
Function Symbols in Tuple-Generating Dependencies:
Expressive Power and Computability

Georg Gottlob Reinhard Pichler Emanuel Sallinger
University of Oxford Vienna University of Technology Vienna University of Technology

georg.gottlob@cs.ox.ac.uk pichler@dbai.tuwien.ac.at sallinger@dbai.tuwien.ac.at

ABSTRACT

Tuple-generating dependencies – for short tgds – have
been a staple of database research throughout most
of its history. Yet one of the central aspects of tgds,
namely the role of existential quantifiers, has not seen
much investigation so far. When studying dependen-
cies, existential quantifiers and – in their Skolemized
form – function symbols are often viewed as two ways
to express the same concept. But in fact, tgds are quite
restrictive in the way that functional terms can occur.

In this paper, we investigate the role of function sym-
bols in dependency formalisms that go beyond tgds.
Among them is the powerful class of SO tgds and the in-
termediate class of nested tgds. In addition, we employ
Henkin quantifiers – a well-known concept in the area
of logic – and introduce Henkin tgds to gain a more fine-
grained understanding of the role of function symbols
in dependencies.

For members of these families of dependency classes,
we investigate their expressive power, that is, when one
dependency class is equivalently representable in an-
other class of dependencies. In addition, we analyze
the computability of query answering under many of
the well-known syntactical decidability criteria for tgds
as well as the complexity of model checking.

Categories and Subject Descriptors

H.2 [Database Management]: General

General Terms

Theory; Algorithms

Keywords

Dependencies; Function Symbols; Expressive Power

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2757-2/15/05 ...$15.00.
http://dx.doi.org/10.1145/2745754.2745756 .

1. Introduction

Tuple-generating dependencies – for short tgds – have
been a staple of database research throughout most of
its history. Tgds appear under many different names in
many different areas. They are often called existential
rules in the area of artificial intelligence [5, 6]. In the
area of data exchange [13] and integration [23], tgds are
the most common types of dependencies used for formu-
lating so-called schema mappings, which are high-level
specifications of the relationship between two databases.

Yet one of the central aspects of tgds, namely the role
of existential quantifiers, has not seen much investiga-
tion so far. When studying dependencies, existential
quantifiers and – in their Skolemized form – function
symbols are often seen as two ways to express the same
concept. But in fact, tgds are quite restrictive in the
way that functional terms can occur. Consider the fol-
lowing tgd based on employees, their departments and
the department managers:

∀e, d Emp(e, d)→ ∃dm Mgr(e, dm)

To understand the exact form of existential quantifica-
tion, let us look at its Skolemized form, where the im-
plicit dependence of the existential quantifier is made
explicit using function symbols. That is, the variable
dm is replaced by a term based on the function fdm.

∃fdm ∀e, d Emp(e, d)→ Mgr(e, fdm(e, d))

Observe that any functional term contains the full set
of universally quantified variables from the antecedent.
More concretely, the function fdm representing the de-
partment manager depends on both the department and
the employee.

In contrast, what we would probably like to express
is that the department manager only depends on the
department. That is, the dependency

∃fdm ∀e, d Emp(e, d)→ Mgr(e, fdm(d))

This dependency cannot be expressed by a logically
equivalent set of tgds1. However, there are more power-
ful dependency languages than tgds, most importantly
SO tgds [14]2. The key feature of SO tgds is the use

1In Section 4 we will show the stronger result that not even
a relaxation of logical equivalence allows the simulation of a
similar dependency by a set of tgds.
2Note that as originally defined, SO tgds are required to be
so-called source-to-target (s-t) dependencies. In the context
of this paper, we do not restrict any dependency formalism
to s-t unless explicitly mentioned.

65

of function symbols, and indeed, the above formula is
an SO tgd. SO tgds and their subclass plain SO tgds
[4] were shown to be particularly suited for expressing
composition and inversion of schema mappings, two key
operators for schema mapping management [7]. For re-
cent surveys on the many problems studied for schema
mappings based on tgds and SO tgds, see e.g. [3, 21].

However, the power of SO tgds comes at a cost: many
reasoning tasks become undecidable. For example, even
logical equivalence between s-t SO tgds is undecidable
[15]. For a survey see e.g. [27].

Yet, there is a middle ground between tgds and SO
tgds: nested tgds [16]. Nested tgds were introduced as
part of IBM’s Clio system [19], which is now part of
the InfoSphere BigInsights suite. It has recently been
shown that nested tgds have a number of advantages
in terms of decidability of reasoning tasks, in particular
that equivalence of s-t nested tgds is decidable [22]. Let
us now return to our running example. If our schema
in addition contains a relation Dep representing depart-
ments, then we can express our dependency as the fol-
lowing nested tgd:

∀d Dep(d)→ ∃dm [∀eEmp(e, d)→ Mgr(e, dm)]

Looking at our nested tgd in its Skolemized form and
normalized to a single implication, again the distinctive
feature compared to tgds is the much more flexible use
of terms based on function symbols:

∃fdm ∀e, d Dep(d) ∧ Emp(e, d)→ Mgr(e, fdm(d))

We have seen that nested tgds are one way to avoid
the complexity of SO tgds, but still be able to model
interesting domains. They have however one major re-
striction: they can only model hierarchical relationships
(i.e., the argument lists of Skolem functions must form a
tree). However, there are natural relationships that can
not be captured by nested tgds. Let us extend our ex-
ample as follows: for every employee, we want to create
an employee ID. We can express this as an SO tgd:

∃feid, fdm ∀e, d Emp(e, d)→ Mgr(feid(e), fdm(d))

Nested tgds are not able to express this dependency. So
how can we gain a more fine-grained understanding of,
in general, not hierarchical relationships without resort-
ing to SO tgds? To answer this question, let us look
at a well-known formalism from logic which can help us
in that regard. In logic, Henkin quantifiers [29, 8] are a
tool to gain a fine-grained control over the way function
symbols can occur in the Skolemized form of formulas.
Let us write our dependency using a (so-called standard)
Henkin quantifier:(

∀d∃dm
∀e∃eid

)
Emp(e, d)→ Mgr(eid , dm)

where the quantifier prefix means that the existential
variable dm only depends on the department d, and the
existential variable eid only depends on the employee
e. We shall call such Henkin-quantified rules “Henkin
tgds”.

Altogether, we have described four “families” of tgds
so far: tgds as the least expressive, SO tgds as the most
expressive and nested tgds and Henkin tgds in between.
In Figure 1, we summarize all the classes of tgds rele-
vant in this paper. We will give formal preliminaries

tgds

standard
Henkin tgds

Henkin tgds

SO tgds

normalized
nested tgds

Figure 1: Hasse diagram of syntactical inclusion between
dependency classes in their Skolemized form. An edge denotes
that every dependency of the lower class is also a dependency
of the upper class.

for tgds, SO tgds and nested tgds in Section 2. In Sec-
tion 3 we will formally introduce Henkin tgds as well as
discuss normalization of nested tgds. Immediately, this
syntactical inclusion diagram raises the question:

• What is the relative expressive power of the given
classes? That is, when can we represent tgds from
one class as equivalent tgds in another class?

We shall fully answer this question for all classes in Fig-
ure 1. It will turn out that the semantical inclusion
diagram (given later in Section 4) looks a bit different
than the syntactical inclusion diagram in Figure 1.

A central task for database systems is query answering.
Given a database, a set of dependencies, and typically
a conjunctive query, the task of query answering is to
compute the set of certain answers to that conjunctive
query. However, query answering for tgds is in general
undecidable [20]. Hence, numerous criteria for ensuring
decidability have been introduced throughout the last
few years. We give an overview by looking at the three
major “families” (illustrated in Figure 2).

finite expansion sets

weakly acyclic tgds

full tgds linear tgds

guarded tgds

weakly guarded tgds

finite treewidth sets

sticky tgds

sticky join tgds

finite unification sets

acyclic family guarded family sticky family

Figure 2: Hasse diagram based on [24] showing the three
major families for decidable query answering of tgds. Solid
edges denote inclusions inside the families, dashed edges
denote inclusions between the families.

66

The best-known family of criteria for ensuring decid-
able query answering is that of acyclic, weakly acyclic
and full tgds [13]. A second family of criteria centers
around guarded tgds [9], its subset linear tgds and its
generalization weakly guarded tgds [9]. A third family
is that of sticky tgds [10, 12] The sticky and guarded (in
particular linear) based families were combined in the
criterion called sticky join tgds [11]. A semantic catego-
rization of the different decidable fragments of tgds was
done in [5, 6]. The acyclicity family is member of tgds
with finite expansion sets (fes). The guarded family is
member of tgds with finite treewidth sets (fts), a super-
class of fes. The sticky family is member of tgds with
finite unification sets (fus).

The complex landscape of decidability criteria thus rais-
es the question:

• Where is the decidability/undecidability border for
nested, Henkin, and SO tgds, in particular under
the three “families” (weakly-)acyclic, guarded and
sticky?

Apart from query answering, a second central problem
with any logical formalism is model checking. Given a
database and a set of dependencies, the task of model
checking is to answer whether or not the database sat-
isfies all dependencies.

For tgds, query and combined complexity was shown
to be Π2P-complete [2] (cf. [4]) while – as tgds are first-
order formulas – data complexity is in AC0. For SO
tgds, data complexity was shown to be NP-complete
[14] and query and combined complexity is known to
be NEXPTIME-complete [25]. From these results, we
can already derive some bounds for other formalisms,
since lower bounds propagate along generalizations and
upper bounds propagate along specialization. So the
immediate question is:

• What is the precise (data/query/combined) comple-
xity of model checking for nested tgds and Henkin
tgds?

Organization and main results. In Section 2, we
give preliminaries and in particular recall the classical
formalisms of tgds, SO tgds and nested tgds. In Sec-
tion 3, we introduce Henkin tgds, and discuss normal-
ization of nested tgds. A conclusion and outlook to
future work are given in Section 7. Our main results
are detailed in Sections 4-6, namely:

• Expressive Power. In Section 4, we compare the
expressive power of the dependency classes given in
Figure 1. Interestingly, we obtain that nested tgds
can always be transformed into a logically equivalent
set of Henkin tgds. In contrast, we show that a
number of inclusions are proper for other classes, in
total obtaining a complete picture of the relative
expressive power of all classes in Figure 1.
• Query Answering. In Section 5, we consider query

answering for the dependency classes given in Fig-
ure 1. In particular, we show that even when assum-
ing our dependencies to be both guarded and sticky,
atomic query answering is undecidable for standard
Henkin tgds and nested tgds, the two lowest exten-
sions of tgds given in Figure 1. For standard Henkin

tgds, undecidability holds even for linear dependen-
cies. In contrast, weak acyclicity guarantees decid-
ability of query answering even for SO tgds. Like-
wise, imposing a further restriction on linear Henkin
tgds leads to decidability. In total, for all discussed
dependency classes, we draw a clear border of decid-
ability/undecidability in Figure 2.
• Model Checking. In Section 6, we consider the model

checking problem. We show that Henkin tgds are
NEXPTIME-complete in query and combined com-
plexity and NP-complete in data complexity. Hard-
ness holds even for standard Henkin tgds. We also
show that nested tgds are PSPACE-complete in query
and combined complexity (while data complexity is
known to be in AC0). Thus we complete the pic-
ture of complexity for all the dependency classes in
Figure 1.

2. Preliminaries
We assume basic familiarity with logic (predicate logic,
Skolemization), complexity and database theory [1].

Schemas, instances, and homomorphisms. A sch-
ema R is a finite sequence 〈R1, . . . , Rk〉 of relation sym-
bols, where each Ri has a fixed arity. An instance I over
R, or an R-instance, is a sequence (RI1, . . . , R

I
k), where

each RIi is a finite relation of the same arity as Ri. We
will often use Ri to denote both the relation symbol
and the relation RIi that instantiates it. A fact of an
instance I (over R) is an expression RIi (v1, . . . , vm) (or
simply Ri(v1, . . . , vm)), where Ri is a relation symbol
of R and (v1, . . . , vm) ∈ RIi .

Sometimes it is beneficial to split a schema into two
disjoint parts: Let S and T be two schemas with no re-
lation symbols in common. We refer to S as the source
schema, and T as the target schema. Similarly, we refer
to S-instances as source instances, and T -instances as
target instances. We assume the presence of two kinds
of values, namely constants and (labeled) nulls. We also
assume that the active domains of source instances con-
sists of constants; the active domains of target instances
may consist of constants and nulls.

Let J1 and J2 be two instances. A function h is
a homomorphism from J1 to J2 if the following hold:
(i) for every constant c, we have that h(c) = c; and
(ii) for every relation symbol R in R and every tuple
(a1, . . . , an) ∈ RJ1 , we have that (h(a1), . . . , h(an)) ∈
RJ2 . We use the notation J1 → J2 to denote that there
is a homomorphism from J1 to J2. We say that J1 is
homomorphically equivalent to J2, written J1 ↔ J2, if
J1 → J2 and J2 → J1. A minimal subinstance of J that
is homomorphically equivalent to J is called a core of J .
All cores of an instance are isomorphic [18]. Hence, it is
justified to speak of the core of an instance J , denoted
core(J).

Tgds. A tuple-generating dependency (in short, tgd) σ
is a first-order sentence of the form

∀x̄(ϕ(x̄)→ ∃ȳψ(x̄, ȳ))

where ϕ(x̄) is a conjunction of atoms, each variable in
x̄ occurs in at least one atom in ϕ(x̄), and ψ(x̄, ȳ) is a
conjunction of atoms with variables in x̄ and ȳ. If ȳ is
empty, then σ is called full. If ϕ consists solely of atoms

67

over a schema S and ψ consists solely of atoms over a
schema T , we call σ a source-to-target (s-t) tgd. For
simplicity, we will often suppress writing the universal
quantifiers ∀x̄ in formulas of the above form.

SO tgds. Second-order tgds, or SO tgds, were intro-
duced in [14], where it was shown that SO tgds are
needed to specify the composition of an arbitrary num-
ber of schema mappings based on s-t tgds. Before we
formally define SO tgds, we need to define terms. Given
collections x̄ of variables and f̄ of function symbols, a
term (based on x̄ and f̄) is defined recursively as fol-
lows: (1) Every variable in x̄ is a term; (2) If f is a k-
ary function symbol in f̄ and t1, . . . , tk are terms, then
f(t1, . . . , tk) is a term.

A second-order tuple-generating dependency (SO tgd)
is a formula σ of the form:

∃f̄((∀x̄1(ϕ1 → ψ1)) ∧ ... ∧ (∀x̄n(ϕn → ψn)))

where (1) Each member of f̄ is a function symbol. (2)
Each ϕi is a conjunction of (i) atoms S(y1, ..., yk), where
S is a k-ary relation symbol and y1, . . . , yk are variables
in x̄i, not necessarily distinct, and (ii) equalities of the
form t = t′ where t and t′ are terms based on x̄i and f̄ .
(3) Each ψi is a conjunction of atoms T (t1, ..., tl), where
T is an l-ary relation symbol and t1, . . . , tl are terms
based on x̄i and f̄ . (4) Each variable in x̄i appears in
some atomic formula of ϕi.

Let S be a source schema and T a target schema. If
all ϕi consist solely of atoms over S and all ψi consist
solely of atoms over T , we say that σ is source-to-target.
Note that in the original definition [14], SO tgds are
defined to be always source-to-target. In this paper, we
do not make that assumption and use the name “SO
tgds” to refer to not necessarily s-t dependencies, while
we specifically speak of“s-t SO tgds”when it is necessary
to refer to the source-to-target case. Let us give an
example of an (s-t) SO tgd.

∃fmgr(∀e(Emp(e)→ Mgr(e, fmgr(e))) ∧
∀e(Emp(e) ∧ (e = fmgr(e))→ SelfMgr(e)))

The formula expresses the property that every employee
has a manager, and if an employee is the manager of
himself/herself, then he/she is a self-manager [14].

Note that SO tgds allow for nested terms and for
equalities between terms. A nested term is a functional
term which contains a functional term as an argument.
A plain SO tgd is an SO tgd that contains no nested
terms and no equalities. For example, the preceding
SO tgd is not plain, while the following SO tgd (ex-
pressing that if two employees are in some relationship
– e.g., working in the same project – also their manager
are in some relationship) is plain

∃fmgr ∀e1, e2 (Emps(e1, e2)→ Mgrs(fmgr(e1), fmgr(e2)))

The properties of plain SO tgds were recently investi-
gated in [4]. In what follows, we will often suppress
writing the existential second-order quantifiers and the
universal first-order quantifiers in front of SO tgds.

Nested tgds. Fix a partition of the set of first-order
variables into two disjoint infinite sets X and Y . A
nested tgd [14, 28] is a first-order sentence that can be
generated by the following recursive definition:

χ ::= α | ∀x̄ (β1 ∧ . . . ∧ βk → ∃ȳ (χ1 ∧ . . . ∧ χ`))
where each xi ∈ X, each yi ∈ Y , α is a relational atom,
and each βj is a relational atom containing only vari-
ables from X, such that each xi occurs in some βj . As
an example, the following formula is a nested tgd:

∀d Dep(d)→ ∃dmDep′(d, dm) ∧
[[[∀eEmp(e, d)→ Mgr(e, d, dm)]]]

Note that the choice of brackets (round or square) and
the weight of the font (normal or bold) is for empha-
sizing the nesting structure only and has no syntactical
significance.

A nested tgd σ contains a number of parts σi. In-
formally, σi is an implicational formula that contains
conjunctions of atoms on both sides (but no nested im-
plications). As an example, the parts of the preceding
nested tgd are

- ∀d Dep(d)→ ∃dmDep′(d, dm)
- ∀eEmp(e, d)→ Mgr(e, d, dm)

In our examples, we refer to parts of nested tgds using
labels. The way of inline labeling of parts which we use
throughout this paper is illustrated below by a nested
tgd τ with three parts τ1, τ2, τ3:

∀dDep(d)→ ∃d′ Dep′(d′) ∧ (τ1)
[[[∀g Grp(d, g)→ ∃g′Grp′(d′, g′) ∧ (τ2)

[[[∀eEmp(d, g, e)→ Emp′(d′, g′, e)]]]]]] (τ3)

It is often convenient to consider Skolemized nested tgds,
in which every existential variable y is replaced by the
Skolem term f(x̄) where f is a fresh function symbol
and x̄ is the vector of universally quantified variables in
the part σi in which ∃y occurs, and in the ancestors of
σi. Note that we assume existential variables in different
parts to be renamed apart. The Skolemized version of
nested tgd τ above has the following form:

∃fd, fg Dep(d)→ Dep′(fd(d)) ∧ (τ1)
[[[Grp(d, g)→ Grp′(fd(d), fg(d, g)) ∧ (τ2)

[[[Emp(d, g, e)→ Emp′(fd(d), fg(d, g), e)]]]]]] (τ3)

Note that syntactically, a Skolemized nested tgd is not
necessarily an SO tgd, as it may contain nested implica-
tions. However, given a nested tgd it is easy to create a
logically equivalent SO tgd where the number of parts
of the SO tgd is the same as the number of parts of the
nested tgd. Thus one can, informally, consider nested
tgds as a subclass of SO tgds. We will discuss this issue
in detail in Section 3.

Queries. A conjunctive query (CQ) q over a schema R
with free variables ȳ is a logical formula of the form

∃x̄ (A1 ∧ . . . ∧An)

where each Ai is a relational atom over R with variables
from x̄∪ ȳ, where x̄ and ȳ are disjoint. If ȳ is empty, we
call q a Boolean conjunctive query. Given a database
instance I, the set of answers q(I) to a query q is the
set {ȳ | I � q}. Given a set Σ of dependencies and a
database instance I, the certain answers to a conjunc-
tive query q w.r.t. I are those which are answers over
all database instances {I ′ | I ⊆ I ′ ∧ I ′ � Σ}. Given a
set of source-to-target dependencies, queries are usually
posed against the target schema only.

68

The query answering problem has as input a database
instance I, a set of dependencies Σ, a query q and a
tuple t. The question is whether t is contained in all
certain answers to q w.r.t. I and Σ. The problem is
called atomic query answering if query q consists of a
single atom.

Equivalence. Two sets of dependencies Σ1 and Σ2 are
called logically equivalent, written Σ1 ≡ Σ2 or Σ1 ≡log
Σ2, if they have the same models. That is, I � Σ1
holds if and only if I � Σ2 holds. They are called CQ-
equivalent, written Σ1 ≡CQ Σ2 if they have the same cer-
tain answers over all conjunctive queries q and database
instances I. Clearly, logical equivalence implies CQ-
equivalence, but the converse does not necessarily hold.
Note that logical and CQ-equivalence always consider
dependencies over the same schema.

3. Henkin and Normalized Nested tgds
So far we have recalled tgds (the bottom part of Fig-
ure 1) and SO tgds (the top part of Figure 1), and we
have started giving preliminaries for nested tgds. In this
section, our main goal is to introduce Henkin tgds and
their various flavors. After that, based on the definition
of nested tgds given in the preliminaries, we will discuss
how to treat nested tgds as a subclass of SO tgds.

3.1 Henkin tgds

We first introduce Henkin quantifiers and then use them
for building dependencies.

A Henkin quantifier (cf. [8, 29]) is given by

• a set of first-order quantifiers

• a strict partial order between these quantifiers (i.e.,
an irreflexive, transitive relation) 3

The semantics of Henkin quantifiers is given by their
Skolemization, that is, the Skolem term of an existen-
tial variable contains all universally quantified variables
that are preceding the existential variable in the given
partial order. For example, recall the following plain
SO tgd τ from the introduction:

∃feid, fdm ∀e, d Emp(e, d)→ Mgr(feid(e), fdm(d))

This dependency could be obtained through Skolemiza-
tion of the formula

Q Emp(e, d)→ Mgr(eid , dm)

under a Henkin quantifier Q given by the partial order
≺ with ∀e ≺ ∃eid and ∀d ≺ ∃dm.

The first important observation is that it is only rele-
vant which universal quantifiers come before an existen-
tial quantifier. This is intuitively clear when inspecting
the Skolemization of a formula, as the arguments of the
Skolem functions for an existential quantifier are purely
determined by the scope of the universal quantifiers.
This relevant part of the order is called the essential
order [29].

A Henkin quantifier is called standard if
3Sometimes also a non-strict partial order is assumed. Here
we follow [29] and assume a strict partial order.

• the strict partial order consists of (disjoint) chains
(i.e., it is the disjoint union of a set of linear orders)

• the strict partial order is already an essential order
(i.e., every chain consists of universal quantifiers
followed by existential quantifiers) 4

Standard Henkin quantifiers are usually denoted as(∀x̄1 ∃ȳ1
· · · · · ·
∀x̄n ∃ȳn

)
where x̄1 to x̄n and ȳ1 to ȳn are vectors of variables,
and all variables are distinct. In this notation, each of
the rows of the quantifier represents a chain of the strict
partial order. For example, our dependency τ :

Emp(e, d)→ Mgr(feid(e), fdm(d))

can be produced through Skolemization of the formula(
∀d∃dm
∀e ∃eid

)
Emp(e, d)→ Mgr(eid , dm)

In contrast, note that the following expression σ does
not contain a standard Henkin quantifier(∀x1 ∀x2 ∃y1

∀x2 ∀x3 ∃y2
∀x3 ∀x1 ∃y3

)
ϕ(x1, x2, x3, y1, y2, y3)

This is the case, since the chains are not disjoint. Note
that, in first-order logic (with equality), every positive
occurrence of a Henkin quantifier can be expressed by a
standard Henkin quantifier [8]. For example, σ can be
expressed as:(∀x1 ∀x2 ∃y1
∀x′2 ∀x3 ∃y2
∀x′3 ∀x′1 ∃y3

)
[x1 = x′1 ∧ x2 = x′2 ∧ x3 = x′3]→

ϕ(x1, x2, x3, y1, y2, y3)

That is, all occurrences of a variable are given unique
names and associated using equalities. However, this
is not a technique we can use for defining a lightweight
subclass of plain SO tgds, since plain SO tgds do not al-
low equalities in the antecedent. Thus for our purposes,
whether we have standard Henkin quantifiers or Henkin
quantifiers makes a difference.

We are now ready to give a formal definition of the
family of Henkin tgds.

Definition 3.1 Let C be a class of Henkin quantifiers,
let Q be a Henkin quantifier from C. Then a C-Henkin
tgd is a formula of the form

Q (ϕ(x̄)→ ψ(x̄, ȳ))

where x̄ consists of universally quantified variables in Q
and ȳ consists of existentially quantified variables in Q.

In particular, if C is the class of all Henkin quantifiers,
we simply speak of Henkin tgds and if C is the class
of standard Henkin quantifiers, we speak of standard
Henkin tgds. Furthermore, we will also use the class
where the partial order of the Henkin quantifier is tree-
structured, hence tree Henkin tgds (or more formally,
4We make the following assumption here which deviates from
the definition of [29], to ensure that normal FO quantifiers
are standard Henkin quantifiers: A chain may end in multiple
existential quantifiers.

69

every connected component of the graph of the partial
order is a tree). From here on, we will always consider
the Skolemized form of dependencies.

3.2 Normalized and Simple Nested tgds

So far, we have described all dependency classes in Fig-
ure 1, except for nested tgds. This is for a simple rea-
son: In terms of syntax, a nested tgd is not necessarily
an SO tgd, as it may contain nested implications. Yet
intuitively, one can undo this nesting by applying well-
known equivalences from first-order logic. We will for-
malize this “normalization” now. Let us first consider
the following (Skolemized) nested tgd τ as an example:

∃fd, fg Dep(d)→ Dep′(fd(d)) ∧ (τ1)
[[[Grp(d, g)→ Grp′(fd(d), fg(d, g)) ∧ (τ2)

[[[Emp(d, g, e)→ Emp′(fd(d), fg(d, g), e)]]]]]] (τ3)

Intuitively, this nested tgd τ takes a three-level hierar-
chy of departments, groups and employees, and simply
invents identifiers for departments and groups. Let us
remove nesting levels one-by-one, starting at the inner-
most level. By using the fact that ϕ→ (ψ ∧ [ϕ1 → ψ1])
is equivalent to [ϕ→ ψ]∧ [ϕ∧ϕ1 → ψ1] we thus obtain
the following two-level nested tgd:

∃fd, fg Dep(d)→ Dep′(fdep(d)) ∧ (τ ′1)
[[[Grp(d, g)→ Grp′(fd(d), fg(d, g))]]] ∧ (σ2)
[[[Grp(d, g)∧Emp(d, g, e)→ Emp′(fd(d), fg(d, g), e)]]] (σ23)

In particular, we have applied the equivalence to τ1 and
τ2, obtaining σ2 and σ23. Let us now remove the out-
ermost nesting level. This time, we have two nested
dependencies σ2 and σ23, but the idea of applying the
equivalence remains the same:

∃fd, fg [[[Dep(d)→ Dep′(fdep(d))]]] ∧ (σ1)
[[[Dep(d) ∧ Grp(d, g)→ Grp′(fd(d), fg(d, g))]]] ∧ (σ12)
[[[Dep(d) ∧ Grp(d, g) ∧ Emp(d, g, e)→

Emp′(fd(d), fg(d, g), e)]]] (σ123)

Thus, we now have a conjunction of three (non-nested)
implications, all bound by the same quantifier prefix
∃fd, fg or, in other words, a plain SO tgd. In Algo-
rithm 1, we formally describe the transformations we

Algorithm 1: nested-to-so
Input: nested tgd τ in Skolemized form
Output: plain SO tgd σ s.t. σ ≡log τ

1. Apply the following rewrite step recursively
(innermost nesting level to outermost level):

tgd︷ ︸︸ ︷
ϕ→ (ψ ∧[

plain SO tgd︷ ︸︸ ︷
ϕ1 → ψ1] ∧ . . . ∧ [

plain SO tgd︷ ︸︸ ︷
ϕn → ψn])

⇓
ϕ→ ψ ∧

∧
i∈{1,...,n}

[ϕ ∧ ϕi → ψi︸ ︷︷ ︸
plain SO tgd

]

2. Return σ, which is the result of recursively applying
the rewrite rule.

have applied in our example. We thus get the following
straightforward definition of normalization.

Definition 3.2 Let τ be a nested tgd. The normalized
form of τ is the plain SO tgd σ = nested-to-so(τ).

Using this definition, we speak of normalized nested tgds.
We now have defined all dependency classes shown in
Figure 1. Furthermore, in what follows, it will often be
convenient to use the following restriction of SO tgds:
We call an SO tgd simple, if it contains exactly one SO
tgd part. Similarly, we can speak of simple nested tgds
if a normalized nested tgd consists of only one SO tgd
part. For example, our dependency σ = nested-to-so(τ)
is not a simple nested tgd, as it contains three SO tgd
parts.

4. Expressive Power
In this section, we investigate the relative expressive
power of the dependency classes, that is, when for a
given dependency in one class, we can find a logically
equivalent set of dependencies in other classes. An
overview of this semantical relationship can be found
in Figure 3.

In the previous section, we have seen that normalized
nested tgds allow the quantification of Skolem function
symbols over several dependencies, whereas Henkin tgds
only allow quantification over each individual depen-
dency. Nevertheless, quite surprisingly, we shall show
in this section that nested tgds can always be expressed
as a logically equivalent set of Henkin tgds, indicated
by the bold (blue) edge in the Hasse diagram. We shall
give this result later in this section. The dotted (red)
edges in the Hasse diagram indicate that for a given set
of dependencies, not even a CQ-equivalent set of depen-
dencies exists. In particular, all dotted edges together
imply that

1. absent (non-implied) edges in the Hasse diagram do
not exist. That is, standard Henkin and nested tgds
are incomparable with regard to expressive power.

2. all edges denote proper containment. That is, for any
two distinct classes, there exists a set of dependencies
that separates these two classes.

We now proceed to show the separations (dotted or red
edges) in Figure 3. We first separate standard Henkin
tgds from nested tgds. We start by giving high-level
ideas that will play a major role in the following proofs.

Idea 1: Basic Construction. All of our proofs that
a set of dependencies Σ ⊆ C1 is not expressible as a CQ-
equivalent set Π ⊆ C2 will proceed by contradiction, in
particular along the following general lines:

1. assume that a CQ-equivalent set Π ⊆ C2 exists
2. define an instance I such that our dependencies have

to create a particular “large” structure using the spe-
cific features of C1

3. show that C2 needs to “pass” nulls (values stemming
from functional terms) to create the large structure
(see Idea 2)

4. show that recursion is of little help for creating the
large structure (see Idea 3)

5. derive a contradiction C

70

tgds

standard
Henkin tgds

Henkin tgds

SO tgds

Thm. 4.4

(normalized)
nested tgds

Thm. 4.3

Thm. 4.1

Thm. 4.2

Figure 3: Hasse diagram of the semantical inclusions be-
tween classes. A solid edge denotes that every set of depen-
dencies from the lower class can be expressed as a logically
equivalent set of dependencies from the upper class.

Idea 2: “Passing of Nulls”. Every class of dependen-
cies has particular structures of nulls it can generate. As
a simple example, nulls generated by a nested tgd have
a tree structure, as can be seen in Skolemized form:

P (x1) ∧Q(x1, x2)→ R(f(x1), g(x1, x2))

In this case (i.e., in the case that Skolem terms are
at the corresponding positions), we say that the nulls
are directly generated by our nested tgd. Yet this does
not prevent more complex structures to be created by
passing of nulls, i.e., dependencies of the form

ϕ ∧Ri(. . . , x, . . .)→ ψ ∧Rj(. . . , x, . . .)
where x is bound to a null value that is passed from
Ri to Rj . Showing that passing of nulls is necessary to
create more complex structures is essential in the proofs
that follow. C

Idea 3: “Recursion Poisoning”. Apart from tgds
in Σ that exhibit the actual behavior to create our
“large” structure, we use dependencies that allow us to
add additional atoms into that structure. Assume that
our large structure is encoded using facts of the form
R(x1, x2, x3). Then we add an additional source of such
R facts through the simple copy tgd

R′(x1, x2, x3)→ R(x1, x2, x3)

This additional source of R facts allows us to forbid
many of the potential recursive dependencies using R,
as they would be violated by the “poisoned” facts intro-
duced by the copying tgd. C

We are now ready to separate standard Henkin tgds
from nested tgds. We start by showing that there are
standard Henkin tgds which are not expressible as nes-
ted tgds. Note that in Theorem 4.1 (and analogously in
the subsequent separation theorems) we actually show a
slightly stronger result, namely: even if we restrict stan-
dard Henkin tgds to source-to-target dependencies and
allow arbitrary nested tgds, then, in general, standard
Henkin tgds cannot be expressed by nested tgds.

Theorem 4.1 There exists a set Σ of s-t standard Hen-
kin tgds such that there is no set Π of (not necessarily
s-t) nested tgds with Π ≡CQ Σ.

Proof (Sketch) Let Σ consist of dependencies

P (x1, x2)→ Q(x1, f(x1)) ∧
R(f(x1), g(x2)) ∧ S(g(x2), x2) (σ1)

Q′(x1, x2)→ Q(x1, x2) (σ2)
R′(x1, x2)→ R(x1, x2) (σ3)
S′(x1, x2)→ S(x1, x2) (σ4)

In essence, σ1 is used for encoding the intended behav-
ior, and σ2 to σ4 are used for the “recursion poisoning”
technique described in Idea 3. Towards a contradiction,
assume that there exists a set Π of nested tgds with
Π ≡CQ Σ. Following Idea 1, we now proceed to con-
structing our “large” instance I. Let n be greater than
the size of Π (the number of atoms contained in Π). We
construct the following source instance:

I = {P (ai, bj) | 1 ≤ i, j ≤ n}
The structure of the intended target instance is sketched
below:

a1

a2

. . .

an

u1

u2

. . .

un

v1

v2

. . .

vn

b1

b2

. . .

bn

Q

Q

S

S

R

R

Intuitively, Σ produces a complete bipartite graph en-
coded through nulls ui resp. vj in R. On the left and
right sides, this bipartite graph is “protected” by con-
stants through Q and S facts. More formally, the con-
stants contained in Q and S prevent the R facts from
being mapped by a homomorphism to a single R fact
in the core.

Following Idea 2, our next step is to show that “pass-
ing of nulls” is required. The high-level reason for why
nested tgds cannot generate the structure shown in the
above figure without passing of nulls is as follows: In
atoms generated by multiple firings of a nested tgd,
there is always a functional dependency between two at-
tributes generated by nulls; e.g., in a normalized nested
tgd of the form

P (x1) ∧Q(x1, x2)→ R(f(x1), g(x1, x2))

there is a functional dependency from the attribute gen-
erated by g to f (if both functional terms contain the
same argument list, then there is a functional depen-
dency in both directions). Thus a nested tgd may di-
rectly generate only n of the n2 edges of our complete
bipartite graph, and passing of nulls is required to gen-
erate the rest.

We may now use the “recursion poisoning” technique
according to Idea 3 to derive a contradiction. While we
cannot go into the details (full details can be found in

71

Algorithm 2: nested-to-henkin
Input: nested tgd τ in Skolemized form
Output: Set Σ of Henkin tgds s.t. Σ ≡log τ

1. Apply the following rewrite step recursively
(innermost nesting level to outermost level):

tgd︷ ︸︸ ︷
ϕ→ (ψ ∧[

tree Henkin tgd︷ ︸︸ ︷
∃f̄1 ϕ1 → ψ1] ∧ . . . ∧ [

tree Henkin tgd︷ ︸︸ ︷
∃f̄n ϕn → ψn])

⇓∧
I⊆{1,...,n}

[∃f̄ ∃
i∈I
f̄i ϕ ∧

∧
i∈I

ϕi → ψ ∧
∧
i∈I

ψi︸ ︷︷ ︸
tree Henkin tgd

]

where f̄ is the set of Skolem functions representing ex-
istential quantifiers of ψ, and all universally quantified
variables of ϕi are assumed to be renamed apart.

2. Return Σ = {σ1, . . . , σk} where σ1 ∧ . . . ∧ σk is the
result of recursively applying the rewriting rule.

the full version) the key idea is to extend source instance
I to I ′ by Q′, R′ and S′ facts that generate (both in Σ
and Π) the corresponding Q, R and S facts in the tar-
get instance. In Σ, which is source-to-target, these ad-
ditional target facts are of no concern. Yet in Π, which
contains a target tgd τ for the “passing of nulls”, the
“poisoned”Q, R and S facts cause another triggering of
the target tgd τ – thus producing additional facts which
are not produced under Σ. This is a contradiction to
our assumption that Π ≡CQ Σ.

We now show the reverse direction of the separation,
namely that nested tgds are, in general, not expressible
as standard Henkin tgds:

Theorem 4.2 There exists a set Σ of s-t simple nested
tgds such that there is no set Π of (not necessarily s-t)
standard Henkin tgds with Π ≡CQ Σ.

We now show that the class of nested tgds is semanti-
cally contained in the class of tree Henkin tgds. That
is, we show the following theorem:

Theorem 4.3 Let τ be a nested tgd. Then there exists
a set Σ = nested-to-henkin(τ) of tree Henkin tgds such
that Σ ≡log τ .

The algorithm nested-to-henkin for converting a nested
tgd into a logically equivalent set of Henkin tgds is given
as Algorithm 2. Note that Algorithm 2 has the same
general structure as Algorithm 1, which we already dis-
cussed in detail in Section 3. Let us now look at an ex-
ample that shows the essence of the algorithm. Assume
that we are given the following nested tgd τ (which we
already used to illustrate Algorithm 1):

∃fd, fg Dep(d)→ Dep′(fd(d)) ∧ (τ1)
[[[Grp(d, g)→ Grp′(fd(d), fg(d, g)) ∧ (τ2)

[[[Emp(d, g, e)→ Emp′(fd(d), fg(d, g), e)]]]]]] (τ3)

Recall that the nested tgd τ takes a three-level hierar-
chy of departments, groups and employees, and simply

invents identifiers for departments and groups. The ba-
sic principle of our algorithm nested-to-henkin is to re-
move nesting levels one-by-one, starting at the inner-
most level. Following the rewrite step illustrated in
Algorithm 2, we thus produce the following two-level
nested dependency:

∃fd Dep(d)→ Dep′(fdep(d)) ∧ (τ ′1)
[[[∃fg Grp(d, g)→ Grp′(fd(d), fg(d, g))]]] ∧ (σ2)
[[[∃fg Grp(d, g) ∧ Emp(d, g, e)→
Grp′(fd(d), fg(d, g))∧Emp′(fd(d), fg(d, g), e)]]] (σ23)

The critical part of this step is that we have to show
that logical equivalence is thus preserved. While the
most obvious effect of the rewriting step is the growing
number of atoms, the interesting part for logical equiv-
alence is the “splitting” of the quantifiers: originally, we
had just one quantifier ∃fd and now we have two inde-
pendent ones. Now let us apply the final rewrite step
to observe something interesting:

∃fd, fg Dep(d)→ Dep′(fd(d)) (σ1)

∃fd, fg Dep(d) ∧ Grp(d, g)→
Dep′(fd(d)) ∧ Grp′(fd(d), fg(d, g)) (σ12)

∃fd, fg Dep(d) ∧ Grp(d, g) ∧ Emp(d, g, e)→
Dep′(fd(d)) ∧ Grp′(fd(d), fg(d, g)) ∧
Emp′(fd(d), fg(d, g), e) (σ13)

∃fd, fg Dep(d)∧Grp(d, g)∧Emp(d, g, e)∧Grp(d, g?)→
Dep′(fd(d)) ∧ Grp′(fd(d), fg(d, g)) ∧
Emp′(fd(d), fg(d, g), e)∧Grp′(fd(d), fg(d, g

?)) (σ123)

Indeed, the preceding four rules are Henkin tgds. Yet,
while we previously had three dependencies, we now
have four. The first three of them are verbose but rel-
atively straightforward (simply containing the antece-
dents and conclusions of τ); the fourth dependency σ123
is more complex. To illustrate why σ123 is needed, let
us look at a specific database instance. The essential
parts of this instance are sketched below in hierarchical
fashion:

Dep(mat)

Grp(mat, c)

Emp(mat, c, e2)

Dep(cs)

Grp(cs, a)

Emp(cs, a, e1)

Grp(cs, b)

Dep(ph)

Grp(ph, d)

Dep(ee)

In this example, we see the departments of computer
science (cs), mathematics (mat), physics (ph) and elec-
trical engineering (ee). For departments mat, ph and
ee, it can be checked that the set Σ′ of Henkin tgds
is sufficient, but for departments cs there is a problem:
Consider an instance I containing all previously given
facts with constant cs plus additional facts Grp′(ncs, na)
and Grp′(n?cs, nb), where all arguments are nulls. No-
tice that in the first atom, we have ncs as the identifier
for department cs, and a different identifier n?cs in the
second atom. Indeed, we have I � Σ′ (since we can
assign different values to fd(cs) in σ12 and σ13, as the
function symbol is separately quantified in σ12 and σ13),
but I 6� τ (since we can assign only one value to fd(cs)).
However, once we add σ123, we have that Σ ≡log τ .

72

Let us now make an observation concerning the algo-
rithm nested-to-henkin: In a single step, it may pro-
duce exponentially many dependencies (notice that we
consider all subsets of the index set I in Algorithm 2).
Hence, in total, the algorithm may produce non-elemen-
tary (in the nesting depth and the number of parts)
many Henkin tgds. While this behavior was not so ap-
parent in our example, let us sketch what happens to a
five-level nested tgd:

⇒ . . .

Intuitively, what we see sketched above on the left side
is a five-level nested tgd (where each dot denotes a tgd
part). On the right side, we see the tree structure cov-
ered by the largest Henkin tgd generated by Algorithm 2
(similar to how σ123 was the largest Henkin tgd gener-
ated by Algorithm 2 for our three-level nested tgd).

Altogether, the algorithm connects nested tgds, Hen-
kin tgds and SO tgds in an interesting way: Obviously,
nested tgds have a particular power, namely nesting
of implications. SO tgds may emulate this power with
only linear blow-up by using one of its powerful features,
namely quantifier scope over entire conjunctions of im-
plications (recall the normalization algorithm nested-to-
so). Henkin tgds do not have this powerful quantifier
scope. Yet, while potentially incurring non-elementary
blow-up, they can emulate the power of nested tgds by
providing a separate dependency for each possible tree
structure of nulls. As future work, it would be interest-
ing to see whether this blowup is indeed unavoidable.

Finally, we show the last missing part for completing
Figure 3, namely that there are SO tgds which are not
expressible as Henkin tgds:

Theorem 4.4 There exists an s-t simple plain SO tgd
σ such that there is no set Π of (not necessarily s-t)
Henkin tgds for which Π ≡CQ σ holds.

Getting back to the big picture, and in particular Fig-
ure 3, notice that the separation results shown in this
section also imply separation results for all other edges
in Figure 3 that are not covered by explicit results. In
particular, since Theorems 4.1 and 4.2 separate stan-
dard Henkin tgds and normalized nested tgds from each
other, they also separate these two classes from their
subclass (tgds) and their superclass (Henkin tgds). So
indeed, Figure 3 presents a complete picture of the ex-
pressive power of our dependency classes.

5. Query Answering

In this section, we study the problem of query answering.
It is structured as follows. First, we show our undecid-
ability results by introducing the problem we are going
to reduce from, namely Post’s Correspondence Problem.
We then give the main ideas of the undecidability proof

for linear standard Henkin tgds and show that undecid-
ability also holds for simple nested tgds that are both
sticky and guarded. Finally we proceed to decidabil-
ity. Namely, we discuss that decidability holds in case
of weak acyclicity and show that in a limited setting,
decidability is also achievable for linear Henkin tgds.

Before we go into the details, let us informally de-
scribe what sticky [10] and guarded [9] dependencies are.
Note that allowing plain SO tgds rather than ordinary
tgds has no effect on the definition of these restrictions.

- a plain SO tgd is called guarded if there exists an atom
G in the antecedent that contains all variables occur-
ring in the antecedent. That is, assuming ϕ contains
only variables from x̄, it is of the form

G(x̄) ∧ ϕ(x̄)→ ψ(x̄)

- a set of plain SO tgds is called sticky if, intuitively
speaking, whenever a variable x is joined over, i.e.,

Ri(x, ȳ1) ∧Rj(x, ȳ2)→ Rk(z̄)

it must be contained in all conclusion atoms (i.e.,
above x ∈ z̄). In addition, x may also “never get
lost again”, that is, any dependency having Rk in the
antecedent must propagate a position where x occurs
into all conclusion atoms.

Post’s Correspondence Problem (PCP). Post’s Co-
rrespondence Problem is a classical undecidable prob-
lem [26]. It is concerned with strings that can be formed
by concatenating certain given words over an alpha-
bet. W.l.o.g., let our alphabet be given by the integers
1, . . . , k. An instance of PCP is given by the following
two parts:

- the alphabet A = {1, . . . , k}
- pairs of words over A: (w1

1, w
2
1), . . . , (w1

n, w
2
n)

The question of PCP is whether there exists a non-
empty sequence i1, . . . , i` of indices s.t.

w1
i1
· w1

i2
· . . . · w1

i`
= w2

i1
· w2

i2
· . . . · w2

i`

In what follows, let wsi,j denote the jth character of wsi .

That is, if the jth character of wsi is c, then wsi,j = c.

Idea 1: Basic construction. For representing poten-
tial solutions to PCP, we represent two types of infor-
mation:

- sequence of words selected in the solution

- string obtained by concatenating the selected words

We represent both in a standard way using unary func-
tion symbols: for instance, a string (3, 7, 4, . . .) is rep-
resented as a term f3(f7(f4(. . .))). Selected pairs of
words are treated similarly: If e.g. first w1

5 and w2
5 were

selected, followed by w1
8 and w2

8, we represent this as
g5(g8(. . .)).

The key way to use these data structures to obtain the
desired result is as follows. We use two “branches” to
represent the first and second string of the PCP, marked
by 1 resp. 2 in the first argument of atoms with predi-
cate symbol R. An illustration can be found in Figure 4.

73

Q

R(1, . . .) R(2, . . .)

R(1, . . .) R(2, . . .)

R(1, . . .) R(2, . . .)

N N

Figure 4: Intended structure of an instance.

Both branches start with the empty string and the emp-
ty sequence of selected words at the N facts. They
then successively select pairs of words and record these
selections through R facts. If in the end, both branches
produce the same word through the same sequence of
selected words, a Q fact is produced. C

Idea 2: Representing constants. For our encod-
ing, we need a number of constants for representing e.g.
branches, symbols of the alphabet and indexes for words.
For representing such constants, the following two prop-
erties must be guaranteed:

- symbols that represent the same constant must have
the same interpretation

- the sticky property may not be violated

A simple solution to the first issue is to represent the set
of constants {0, . . . , d} as a relation N of arity d, where
the ith argument represents constant i. This is exactly
what the N facts depicted in Figure 4 are used for. The
specific solution for also guaranteeing stickiness is as
follows. Whenever a fact is introduced, we add a vector
of variables representing constants to it:

N(x̄)→ R(. . . , x̄)

Whenever a dependency generates a fact, it also in-
cludes that vector x̄ in that fact. Finally, when the two
branches are joined, the join also includes the vector x̄
and propagates it to Q. C

Idea 3: Applying functions. There is a subtle but
critical part when using function symbols in conclusions:
For each function symbol, there can only be a single de-
pendency with that function symbol in the conclusion.
The reason for this requirement is that it guarantees
that the dependencies can actually be obtained from a
set of Henkin tgds by Skolemization. However, in our
set of dependencies we use function symbols to encode
strings. In a naive encoding, we thus have many dif-
ferent dependencies where the same alphabet symbol
is added to the string. The solution is a “two-phase”
approach.

Say that some R atom should have function f3 applied
to v1 in its conclusion. In a first phase, we produce a
specific fact that contains the information for our de-
sired function application:

R(. . .)→ F (. . . , x3, v1)

In particular, there could be other dependencies that
also produce F (. . . , x3, v1) facts. Then, in a second
phase, there is one dependency for every function sym-
bol, which applies this function symbol. E.g., for f3 we
have the following dependency:

F (. . . , x3, y)→ R(. . . , f3(y), . . .)

In this way, we guarantee that for each function symbol,
there is only one dependency in which it occurs. C

Using these three ideas, it is possible to show that sticky
guarded standard Henkin tgds can be used to encode
the PCP. Furthermore, through a number of techniques
given in detail in the full version, it is possible to further
restrict the setting to linear Henkin tgds which in total
use just two unary function symbols.

Theorem 5.1 Atomic query answering for sticky lin-
ear standard Henkin tgds is undecidable even if only two
unary function symbols are allowed in the set of depen-
dencies.

Another viewpoint of the preceding theorem is that un-
decidability holds even given just two Henkin tgds, while
the rest are full tgds (tgds without existential quanti-
fiers). A slight extension of the above described con-
struction allows us to show undecidability also for nested
tgds.

Idea 3+: Nested representation. As we saw in
Idea 3, we would like to use Henkin tgds of the form

F (. . . , x3, y)→ R(. . . , f3(y), . . .)

to apply e.g. function symbol f3. Unfortunately, this is
not the Skolemization of a nested tgd. However, it can
be, if we add an additional relation symbol Y as follows:

Y (y) ∧ F (. . . , x3, y)→ R(. . . , f3(y), . . .)

This is the normalized form of the nested tgd

Y (y)→ ∃z [F (. . . , x3, y)→ R(. . . , z, . . .)]

Hence, we may use nested tgds instead of Henkin tgds
(of course, additionally providing tgds that produce cor-
responding Y facts). Observe that we lose linearity in
this way, as we now have two atoms in the antecedent of
our normalized nested tgd. However, this is no surprise,
as linear nested tgds are just guarded tgds (since lin-
earity prevents nesting) and for guarded tgds we know
that query answering is decidable. C

Theorem 5.2 Atomic query answering for sticky guar-
ded simple nested tgds is undecidable even if only two
unary function symbols are allowed in dependencies.

Let us return to the big picture, in particular looking
back at the three major“families”of decidable query an-
swering shown in Figure 2. For standard Henkin tgds
we have seen that undecidability holds even for sticky
and linear, which already rules out decidability for most
of the diagram. For nested tgds, we have seen undecid-
ability for sticky and guarded – but not for linear. How-
ever, we have discussed in Idea 3+ that query answering
is decidable for linear nested tgds.

We have thus drawn the decidability/undecidability
in Figure 2 for the two major families of guarded and

74

sticky, but are still missing the well-known acyclicity
family. Yet, weak acyclicity and more generally finite
expansion sets guarantee, as the name suggests, a fi-
nite number of finite instances over which queries can
be evaluated. Thus it is implicit in [13, 5] that query
answering is decidable even for SO tgds. In total, we
have now a clear picture of the border between decid-
ability/undecidability in Figure 2.

We have seen in Theorem 5.1 that query answering
is undecidable even for linear Henkin tgds. Below we
show that decidability can be achieved by imposing a
further restriction.

Proposition 5.3 Atomic query answering is decidable
for linear Henkin tgds if the schema is considered as
fixed.

It would be interesting to see if the result can be ex-
tended to conjunctive queries. Note that this result is
in a sense optimal for atomic queries: Not fixing the
schema yields undecidability by Theorem 5.1. Not re-
quiring the dependencies to be linear yields undecid-
ability by the classical result that query answering is
undecidable even for tgds [20].

6. Model Checking

In this section, we discuss the model checking problem
of our dependency formalisms. Recall that for tgds and
SO tgds, the complexity of model checking is already
known [17, 14, 25]. We thus pinpoint the data/query/-
combined complexity of nested tgds as well as Henkin
tgds. Let us first formally define the model checking
problem and its variants.

Model Checking(C)
Query: A set Σ ⊆ C of dependencies
Data: A model (database instance) I
Question: Does I � τ hold?

The data/query/combined complexity of model check-
ing refers to the variant of the problem where the que-
ry/data/neither is considered fixed.

We start by considering Henkin tgds and first show NP-
completeness in data complexity.

Theorem 6.1 The model checking problem for Henkin
tgds is NP-complete in data complexity. Hardness holds
even for a single s-t standard Henkin tgd.

Proof (Sketch) NP-membership is clear, since it holds
already for SO tgds [14]. NP-hardness for SO tgds was
shown in [14] by a reduction from 3-colorability. How-
ever, the resulting SO tgd has the form of the one used
in Theorem 4.4, where we showed that it cannot be ex-
pressed by a Henkin tgd. We thus show NP-hardness for
Henkin tgds by a different reduction from 3-colorability.
Let an arbitrary instance of 3-colorability be given by
the graph G = (VG, EG). We construct an equivalent
instance of model checking as (σ, I, J) where σ is a sin-
gle s-t standard Henkin tgd, I is a source instance and
J is a target instance.

Let σ be the following (Skolemized) s-t Henkin tgd

V (x) ∧ V (y)→ T (x, y, f(x), g(y))

Let V I = VG and let T J be defined as follows

EG × {c1, c2 | ci ∈ {r, g, b}, c1 6= c2} ∪
{(v, v) | v ∈ VG} × {c1, c2 | ci ∈ {r, g, b}, c1 = c2} ∪

O × {c1, c2 | ci ∈ {r, g, b}}
where

O = {(v1, v2) | vi ∈ VG ∧ v1 6= v2} \ EG
Correctness of the reduction follows from the three lines
of the definition of TJ . The first line ensures that both
ends of an edge are assigned different colors (where one
end’s color is given by f(·) and the other’s by g(·)). The
second line ensures that f(v) = g(v) holds for all v ∈ VG.
Finally, the last line ensure that our definition of TJ
poses no restriction for any combination not covered by
the first two lines (i.e., not an edge and not the same
vertex).

We now show NEXPTIME-completeness of model check-
ing for Henkin tgds in query complexity.

Theorem 6.2 The model checking problem for Henkin
tgds is NEXPTIME-complete in query complexity and
combined complexity. Hardness holds even for s-t stan-
dard Henkin tgds.

Proof (Sketch) Membership already holds for plain
SO tgds [25]. We show hardness by reduction from
plain SO tgd model checking, which is known to be
NEXPTIME-complete [25]. Let (σ, I, J) be an arbitrary
instance of plain SO tgd model checking, where σ is a
plain SO tgd, I is a source instance and J is a target in-
stance. In [25], it is implicit that NEXPTIME-hardness
holds even if

- dom(I) = dom(J) = {0, 1}
- the arity of predicate symbols is at most 3
- σ consists of a single implication, i.e. is of the form

∃f̄ ∀x̄ ϕ(x̄)→ ψ(f̄ , x̄)

Hence, we assume that our given instance satisfies the
three conditions given above. Intuitively, σ might vio-
late one of the following conditions of standard Henkin
tgds: (?) every occurrence of a function symbol must
have the same argument list (?) the arguments of each
Skolem term must be pairwise distinct (?) no variable
is allowed to occur as argument of two distinct function
symbols. We ensure these properties by a sequence of
transformations, which first applies some equivalence-
preserving simplifications to the plain SO tgd and then
chooses an appropriate extension of the database sche-
ma to allow for a transformation of the formula into a
standard Henkin tgd.

We thus have identified the precise data, query, and
combined complexity of model checking for Henkin tgds.
We now proceed to nested tgds. Since nested tgds are
a first-order formalism, data complexity is in AC0 while
combined/query complexity is in PSPACE. We show
that the latter bound is tight.

Theorem 6.3 The model checking problem for nested
tgds is PSPACE-complete in query and combined com-
plexity. Hardness holds even for s-t simple nested tgds.

75

Proof (Sketch) Membership is clear, since it already
holds for first-order logic. We show hardness by reduc-
tion from the well-known PSPACE-complete problem of
QBF satisfiability. Let ψ be an arbitrary QBF. W.l.o.g.,
we may assume

- ψ is in prenex form, with strict quantifier alternation
starting with a universal quantifier and ending with
an existential quantifier

- the quantifier-free part of ψ is in 3-CNF

We thus may assume that ψ has the form

∀x1 ∃y1 . . . ∀xn ∃yn (c1 ∧ . . . ∧ cn)

with ci = (li1 ∨ li2 ∨ li3) and lij is a literal over {x1, . . . ,
xn, y1, . . . , yn}. We first define source instance I and
target instance J of our model checking problem.

I = {P (1, 0), P (0, 1)}
J = {Q(1, 0), Q(0, 1)} ∪
{C(x1, x2, x3) | x ∈ {0, 1}} \ {C(0, 0, 0)}

The nested tgd τ of the model checking problem is de-
fined as follows:

∀x1, x̃1 P (x1, x̃)→ ∃y1, ỹ1Q(y1, ỹ1) ∧
∀x2, x̃2 P (x2, x̃)→ ∃y2, ỹ2Q(y2, ỹ2) ∧

. . .
∀xn, x̃n P (xn, x̃)→ ∃yn, ỹnQ(yn, ỹn) ∧∧

i∈{1,...,m}
C(l?i1, l

?
i2, l

?
i3)

where

l?ij =


xα, if lij = xα
x̃α, if lij = ¬xα
yβ , if lij = yβ
ỹβ , if lij = ¬yβ

Intuitively, nested tgds miss two features of QBFs: ne-
gation and disjunction. Negation is encoded using sym-
bols of the form xα for positive literals and x̃α for nega-
tive literals. Through appropriate definition of relation
P and Q in I resp. J , the correct behavior of comple-
mentary literals is guaranteed. Similarly, using C atoms
we encode clauses (i.e., disjunctions) and guarantee cor-
rectness by encoding the correct behavior of disjunction
in the C relation of J .

7. Conclusion

In this work, we have investigated the expressive power
and computability of using function symbols in tgds.
We have seen that function symbols introduced by dif-
ferent forms of dependencies correspond to different str-
uctures underlying the domain that one wants to model.
For hierarchically structured domains, nested tgds are
often the best choice, while Henkin tgds are well-suited
for non-hierarchical domains. Nevertheless, sometimes
the full power of SO tgds is required. We observed that

- nested tgds share with SO tgds the power of quanti-
fying over more than one tgd part;

- Henkin tgds share with SO tgds the power of allowing
non-tree structured Skolem terms.

Yet, our results revealed a deep semantical connection
between these two formalisms, namely: every nested tgd
can be expressed as a logically equivalent (tree) Henkin
tgd. Still, there is a price to pay for simulating nested
tgds by Henkin tgds rather than by (arbitrary) SO tgds:

- Converting nested tgds to logically equivalent SO tgds
only leads to a linear blow-up.

- Converting nested tgds to logically equivalent (tree)
Henkin tgds may lead to a non-elementary blow-up.
While not occurring for typical examples as we saw,
this may be a problem for particularly complex set-
tings.

Our results showed that each of our dependency classes
has particular features that cannot be simulated by a
“lower” class in our semantical inclusion diagram (Fig-
ure 3), since we proved that the diagram is complete and
all inclusions are proper. Altogether, we can conclude
from our analysis that great care must be taken when
modeling a particular domain by tgds so as to balance
expressive power, simplicity of the formalism, and size
of the resulting set of dependencies. In summary, our
analysis of Henkin and nested tgds has provided a deep
insight into the versatile features of SO tgds. The re-
sults of our study underline the value of SO tgds, which
support the distinguished features of both Henkin and
nested tgds.

For the model checking problem, we have pinpointed the
data/query/combined complexity of nested tgds and
Henkin tgds: for Henkin tgds we proved NEXPTIME-
completeness of query/combined complexity and NP-
completeness of data complexity. Moreover, we showed
that nested tgds are PSPACE-complete in query/com-
bined complexity (and are known to be in AC0 data
complexity).

For query answering under various forms of dependen-
cies, we have provided a complete picture of the decid-
ability/undecidability border in Figure 2 for all depen-
dency classes studied here. We have shown that even
the slightest deviation from the way that tgds use func-
tion symbols in their Skolemized form yields undecid-
ability: this holds even for the weakest extensions of
tgds, simple nested tgds or standard Henkin tgds, and
even for two of the best-known families for guaranteeing
decidability for tgds (guarded and sticky) together.

Hence our analysis has revealed that the islands of
decidability are quite small. One such island is that
for a fixed schema, at least linear Henkin tgds allow for
decidability. Moreover, we have observed that the third
major family, weak acyclicity, guarantees decidability of
query answering even for SO tgds.

For future work, the most burning question is how to
narrow the gaps between the islands of decidability of
query answering under Henkin/nested/SO tgds. We
will thus analyze known decidable fragments of various
logics (such as, e.g., the two-variable fragment) and in-
vestigate their applicability to our setting of query an-
swering under tgds. Moreover, we also have to explore
new paradigms that are tailor-made for Henkin/nested/
SO tgds and that go beyond known decidability criteria
for other logics. Beyond that, it would be interesting to
see whether frameworks such as dependence logic yield
additional suitable subclasses of SO tgds.

76

Acknowledgements. This work has been supported
by the Austrian Science Fund, projects (FWF):P25207-
N23 and (FWF):Y698, the Vienna Science and Technol-
ogy Fund, project ICT12-015, as well as the Engineer-
ing and Physical Sciences Research Council (EPSRC),
Programme Grant EP/M025268/“VADA: Value Added
Data Systems – Principles and Architecture”.

8. References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[2] S. Amano, L. Libkin, and F. Murlak. Xml schema
mappings. In PODS, pages 33–42, 2009.

[3] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.
Relational and XML Data Exchange. Morgan &
Claypool Publishers, 2010.

[4] M. Arenas, J. Pérez, J. L. Reutter, and
C. Riveros. The language of plain SO-tgds:
Composition, inversion and structural properties.
JCSS, 79(6):763–784, 2013.

[5] J.-F. Baget, M. Leclère, M.-L. Mugnier, and
E. Salvat. Extending decidable cases for rules
with existential variables. In IJCAI, pages
677–682, 2009.

[6] J.-F. Baget, M. Leclère, M.-L. Mugnier, and
E. Salvat. On rules with existential variables:
Walking the decidability line. Artif. Intell.,
175(9-10):1620–1654, 2011.

[7] P. A. Bernstein and S. Melnik. Model
management 2.0: manipulating richer mappings.
In SIGMOD, pages 1–12, 2007.

[8] A. Blass and Y. Gurevich. Henkin quantifiers and
complete problems. Annals of Pure and Applied
Logic, 32(0):1 – 16, 1986.

[9] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the
infinite chase: Query answering under expressive
relational constraints. JAIR, 48:115–174, 2013.

[10] A. Cal̀ı, G. Gottlob, and A. Pieris. Advanced
processing for ontological queries. PVLDB,
3(1):554–565, 2010.

[11] A. Cal̀ı, G. Gottlob, and A. Pieris. Query
answering under non-guarded rules in datalog+/-.
In RR, pages 1–17, 2010.

[12] A. Cal̀ı, G. Gottlob, and A. Pieris. Towards more
expressive ontology languages: The query
answering problem. Artif. Intell., 193:87–128,
2012.

[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[14] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. ACM TODS,
30(4):994–1055, 2005.

[15] I. Feinerer, R. Pichler, E. Sallinger, and
V. Savenkov. On the undecidability of the
equivalence of second-order tuple generating
dependencies. Inf. Syst., 48:113–129, 2015.

[16] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J.
Miller, P. Papotti, and L. Popa. Nested mappings:
Schema mapping reloaded. In VLDB, pages 67–78,
2006.

[17] G. Gottlob and P. Senellart. Schema mapping
discovery from data instances. J. ACM, 57(2),
2010.

[18] P. Hell and J. Nešetřil. The Core of a Graph.
Discrete Mathematics, 109:117–126, 1992.

[19] M. A. Hernández, H. Ho, L. Popa, A. Fuxman,
R. J. Miller, T. Fukuda, and P. Papotti. Creating
nested mappings with Clio. In ICDE, pages
1487–1488, 2007.

[20] D. S. Johnson and A. C. Klug. Testing
containment of conjunctive queries under
functional and inclusion dependencies. JCSS,
28(1):167–189, 1984.

[21] P. G. Kolaitis, M. Lenzerini, and N. Schweikardt,
editors. Data Exchange, Integration, and Streams,
volume 5 of Dagstuhl Follow-Ups. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2013.

[22] P. G. Kolaitis, R. Pichler, E. Sallinger, and
V. Savenkov. Nested dependencies: structure and
reasoning. In PODS, pages 176–187, 2014.

[23] M. Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[24] N. Leone, M. Manna, G. Terracina, and P. Veltri.
Efficiently computable datalog programs. In KR,
2012.

[25] R. Pichler and S. Skritek. The complexity of
evaluating tuple generating dependencies. In
ICDT, pages 244–255, 2011.

[26] E. L. Post. A variant of a recursively unsolvable
problem. J. Symbolic Logic, 12(2):255–56, 1946.

[27] E. Sallinger. Reasoning about schema mappings.
In Data Exchange, Integration, and Streams,
pages 97–127, 2013.

[28] B. ten Cate and P. G. Kolaitis. Structural
characterizations of schema-mapping languages.
In ICDT, pages 63–72, 2009.

[29] W. J. Walkoe, Jr. Finite partially-ordered
quantification. J. Symb. Log., 35(4):535–555, 1970.

77

