ChaseH(Σ−1, J))→ J

with homomorphism h identity on the set dom(J). On the
other hand, from the construction of h and ChaseH(Σ−1, J),
it is easy to see that (h(ChaseH(Σ−1, J)), J) ⊧ Σ. Finally,
because H ∈ COV(Σ, J) it follows that each tuple from J is
justified by some tuples in h(ChaseH(Σ−1, J)). Note that h
is non-identity only on new nulls created during the creation
of ChaseH(Σ−1, J).

Intuitively, Theorem 1 shows that using the special chase
Chase−1 we get recoveries for Σ and J .

Example 7. Let Σ and J be the set of s-t tgds and in-
stance from Examples 2 and 3. For simplicity we will con-
sider only the set of minimal covers in COV(Σ, J) which are:
H1 = {h1, h2, h3}, H2 = {h1, h2, h5}, H3 = {h1, h3, h4} and
H4 = {h1, h4, h5}. As mentioned we have H4 /⊧ SUB(Σ), and
for any i ∈ {1,2,3}, we have Hi ⊧ SUB(Σ). Using the no-
tation from Definition 9, Chase−1 consists of the following
instances:

ChaseH1(Σ
−1, J) = I1 = {R(a, a,X1),R(X2,X3, c),

R(X4,X5, d)};
ChaseH2(Σ

−1, J) = I2 = {R(a, a, Y1),R(Y2, Y3, c),D(Y4, d)};
ChaseH3(Σ

−1, J) = I3 = {R(a, a,Z1),R(Z2, Z3, d),D(Z4, c)}.

For the target instance J1 = Chase(Σ, I1), where

J1 = {S(a,V1), T (X1), T (c), T (d)},

we have J1 → J with homomorphism g11 = {V1/b,X1/c} and
homomorphism g12 = {V1/b,X1/d}. Similarly, from source
instance I2 we get homomorphisms g21 = {V2/b, Y1/c} and
g22 = {V2/b, Y1/d} and finally from I3 we get homomor-
phisms g31 = {V3/b,Z1/c} and g32 = {V3/b,Z1/d}.

110

Based on Definition 9 from these homomorphisms the set
Chase−1(Σ, J) will contain the following recoveries:

g11(I1) = {R(a, a, c),R(X2,X3, c),R(X4,X5, d)},
g12(I1) = {R(a, a, d),R(X2,X3, c),R(X4,X5, d)},
g21(I2) = {R(a, a, c),R(X2,X3, c),D(X4, d)},
g22(I2) = {R(a, a, d),R(X2,X3, c),D(X4, d)},
g31(I3) = {R(a, a, c),R(X2,X3, d),D(X4, c)},
g32(I3) = {R(a, a, d),R(X2,X3, d),D(X4, c)}

Note that the theorem 1 does not guarantee that all pos-
sible recoveries are computed. Following Example 2 it is
easy to see I = {R(a, a, c),R(a, a, d),D(e, c)} ∈ REC(Σ, J)
but obviously I ∉ Chase−1(Σ, J). Nevertheless, the next
theorem shows that the set of instances Chase−1(Σ, J) are
sufficient for computing the certain answer for any UCQ
query.

Theorem 2. Let Σ be a set of s-t tgds and target instance
J valid for recovery under Σ, then Chase−1(Σ, J) is a UCQ-
universal recovery of J under Σ.

Proof. (sketch) Given two sets of instances L and K,
we write K → L iff (∀J ∈ L ∃I ∈ K ∶ I → J). In
case K → L and L → K, we say that K and L are ho-
momorphically equivalent and denoted it by K ↔ L. In
[11] it was shown that CERT(Q,K) = CERT(Q,L) for any
UCQ query Q iff K ↔ L. It follows that we only need
to show that REC(Σ, J) ↔ Chase−1(Σ, J). From Theo-
rem 1 it follows that REC(Σ, J) → Chase−1(Σ, J). Now
let I ∈ REC(Σ, J). Because Chase−1 uses sets of homomor-
phisms that cover the target instance and also from the way
Chase−1 is constructed, it follows that there exists an in-
stance Ii ∈ Chase−1(Σ, J) such that Ii → I.

5. COMPLEXITY
We first show that testing if a target instance J is valid

for recovery under Σ is NP-complete in the number of tuples
in J . We have

Problem: J-validity.
Parameter: Set Σ of s-t tgds.
Input: Target instance J
Question: Is J valid for recovery under Σ?

Theorem 3. The J-validity problem in NP-complete.

Proof. (sketch) Upper bound: It is easy to verify that
an instance J is valid for recovery wrt Σ iff there exists a
H ∈ COV(Σ, J), such that H ⊧ SUB(Σ, J). Thus one may
simply guess a subset H of HOM(Σ, J). The size of H is
at most m ⋅ nk, where n is the number of tuples in J , m is
the number of tgds in Σ, and k is the maximum number of
variables in the head of any tgd in Σ. It remains to test if
H ∈ COV(Σ, J) and if H ⊧ SUB(Σ, J). It is easy to see that
both tests can be done in time polynomial in n.

The lower bound can be inferred directly from the ”view
consistency”problem that is shown in [1] to be NP-hard even
when the view consists of a single GAV dependency.

The reduction above can also be used to prove the follow-
ing proposition.

Proposition 1. Let Σ be a fixed set of s-t tgds and J a
target instance. Testing whether J is a universal solution
for some source instance I under Σ is NP-complete in the
number of tuples in J .

We saw in the previous section that given a UCQ Q, we
can find the certain answer CERT(Q,Σ, J) by computing
the set Chase−1(Σ, J), and then evaluate Q on this set.
It seems that there can be an exponential blow-up when
going from J to Chase−1(Σ, J). This raises the question
whether the blow-up is avoidable. In this section we show
that the answer is “no” (assuming P≠NP), by considering
the following decision problem.

Problem: Q-certainty.
Parameters: Set Σ of s-t tgds, query Q.
Input: Tuple t, target instance J valid for

recovery under Σ.
Question: Is t ∈ CERT(Q,Σ, J)?

We shall see that the problem is coNP-complete when Q
is a CQ or a UCQ.

Theorem 4. Let Q be a CQ. Then the Q-certainty prob-
lem is coNP-complete.

Proof. (sketch) For the upper bound we note that the
answer is “no” if and only if there exists an instance I in
Chase−1(Σ, J), such that t ∉ Q(I). The instance I can be
guessed as follows.

First we generate SUB(Σ). This can be done in poly-
nomial time since the size of Σ is a constant. Then we
compute HOM(Σ, J) in time O(m ⋅nk), where n is the num-
ber of tuples in J , m is the number of tgds in Σ, and k
is the maximum number of variables in the head of any
tgd in Σ. We also compute, in polynomial time, the instance
ChaseHOM(Σ,J)(Σ−1, J). Let

N = Nulls(ChaseHOM(Σ,J)(Σ−1, J)) ∖Nulls(J)
be the set of “new” nulls. Now the size of N is bounded by
j ⋅m ⋅ nk, where j is the maximum number of variables in
the body of a dependency in Σ. We then guess a mapping
h from the new nulls N to dom(J), and guess a subset
H of HOM(Σ, J). Before going to the verification phase,
we compute I = ChaseH(Σ−1, J) ⊆ ChaseHOM(Σ,J)(Σ−1, J),
as well as Chase(Σ, I), both in time polynomial in n. It
remains to verify that

1. H ∈ COV(Σ, J),

2. H ⊧ SUB(Σ),

3. ∃ extension h′ of h, identity on dom(Chase(Σ, I))∖N ,
such that h′(Chase(Σ, I)) ⊆ J, and

4. t ∉ h′(I).
It is straightforward to show that steps 1, 2 and 4 can be
done in time polynomial in n. Step 3 can also be performed
in polynomial in n time as Σ is a set of s-t tgds. If all
verifications succeed, the answer to the Q-certainty problem
in “no,” which means that the problem of Q-certainty is in
coNP.

The lower bound follows again from [1] where it was shown
that already the special case of certain answers to CQs Q us-
ing materialized views under CWA when the view is defined
as a GAV dependency, is coNP hard.

111

We note that the same lower bound and upper bound hold
even if Q is a UCQ. We therefore have:

Corollary 1. Let Q be a UCQ. Then the Q-certainty
problem is coNP-complete.

6. TRACTABLE CASES
As saw in the previous section, recovery and certain an-

swer evaluation of CQ and UCQ queries is intractable in the
general case. We will now look into some special cases that
guarantee tractability. First we give criteria for Σ and J
that are sufficient for REC(Σ, J) to contain a unique recov-
ery computable in polynomial time. Such a unique recov-
ery is naturally UCQ-complete. We also give a polynomial
time algorithm that materializes a unique instance that gives
sound answers to any CQ query.

6.1 Unique recoveries
We shall first look at an example that illustrates the in-

tuition behind unique recoveries.

Example 8. Consider the following dependency that de-
scribes a schema evolution in a company.

Emp(Name, Dept), Bnf(Dept, Benefit)→
EmpDept(Name, Dept),EmpBnf(Emp, Benefit).

The Emp relation records the department where each em-
ployee works, and the Bnf relation lists the benefits (medical
insurance, pension contributions, profit sharing, etc.) for all
the employees of the given department.

After the data exchange for the new schema is carried out,
the company changes its policy to allow an employee to work
for more than one department. It therefore decides to restore
the database according to the old schema.

It is easy to see that the set SUB(Σ) contains only one
constraint, stating that a department gives the same set of
benefits to each of its employees.

{Name/v1,Dept/w,Benefit/u1},
{Name/v2,Dept/w,Benefit/u2}→

{Name/v1,Dept/w,Benefit/u2}.

Suppose the target instance J is as follows:

J
EmpDept(Joe, HR)
EmpDept(Bill, Sales)
EmpDept(Sue, HR)
EmpBnf(Joe, medical)
EmpBnf(Joe, pension)
EmpBnf(Bill, medical)
EmpBnf(Bill, profit)
EmpBnf(Sue, medical)
EmpBnf(Sue, pension)

It is easy to see that J is valid for recovery under the given
dependency and also that it has a unique recovery I:

I
EmpDept(Joe, HR)
EmpDept(Bill, Sales)
EmpDept(Sue, HR)
Bnf(HR, medical)
Bnf(HR, pension)
Bnf(Sales, medical)
Bnf(Sales, profit)

By querying this source instance one may obtain both sound
and complete answers. Note that in this example the maxi-
mal recovery mapping Σ′ [8] for Σ is the same as the maxi-
mum CQ recovery mapping [6] for Σ, that is:

EmpDept(Name, Dept)→
∃x Emp(Name, Dept), Bnf(Dept, x);

EmpBnf(Name, Benefit)→
∃y Emp(Name, y), Bnf(y, Benefit).

If one now is interested in the benefits of the HR depart-
ment, that is the conjunctive query Q = Bnf(HR,x), eval-
uating Q on Chase(Σ′, J) yields an empty certain answer,
whereas using the instance based recovery I the certain an-
swer is {medical, pension}.

We can now introduce the notion of a complete UCQ re-
covery.

Definition 10. Let Σ be a set of s-t tgds and J an in-
stance valid for recovery under Σ. A source instance I is
said to be a complete UCQ recovery for Σ and J , if Q(I)↓ =
CERT(Q,Σ, J), for all UCQ queries Q.

Before presenting a sufficient condition that guarantees
the existence of a complete UCQ recovery we need to intro-
duce the following lemma:

Lemma 1. Let Σ be a set of s-t tgds such that all the
constraints in SUB(Σ) were constructed using only quasi-
guarded tgds from Σ. Then

∣Chase−1(Σ, J)∣ ≤ ∣COV(Σ, J)∣,

for any target instance J valid for recovery under Σ.

Proof. (sketch) The lemma follows from the observation
that in case SUB(Σ) is constructed using only quasi-guarded
tgds, then Chase(Σ,ChaseH(Σ−1, J)), for H ∈ COV(Σ, J)
and H ⊧ SUB(Σ), will not contain any new nulls generated
by the ChaseH(Σ−1, J) process.

Intuitively, the previous lemma states that each covering
from COV(Σ, J) that is a model for SUB(Σ) will only gen-
erate one recovery using the inverse chase process. Recall
that in general, based on Definition 9, for each covering H
there maybe an exponential number of recoveries. Consider
for example s-t tgds Σ = {R(x, y) → S(x); R(u, v) → T (v)}
and target instance J = {S(a), S(b), T (c), T (d)}. It is easy
to see that with this configuration we have ∣COV(Σ, J)∣ = 1
and ∣Chase−1(Σ, J)∣ = 7. We say that a set of s-t tgds Σ
with the properties from Lemma 1 is quasi-guarded safe.

Based on Lemma 1, it seems that a sufficient condition
that guarantees the existence of a complete UCQ recovery
for a given set of s-t tgd Σ and target instance J , is that

112

there exists only one covering for J under Σ, and that Σ
is quasi-guarded safe. The following theorem confirms this
intuition.

Theorem 5. Let Σ be a set of s-t tgds and J a target
instance valid for recovery under Σ. Then there exists an
instance I that is a complete UCQ recovery for Σ and J if

1. ∣COV(Σ, J)∣ = 1, and

2. Σ is quasi-guarded safe.

Moreover, the complete UCQ instance I can be computed in
time polynomial in the number of tuples in J .

Proof. (Sketch) Based on Lemma 1 it can be easily noted
that the computation of Chase−1(Σ, J) becomes determin-
istic and that it computes a complete UCQ recovery.

In Example 8 the set of homomorphism constraints SUB(Σ)
was constructed from the only tgd in Σ, which was both
a full and quasi-guarded. It is easy to see that in case
REC(Σ, J) = {I}, one may use the recovered instance I to
obtain both sound and complete answers to any query. Note
that the existence of a complete UCQ recovery for Σ and J
does not guarantee that ∣REC(Σ, J)∣ = 1. For this, let Σ =
{R(x, y) → S(x)} and J = {S(a), S(b), S(c)}. In this case
there are an infinite number of recoveries but there exists a
complete UCQ recovery I = {R(a,X1),R(b,X2),R(c,X3)}.

The second condition of Theorem 5 is clearly easy to
check. The following theorem gives us a necessary and suf-
ficient condition for the first condition to hold.

Theorem 6. Let Σ be a set of s-t tgd and J a target in-
stance valid for recovery under Σ. Then ∣COV(Σ, J)∣ = 1 iff
for all h ∈ HOM(Σ, J) there exists a tuple t ∈ J such that t ∈
h(head(ξh)), and for any homomorphism h′ ∈ HOM(Σ, J),
where h′ ≠ h, we have t /∈ h′(head(ξh′)).

Proof. (sketch) For the if direction, it is easy to see
that a covering needs to contain all homomorphisms from
HOM(Σ, J), in order to contain all the tuples from J . For
the only if direction, if ∣COV(Σ, J)∣ = 1 the covering con-
tains all the homomorphisms from HOM(Σ, J). This means
that by removing any of the homomorphisms, J will not be
fully covered. Thus, there exists a tuple covered only by
that homomorphism.

Based on this theorem it is easy to see that testing if
∣COV(Σ, J)∣ = 1 can be done in quadratic time. There are
two important observations to be made:

First, in order to cover more cases, instead of a unique
recovery that is UCQ-complete, one can compute a set of
k > 1 recoveries that is complete for UCQ queries, for a fixed
constant k. In Example 8, suppose the target instance has
only one employee working for two departments, and each
of these two departments offers exactly one benefit (and all
the other employees work for exactly one department). In
this case there exists a set of two source recoveries {I1, I2}
such that the certain answer Q(I1)∩Q(I2) = CERT(Q,Σ, J),
for all UCQ queries Q. By changing the first condition of
Theorem 5 to ∣COV(Σ, J)∣ ≤ k, for a fixed k, we can keep the
tractability result for a larger class of pairs Σ and J .

Second, even if the first condition Theorem 5 is not sat-
isfied, one may find, in polynomial time, a unique maximal

subset J ′ of J with this property. From J ′ one can compute
a source instance that can be used to get sound answers to
any UCQ query. Formally, we have the following theorem.

Theorem 7. Let Σ be a set of s-t tgds, and J a target
instance valid for recovery under Σ. There is a quadratic
(in the number of tuples in J) algorithm that computes a
maximal subset J ′ of J , such that ∣COV(Σ, J ′)∣ = 1. Based
on J ′ one may compute in polynomial time a source instance
I, such that Q(I)↓ ⊆ CERT(Q,Σ, J), for all UCQ queries Q.

Proof. (sketch) For the first part we compute a set K
that contains all tuples from J that are covered by only
one homomorphism in HOM(Σ, J). After this, instance J ′

is constructed as J ′ = ∪t∈Kht(head(ξht)), where ht is the
unique homomorphisms that covers tuple t. For the second
part, it can be verified that there exists I ∈ REC(Σ, J) such
that I ′ ⊆ I, where I ′ = Chase−1(Σ,ChaseH(Σ−1, J ′)), and
that for all I ′′ ∈ REC(Σ, J) we have I ′ → I ′′.

Example 9. Let Σ = {ξ1, ξ2}, where

ξ1 = R(x, y)→ S(x), S(y);
ξ2 =D(z)→ T (z).

Consider target instance J = {S(a), S(b), T (c), T (d)}. In
this case J ′ = {T (c), T (d)} is the maximal subset of J , such
that ∣COV(Σ, J ′)∣ = 1. Note that SUB(Σ) = ∅. The source
instance I = {D(c),D(d)}, that is not a recovery, can be
used to get sound answers to any UCQ query. For example
for conjunctive query Q(x) =D(x), the result will be {c, d}.

6.2 Sound CQ answers
In this section we will show that even without any restric-

tions on the mapping or the target instance one may obtain
in polynomial time sound certain answers for any source CQ
query. For this we will present a tractable algorithm that
computes a “sub-universal“ source instance that can be used
to obtain the sound answers. Let us first introduce some
notation.

Let I1 and I2 be instances. A homomorphic greatest lower
bound of I1 and I2, denoted glb{I1, I2}, is an instance K,
such that K → I1 and K → I2, and for all instances L, if
L → I1 and L → I2, then L → K. This lower bound can be
computed as follows [19, 21]: Let ι be an injective mapping
from Nulls∪Cons to Nulls∪Cons, such that

● ι(x,x) = x for any x ∈ Nulls∪Cons, and

● ι(x, y) = z for any x, y ∈ Nulls∪Cons, with x ≠ y and
z a new null from Nulls.

Initialize glb{I1, I2} to be the empty instance. For all pairs of
tuples

● (R(x1, x2, . . . , xk),R(y1, y2, . . . , yk)) ∈ I1 × I2,

the tuple

● R(ι(x1, y1), ι(x2, y2), . . . , ι(xk, yk))

is added to instance glb{I1, I2}. It is easily shown that
in case I1 and I2 are two ground instances, then we have
Q(glb{I1, I2})↓ = Q(I1) ∩Q(I2), for all CQ queries Q. The

113

lower bound is extended to larger sets recursively by the
equation glb{I1, I2, . . . , In} = glb{glb{I1, I2, . . . , In−1}, In}.

Let Σ be a set of s-t tgds, J a target instance valid for
recovery under Σ, and h ∈ HOM(Σ, J). The set of tuples in
instance h(head(ξh)) is denoted Jh. Note that Jh ⊆ J . With
Ih we then denote the source instance Chase{h}(Σ−1, J).
This notation is extended to sets of homomorphisms H ⊆
HOM(Σ, J), by JH = ⋃h∈H Jh and IH = ⋃h∈H Ih.

Definition 11. Let Σ be a set of s-t tgds, J a target in-
stance valid for recovery under Σ, and h a homomorphism
from HOM(Σ, J). A set of homomorphisms H ⊆ HOM(Σ, J)
is said to be a minimal covering for h under Σ and J if

1. Jh ⊆ JH , and

2. there is no H ′ ⊂H such that Jh ⊆ JH′ .

We denote the set of all the minimal coverings for h under
Σ and J with COVh(Σ, J).

Note that based on the previous definition we have that
{h} ∈ COVh(Σ, J), for any h ∈ HOM(Σ, J). Intuitively any
minimal covering H ∈ COVh(Σ, J) for a homomorphism h
represents an alternative way of obtaining tuples Jh from a
source instance in a chase process.

Example 10. Consider the following set of source-to-target
tgds Σ = {ξ1, ξ2}, where:

ξ1 = R(x, y)→ S(x);
ξ2 = R(z, v)→ S(z), T (v).

For target instance J = {S(a), T (b1), . . . , T (bn)} we have the
set HOM(Σ, J) =

{h = {x/a}, h1 = {z/a, v/b1}, . . . , hn = {z/a, v/bn}}.

Based on the previous definition,

COVh(Σ, J) = {{h},{h1}, . . . ,{hn}}

and COVhi(Σ, J) = {{hi}} for all i ∈ {1, . . . , n}.

From the above example it can be observed that the size
of the set COVh(Σ, J) may be polynomial in the size of tar-
get instance J . As we will see next, in order to materialize
a CQ-universal source instance we need to compute the glb
of the source instances generated by homomorphisms from
HOM(Σ, J). On the other hand, in [21] it is shown that
the size of the glb can be exponential in the number of in-
stances. Consequently, in order to keep the tractability of
this method, we need to reduce the size of the set for the
considered instances.

As an intuition on how the polynomial number of in-
stances can be reduced, note in the previous example that
only variable z plays a role in covering homomorphism h,
and instead of using source instances {R(a, b1)}, {R(a, b2)}
to {R(a, bn)} in the glb computation, we may use the more
generic instance {R(a,X)} that was obtain by replacing
with new nulls all variables that do not contribute to the
covering. In the next paragraphs we introduce some tools
needed in this approach.

For a homomorphism h and sequence x̄ of variables, with
h∣x̄ we denote the homomorphism h restricted to the vari-
ables in x̄. Let Σ be a set of s-t tgd’s, J a target instance,

and h a homomorphism in HOM(Σ, J). Let H and G be
sets of homomorphisms in COVh(Σ, J). The H is said to be
equivalent with G wrt h and Σ, denoted with H ≡(h,Σ) G, if
the following conditions hold:

1. ∣H ∣ = ∣G∣, and

2. there exists orderings h1, . . . , hk and g1, . . . , gk of the
mappings in H and G, respectively, and k sequences
of variables x̄1, . . . , x̄k, such that

● Jh = ⋃i∈{1,...,k} Jhi∣x̄i
, and

● Jhi∣x̄i
= Jgi∣x̄i

,

for all i ∈ {1, . . . , k}.

It is easy to see that ≡(h,Σ) is an equivalence relation. For a
set H ∈ COVh(Σ, J), with H(h,Σ) we denote the set of rep-
resentatives of the equivalence classes generated by ≡(h,Σ).
For a homomorphism hi ∈ H(h,Σ), with Jhi(h,Σ) we denote
the instance fi(head(ξhi)), where fi is an extension of hi∣x̄i

that assigns a new null value to each variable from head(ξhi)
distinct from the variables in x̄i. We then define the source
instance Ihi(h,Σ) = Chasef(Σ−1, J) and finally IH(h,Σ) =
⋃hi∈H(h,Σ) Ihi(h,Σ).

Example 11. Given the configuration in Example 10 we
have {hi} ≡(h,Σ) {hj}, for all i, j ∈ {1, . . . , n}. Thus we
have Jhi(h,Σ) = {S(a), T (Xi)}, where Xi is a new fresh null.
Finally, I{hi}(h,Σ) = {R(a,Xi)}.

Definition 12. Let Σ be a set of s-t tgds and target in-
stance J valid for recovery under Σ. Then

IΣ,J = ⋃
h ∈HOM(Σ,J)

glb{IH(h,Σ) ∶ H ∈ COVh(Σ, J)}.

The source instance IΣ,J can be computed in polynomial
time in the size of J as stated below.

Theorem 8. Let Σ be a set of s-t tgds and J a target
instance valid for recovery under Σ. Then the instance IΣ,J

can be computed in time O(nmjk
2`), where n is the size of

the domain of J , m is the maximum number of variables oc-
curring in the head of a tgd from Σ, j the maximum number
of atoms in the body of a tgd in Σ, k is the largest number
of atoms that occur in the head of a tgd in Σ, and ` is the
total number of tgds in Σ.

Proof. (sketch) It is easy to see that the size of the set
HOM(Σ, J) is bounded by nm. Also for each homomorphism
h ∈ HOM(Σ, J) we have ∣Jh∣ < k and thus it follows that
∣{IH(h,Σ) ∶ H ∈ COVh(Σ, J)}∣ ≤ k2`. With this we have

∣glb({IH(h,Σ) ∶ H ∈ COVh(Σ, J)})∣ ≤ jk
2` and since the set

HOM(Σ, J) is bounded by nm, the claim of the theorem
follows.

It can be easily observed that in general IΣ,J is not a
recovery for J under Σ, see Example 12 below. The following
theorem shows what makes the source instance IΣ,J “CQ
sub-universal.“

114

Theorem 9. Let Σ be a set of s-t tgds and J a target
instance valid for recovery under Σ. Then for all recovered
instances I ∈ REC(Σ, J) we have that IΣ,J → I. We also
have Q(IΣ,J)↓ ⊆ CERT(Q,Σ, J), for all CQ queries Q.

Proof. (sketch) Let I ∈ REC(Σ, J) and h ∈ HOM(Σ, J).
From the definition of REC(Σ, J) it follows that there exists
an instance I ′ ⊆ I such that Chase(ξh, I ′) → Jh. For the
source instance I ′h = glb({IH(h,Σ) ∶ H ∈ COVh(Σ, J)}), we
have I ′h → I ′. As h was arbitrarily chosen it follows that
IΣ,J = ∪h∈HOM(Σ,J)I

′
h → I.

The example below illustrates the construction.

Example 12. Let Σ = {ξ1, ξ2, ξ3} be the set of s-t tgds
where:

ξ1 = R(x, y)→ T (x);
ξ2 = U(z)→ S(z);
ξ3 = R(v, v)→ T (v), S(v).

Consider target instance J = {T (a), S(a), S(b)}. Clearly J
is valid for recovery under Σ. The set of homomorphisms
HOM(Σ, J) is {h1 ∶ {x/a}, h2 ∶ {z/a}, h3 ∶ {z/b}, h4 ∶ {v/a}}.
We then have

COVh1(Σ, J) = {{h1},{h4}},
COVh2(Σ, J) = {{h2},{h4}},
COVh3(Σ, J) = {{h3}}, and

COVh4(Σ, J) = {{h4},{h1, h2}}.
Clearly these are not equivalent homomorphisms sets. For
simplicity, we will use the set itself to represent its equiv-
alence class. Corresponding to these homomorphisms we
have: I{h1} = {R(a,X1)}, I{h2} = {U(a)}, I{h3} = {U(b)},
I{h4} = {R(a, a)} and finally I{h1,h2} = {R(a,X2), U(a)},
where X1 and X2 are distinct null values. Thus, the “CQ
sub-universal” instance will be:

IΣ,J =glb{I{h1}, I{h4}} ∪ glb{I{h2}, I{h4}}∪
glb{I{h3}} ∪ glb{I{h4}, I{h1,h2}}

={R(a, Y1), U(b),R(a, Y2)}
where Y1 and Y2 are distinct null values. Note that even
though (IΣ,J , J) ⊧ Σ, the source instance IΣ,J is not a re-
covery for J under Σ, as tuple S(a) from J is not justified by
any tuples from IΣ,J . For the query Q1(x) = {(x) ∶ U(x)},
we have Q1(IΣ,J)↓ = {(b)} ⊆ CERT(Q1,Σ, J). To show that
the method is not complete, consider query Q2(x) = {(x) ∶
R(x,x)}. For this we have CERT(Q2,Σ, J) = {(a)} and
Q2(IΣ,J)↓ = ∅.

One may note that for the construction of instance IΣ,J
the subsumption constraints are not considered. It is still
an open problem if one may filter, in polynomial time, the
coverings used in Definition 12 based on the subsumption
constraint in order to get more sound answers to CQ queries.

As shown in [6], the CQ-maximum recovery mapping can
be represented as a set of target-to-source tgds. The fol-
lowing theorem shows that for any set of s-t tgds Σ, target
instance J and CQ query Q, the “sub-universal” source in-
stance will return at least the same sound CQ answers over

the recoveries as one would obtain by chasing J with the
CQ-maximum recovery mapping Σ′ obtained from Σ.

Theorem 10. Let Σ be a set of s-t tgds, J a target in-
stance valid for recovery under Σ, and let Σ′ be the CQ-
maximum recovery mapping [6] for Σ. Then it holds that
Q(Chase(Σ′, J))↓ ⊆ Q(IΣ,J)↓, for all Q ∈ CQ.

Proof. (sketch) Let J be a target instance and Σ′ be
the CQ-maximum recovery mapping for Σ. It can be easily
noted, from the way Σ′ is constructed [6], that for any ho-
momorphism f from the body of a tgd ξ′ ∈ Σ′ into J , one
can find homomorphism h ∈ HOM(Σ, J) such that we have
f(body(ξ′)) ⊆ h(head(ξh)), and for any setH ∈ COVh(Σ, J),
Chasef(ξ′, J)→ IH(h,Σ). This means that there is a homo-
morphism Chase{f}(ξ′, J)→ glb{IH(h,Σ) ∶ H ∈ COVh(Σ, J)}.
Extending this to the entire target instance and all depen-
dencies in Σ′, it follows that Chase(Σ′, J) → IΣ,J . From
this the statement from the theorem follows directly.

Next example shows that there exists configurations of Σ,
J , and Q such that using instance IΣ,J we may get strictly
more sound information than obtained by chasing J with
the CQ-maximum recovery mapping Σ′.

Example 13. Consider the same setting as in Example
12. For Σ, the corresponding CQ-maximum recovery map-
ping is logically equivalent with Σ′ = {T (x) → ∃z R(x, z)}.
For target instance J , the source instance obtained by chas-
ing J with Σ′ is I = {R(a,Z1)}, where Z1 is a null value.
Considering the conjunctive query Q3(x) = {(x) ∶ U(x)},
we have ∅ = Q3(I)↓ ⊂ Q3(IΣ,J)↓ = {(b)}.

7. CONCLUSIONS
In this paper we proposed a new semantics for the inver-

sion problem in data-exchange. We argue that our instance
based recovery is more useful than the previously proposed
inversion mappings, as one may recover not only more source
data but also only sound data. We introduced a new chase
algorithm to compute these recoveries when the initial map-
ping is given by a set of s-t tgds. The new chase algorithm
permits the computation of a finite set of recovered source in-
stances that may be used to get sound and complete answers
to any UCQ query over the source schema. On the negative
side we showed that getting these answers is coNP-complete
even when considering only source CQ queries. Our ap-
proach does not have the restriction of only allowing ground
instances. We think that our semantics opens the door to
new interesting problems, such as finding recoveries after
the target instance already has been altered by some opera-
tions (in the current work we only consider target instances
that were valid for recovery). Another interesting problem
is to find syntactical characterizations for the initial source-
to-target mapping that will allow tractable computation for
CQ (or UCQ) queries over the materialized set of source
recoveries.

Acknowledgements
We are grateful to the anonymous referees for detailed and
constructive comments.

115

8. REFERENCES
[1] S. Abiteboul and O. M. Duschka. Complexity of

answering queries using materialized views. In PODS,
pages 254–263, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] M. Arenas, R. Fagin, and A. Nash. Composition with
target constraints. In ICDT, pages 129–142, 2010.

[4] M. Arenas, R. Fagin, and A. Nash. Composition with
target constraints. Logical Methods in Computer
Science, 7(3), 2011.

[5] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros.
Composition and inversion of schema mappings.
SIGMOD Record, 38(3):17–28, 2009.

[6] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros.
Inverting schema mappings: Bridging the gap between
theory and practice. PVLDB, 2(1):1018–1029, 2009.

[7] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros.
Query language-based inverses of schema mappings:
semantics, computation, and closure properties. VLDB
J., 21(6):823–842, 2012.

[8] M. Arenas, J. Pérez, and C. Riveros. The recovery of a
schema mapping: Bringing exchanged data back.
ACM Trans. Database Syst., 34(4), 2009.

[9] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. J. ACM, 31(4):718–741, 1984.

[10] P. A. Bernstein. Applying model management to
classical meta data problems. In CIDR, 2003.

[11] A. Deutsch, A. Nash, and J. B. Remmel. The chase
revisited. In PODS, pages 149–158, 2008.

[12] R. Fagin. Inverting schema mappings. ACM Trans.
Database Syst., 32(4), 2007.

[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[14] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. ACM Trans. Database
Syst., 30(4):994–1055, 2005.

[15] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Quasi-inverses of schema mappings. ACM Trans.
Database Syst., 33(2), 2008.

[16] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Reverse data exchange: Coping with nulls. ACM
Trans. Database Syst., 36(2):11, 2011.

[17] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Schema mapping evolution through composition and
inversion. In Z. Bellahsene, A. Bonifati, and E. Rahm,
editors, Schema Matching and Mapping, Data-Centric
Systems and Applications, pages 191–222. Springer,
2011.

[18] G. Grahne and A. Onet. Representation systems for
data exchange. In ICDT, pages 208–221, 2012.

[19] P. Hell and J. Nesetril. Graphs And Homomorphisms.
Oxford University Press, 2004.

[20] L. Libkin. Data exchange and incomplete information.
In PODS, pages 60–69, 2006.

[21] L. Libkin. Incomplete information and certain answers
in general data models. In PODS, pages 59–70, 2011.

[22] A. Nash, P. A. Bernstein, and S. Melnik. Composition
of mappings given by embedded dependencies. ACM
Trans. Database Syst., 32(1):4, 2007.

[23] C. H. Papadimitriou. Computational complexity.
Addison-Wesley, 1994.

116

