
Submitted 11 September 2019
Accepted 9 January 2020
Published 2 March 2020

Corresponding author
Lerina Aversano,
aversano@unisannio.it

Academic editor
Sebastian Ventura

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.254

Copyright
2020 Fusco and Aversano

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

An approach for semantic integration of
heterogeneous data sources
Giuseppe Fusco and Lerina Aversano
Department of Engineering, University of Sannio, Benevento, BN, Italia

ABSTRACT
Integrating data from multiple heterogeneous data sources entails dealing with data
distributed among heterogeneous information sources, which can be structured, semi-
structured or unstructured, and providing the user with a unified view of these data.
Thus, in general, gathering information is challenging, and one of the main reasons
is that data sources are designed to support specific applications. Very often their
structure is unknown to the large part of users. Moreover, the stored data is often
redundant, mixed with information only needed to support enterprise processes, and
incomplete with respect to the business domain. Collecting, integrating, reconciling and
efficiently extracting information from heterogeneous and autonomous data sources is
regarded as a major challenge. In this paper, we present an approach for the semantic
integration of heterogeneous data sources, DIF (Data Integration Framework), and
a software prototype to support all aspects of a complex data integration process.
The proposed approach is an ontology-based generalization of both Global-as-View
and Local-as-View approaches. In particular, to overcome problems due to semantic
heterogeneity and to support interoperability with external systems, ontologies are used
as a conceptual schema to represent both data sources to be integrated and the global
view.

Subjects Data Science, Databases, Emerging Technologies
Keywords Data integration, Heterogeneous data sources, Semantic integration, Ontologies

INTRODUCTION
The large availability of data within the enterprise context and even in any inter-enterprise
context, the problem arises of managing information sources that do not use the same
technology, do not have the same data representation, or that have not been designed
according to the same approach. Thus, in general, gathering information is a hard task, and
one of the main reasons is that data sources are designed to support specific applications.
Very often their structure are unknown to the large part of users. Moreover, the stored data
is often redundant, mixed with information only needed to support enterprise processes,
and incomplete with respect to the business domain. Collecting, integrating, reconciling
and efficiently extracting information from heterogeneous and autonomous data sources
is regarded as a major challenge. Over the years, several data integration solutions have
been proposed:
• Distributed databases can be considered the first attempt to integrate databases. Data,
instead of being stored on a single machine, is stored on different machines. Compared
to the centralized case, database schema are more complicated by the need to physically

How to cite this article Fusco G, Aversano L. 2020. An approach for semantic integration of heterogeneous data sources. PeerJ Comput.
Sci. 6:e254 http://doi.org/10.7717/peerj-cs.254

https://peerj.com/computer-science
mailto:aversano@unisannio.it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.254
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.254

Figure 1 Architecture of a generic mediation system.
Full-size DOI: 10.7717/peerjcs.254/fig-1

distribute data over multiple machines. Distributed databases require the complete
integration of existing systems into a single homogeneous database. This is difficult
to achieve due to technical issues (prohibitive conversion costs) and organizational
difficulties (existing DBMSs belong to different organizations).
• Federated databases have been proposed to address these limits. They are a set of
multiple independent sources each of which can exchange information with the others.
A connection is established for each pair of sources, and such architecture is particularly
suitable when communications in the system occur predominantly between pairs of
sources.

The solution often adopted consists of the cooperative information systems (Fig. 1), in
which there are two types of components: mediator and wrapper. Themediator coordinates
the data flow between local sources and user applications. The mediator is not responsible
for storing data, since it only stores a virtual and global view of real data (or global schema)
and the mappings between the global and local views. In this way, applications will run
queries over the virtual view. It will then be the mediator to build queries for individual
sources of information. Instead, wrappers are software components that interact directly
with their respective local sources as follows:

• to translate the conceptual schema of the local source into a global language;
• to submit queries to local sources;
• to retrieve results by sending them to the mediator, which will provide the user with a
unified result.

This approach allows provide users with a unified interface (called mediated schema
or global schema or global view) of sources, freeing them from manually managing each
source. The open research problem is the need of a not statically constructed mediator,
but the need of querying mediator responsible of accessing heterogeneous and dynamic
data sources trough a global view without integrating or migrating the local data source.
To overcome this research problem, this paper proposes an ontology based framework to
support the analysis, acquisition and processing of data from heterogeneous sources, Data

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 2/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-1
http://dx.doi.org/10.7717/peerj-cs.254

Integration Framework (DIF). It exploits domain ontology and provides a generalization
of both global view and local view approaches, based on data virtualization. The proposed
framework addresses this issue by providing access to the data layer, consisting of
autonomous data sources (e.g., DBs, spreadsheets), through the mediation of a global
domain view, given in terms of an ontology, and the use of a semiautomatic mapping
between the data layer and the ontology. Users do not have to know details of the data
sources and can express their information needs as queries over the conceptual domain
model. The proposes framework uses the ontology and mapping to reformulate the user
queries into standard DB queries that are executed directly by the database management
systems (DBMSs) of the sources. The global view provides a unified view of real data, so
that applications and users who use data will have the perception of accessing a single data
source rather than multiple sources. In this context, the work faced aspects of acquisition,
integration and processing of heterogeneous data sources.

The paper is organized as follows. ‘Aspects of a Data Integration Process’, ‘Related
Work’ presents, respectively, problems that characterize data integration and proposed
solutions in the state of the art. ‘Data Integration Framework’ presents in detail the
approach and architecture of the software system developed to support the integration
of heterogeneous sources. ‘DIF Supporting Tool’ presents the DIF tool design and the
main algorithms implemented. ‘Case Study’ presents a case study in order to show the
results of the proposed solution. Finally, ‘Conclusion’ concludes this paper by submitting
concluding remarks and mentioning some research issues related to data integration that
are not addressed in this paper.

ASPECTS OF A DATA INTEGRATION PROCESS
Data integration systems using themediation approach are characterized by an architecture
(Fig. 1) based on a global schema and a set of sources schema. The sources contain real data,
while the global scheme provides a unified, integrated and reconciled view of local sources.
The main components are: the mediator, which coordinates data flow between local
sources and user applications, and wrappers, which directly interact with their respective
local sources. Designing a data integration system is a complex task, which involves dealing
with different issues.

The first issue is related to the heterogeneity of the sources, as sources adopt different
models and data storage systems. This poses problems in defining the schema/global view.
The purpose is to provide a view with an appropriate level of abstraction for all data in the
sources.

The second issue is how to define mappings between global schema and local sources:
in literature, in order to model the correspondences between the schemes, different
approaches (Lenzerini, 2002) have been proposed as global-as-view and local-as-view.
With global-as-view (GaV) approach the global schema is expressed in terms of views
over data sources. With local-as-view (LaV) approach the global schema is specified
independently of the sources, and the relationships between global schema and sources
are established by defining each source as a view built over the global schema. Differences

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 3/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

Figure 2 Matching process.
Full-size DOI: 10.7717/peerjcs.254/fig-2

Figure 3 Merging process.
Full-size DOI: 10.7717/peerjcs.254/fig-3

between the two approaches are discussed in Lenzerini (2002). In order to overcome
the limits of GaV and LaV approaches, techniques that combine the benefits of these
approaches have also been proposed, mitigating their disadvantages in order to provide
an alternative to data integration that is more flexible and scalable. The most interesting
techniques are GLaV (Global and Local as View) (Katsis & Papakonstantinou, 2009; Arens
et al., 1993) and BGLaV (BYU Global Local as View) (Xu & Embley, 2004).

Once the mapping approach is defined, it is necessary to define the methods and
techniques to be used to generate mappings between the global and the local schema. This
activity is called Schema Matching. The set of mappings is called alignment. A matching
process (Shvaiko & Euzenat, 2005) (Fig. 2) defines an alignment (A

′

) for each pair of
schemas (o1, o2), making use of input parameters p if necessary (for example, thresholds,
weights), a previously generated input alignment (A) and additional external resources r .

We can now generate the global schema based on mappings defined in the schema
matching activity. This activity is called Schema Merging. A merging process (Fig. 3)
consists of integrating several existing schemes (o1,o2,...,on) into a single global schema
(O) based on the correspondences generated by the schema matching process A, any input
parameters p and external resources r . Different techniques and methodologies about
schema merging have been proposed in the literature (Lee & Ling, 2003; Fong et al., 2000;
Chiticariu, Kolaitis & Popa, 2008; Kong, Hwang & Kim, 2005).

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 4/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-2
https://doi.org/10.7717/peerjcs.254/fig-3
http://dx.doi.org/10.7717/peerj-cs.254

Table 1 Comparison between GaV and LaV.

GaV LaV

Mapping Global schema expressed in
terms of views over data sources

Data sources expressed in terms
of views over global schema

Query processing Query unfolding Query rewriting/Query answer-
ing

Global schema quality Exact or Sound Complete or Exact
Management effort High: data source changes af-

fect the global schema and other
sources

Low: data source changes only
impact the global schema

Another issue is related to data storage: compared to managed data there are two
approaches, called materialization and virtualization. With materialization, data is also
present in the global schema. On the opposite, in the virtualization approach, data that
resides in sources is only available when query processing activity is executed.

Once we merged local views into one unified global view, we can process a query posed
over the global schema. This activity is called Query Processing, that is how to express it in
terms of a set of queries that can be processed by the sources acquired. In the LaV approach
the proposed solutions consist of query rewriting (or view-based query rewriting) and
query answering (or view-based query answering). In the GAV approach query unfolding
techniques are used. The differences between the two approaches are discussed in Lenzerini
(2002).

Once the query processing activity is performed, data from different sources need to be
interpreted, that is, transformed into a common representation. Therefore, they must be
converted, reconciled and combined.

Table 1 summarizes the approaches used in mappings definition between the global
schema and local ones.

Based on the comparison approaches in Table 1 it is possible to observe that:
• The LaV approach involves a priori presence of a global schema, which must be
well-built in terms of concepts and relationships between them. If it is not well-built,
or the integrated schemas differ greatly from each other, the global schema must be
continually modified, also taking into account the previously integrated data sources. If
not, the changes affect only the global schema.
• With GaV approach, the global schema is incrementally built: it is modified every time a
new data source is integrated, adding and/or modifying concepts and relationships based
on current and previously integrated data sources. Conversely, in the LaV case, changes
do not impact previous integrated data sources (if the overall schema is well-built).
• The LaV approach offers greater scalability when the number of integrated data sources
increases, but when that number is relatively small, and the global schema is not
well-built, the GaV approach increases the quality of global schema.

Moreover, in the context of semantic integration, the hybrid approach is surely the best
solution but it reduces the reuse of local ontologies, since they have to refer to a common
vocabulary. Therefore, considering a possible future reuse of local the ontologies, it is

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 5/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

possible to combine the presented approaches differently in order to support different
cases and to present a data integration approach in order to provide different solutions as
needed. The proposed approach, called DIF is based on these observations and seeks to
combine the GaV and LaV approaches, exploiting ontologies to reach the goals.

RELATED WORK
Several systems, methodologies and approaches have been proposed in literature to support
data integration from heterogeneous sources, also based on ontologies (Calvanese, Lembo
& Lenzerini, 2001).

To overcome problems due to semantic heterogeneity, it is useful to use ontologies
(Wache et al., 2001). Depending on how ontologies are used, data integration systems can
adopt different approaches, such as single ontology (adopted in SIMS (Arens et al., 1993;
Arens, Hsu & Knoblock, 1996)), multiple ontology (adopted in OBSERVER (Mena et al.,
1996b; Mena et al., 1996a)) and hybrid (adopted in KRAFT (Preece, Hui & Gray, 1999;
Preece et al., 2000) and COIN (Goh et al., 1999)).

More recently inCivili et al. (2013) it is proposedMastro Studio, a Java tool for ontology-
based data access (OBDA). Mastro manages OBDA systems in which the ontology is
specified in a logic specifically tailored to ontology-based data access and is connected to
external data management systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology.

TSIMMIS (The Stanford-IBM Manager of Multiple Information Sources) (Chawathe et
al., 1994) is based on an architecture that exposes a wrapper hierarchy (called Translators)
and mediators.

TSIMMIS approach is global-as-view. Wrappers convert data to a common data model
called OEM (Object Exchange Model) and mediators combine and integrate them. The
global scheme consists of a set of OEM objects exported by wrappers to mediators.
Mediators are specified using a language called Mediator Specificaion Language (MSL).
Queries are expressed in MSL or in a specific language called LOREL (Lightweight Object
Repository Language), an object-oriented extension of SQL. Each query is processed by a
module, the Mediator Specification Interpreter (MSI).

It should be emphasized that TSIMMIS does not implement a real integration, as each
mediator performs integration independently of each other. It means that does not exist
the concept of a unified global scheme. The result of a query could be seen inconsistent and
completely different from other mediators. This form of integration is called query-based.

GARLIC integration system is based on an architecture with Data Repositories at lowest
level, which represent the data sources. Above each data repository we find a wrapper
(called Repository Wrapper), which is responsible for communication between a data
repository and the rest of the system. In addition, each wrapper ensures the transformation
of the local schema of a source into a unified schema and transforming user queries into
queries executable by data source.

The global schema has an object-oriented data model, managed by the Query Services
and Runtime System components, and stored in the Metadata Repository, based on the

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 6/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

ODMG standard. ODMG objects are exported by wrappers using Garlic Data Language
(GDL), based on the ODL (Object Definition Language) standard.

Unlike the TSIMMIS system, there is no mediator concept in GARLIC, and the
integration of ODMG objects from different sources is performed by wrappers.

MOMIS (Mediator Environment for Multiple Information Sources) (Orsini et al., 2009;
Beneventano & Bergamaschi, 2004) is a data integration system that manages structured
and semistructured data sources. MOMIS is based on I 3 architecture (Hull & King, 1995),
consisting of several wrappers and a mediator.

The integrationmethodology starts with an extraction activity where user uses a wrapper
that transforms the structure of a data source into a ODLI3 (Object Definition Language)
model based on descriptive logic. The integration process generates an integrated view of
data sources using global-as-view approach, building the global schema incrementally. At
the end of the MOMIS integration process, starting when the query is posed by the user
over the global schema, the mediator generates a OQLI3 query and sends it to wrappers,
which translate it into a query executable from the corresponding data source.

Ontology-based data access is by now a popular paradigm which has been developed in
recent years to overcome the difficulties in accessing and integrating legacy data sources
(Xiao et al., 2018). In OBDA, users are provided with a high level conceptual view of the
data in the form of an ontology that encodes relevant domain knowledge. The concepts
and roles of the ontology are associated via declarative mappings to SQL queries over the
underlying relational data sources. Hence, user queries formulated over the ontology can
be automatically rewritten, taking into account both ontology axioms and mappings, into
SQL queries over the sources.

Overall, the large part of the analysed approaches, use their own description language,
for both local and global schemas, and queries. However, if a generic external application
wants to communicate with one of the systems presented, it should know the specific
query language and/or the specific language used to describe the schemas. The problem of
translation between languages is widened if we consider interoperability with the Web. For
this reason, the proposed approach, Data Integration Framework (DIF), exploits the use
of ontologies supported by a semiautomatic mapping strategy.

DATA INTEGRATION FRAMEWORK
The proposed Data Integration Framework, is a generalization of both GaV and LaV
approaches, based on data virtualization, and provides the possibility to define a mappings
in both GaV approach (a correspondence between a view expressed in terms of the
global schema and a view expressed in terms of the local schema) and LaV approach
(correspondence between a view expressed in terms of the local schema and a view
expressed in terms of the global schema). In addition, to overcome problems due to
semantic heterogeneity and to support interoperability with external systems, ontologies
are used as a conceptual schema to represent both data sources to be integrated and the
global schema, and therefore eachmapping is defined as a correspondence between elements
of ontologies: concepts (or classes), datatype properties, and object properties. Since the

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 7/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

data virtualization approach is also used to define local ontologies, the construction of
an ontology to represent a local source is guided by additional mappings, called source-
mappings, defined as correspondences between elements of local ontology and elements
that characterize the source itself (for example, for a relational source a mappings will be
defined as a correspondence between an ontology concept and the table that represents it).

In the proposed solution, the query rewriting is used to reformulate a query posed over
the global ontology into a set of queries posed over the local ontologies. This is due to
the choice of using ontologies also to describe data sources to be integrated. In this way,
though, the mediation process is not completed yet, since local ontologies do not contain
real data. To complete the mediation process, a second query translation task is required
to reformulate a query posed over the local ontology into a set of queries posed over the
corresponding source.
Definition 4.1 (Data Integration Framework) The data integration framework DIF is a
5-uple (Og ,Ol ,A,MT ,SML) where:

- Og is the global ontology, expressed in a LOg logic.
- Ol is the local ontology, expressed in a LOs logic.
- A (Alignment) is a set of mappings M1,M2,...,Mn between ontologies Og and Ol . Each
mapping Mi is a 5-uple (id,es,et ,n,rel) where:

- id is the unique mapping identifier;
- es and et , respectively, are the elements of the source ontology Os and target Ot . In the
case of a GaV mapping type, Os represents the local ontology and Ot the global one, vice
versa in the case of a LaV mapping type;

- n is a measure of confidence (typically within a range [0, 1]) that indicates the
similarity between es and et ;

- rel is a relationship between es and et (for example, equivalence, subsumption,
disjunction).

- MT (Mapping Table) is a table whose rows represent an element eg of the global ontology
Og and columns represent elements el1,el2,...,eln of the local ontology Ol that are mapped
to eg .

- SML (Source Mapping List) is a set of mappings SM1,SM2,...,SMn between the local
ontology Ol and the correspondent data source Si. Each mapping SMi, called source-
mapping, is a triple (id,srck,dsth) where:

- id is the unique mapping identifier;
- srck is a source element of the local ontology Ol .
- dsth is a destination element of the local data source Si (for example, a table of a
relational source).

The framework must be able to handle both the integration process and the mediation
process, which is shown in Fig. 4, making activities as automated as possible.

The integration process is divided into the following activities:

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 8/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

Figure 4 Overview of integration andmediation processes.
Full-size DOI: 10.7717/peerjcs.254/fig-4

1. Source Wrapping: for each source you want to integrate, you build an ontology to
describe it. In addition, source-mappings are defined between the ontology and the
data source, which will be subsequently used during the mediation process.

2. Schema Matching: for each local ontology, mappings are generated between it and
global ontology. The matching activity generates mappings between a source ontology
and a target one. Therefore, considering as target ontology the local one, it is possible
to generate LaV mappings. Conversely, the followed approach will be GaV. Mappings
are eventually validated or modified by the integrator designer. If the number of data
sources to be integrated is 1, global and local ontologies are the same.

3. Schema Merging: each local ontology, taking into account the set of mappings defined
in the previous activity, is integrated into the global ontology and the mapping table is
updated. At this stage, global ontology is built incrementally.
The mediation process, however, following a query submission, is divided into the

following phases:
1. Global Query Processing: a query posed over the global ontology is reformulated,

through rewriting, into a set of queries posed over local ontologies, using the mapping
table generated at the end of the integration process;

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 9/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-4
http://dx.doi.org/10.7717/peerj-cs.254

Figure 5 Overview of DIF supporting tool: (A) integration approach and (B) UML diagram.
Full-size DOI: 10.7717/peerjcs.254/fig-5

2. Local Query Processing: each local query is reformulated into a set of queries over the
corresponding data source, using source-mappings generated in the source wrapping
activity. This set of queries, once executed, allows you to retrieve the real data.

3. Data Reconciliation: extracted data from the previous activity is reconciled and
combined before being presented to the user.
Local and global ontologies are expressed in OWL-DL (https://www.w3.org/TR/owl-

features/), whose basic elements are classes c , object properties op and datatype properties
dp. Instances i are not considered mapping because the data management approach is
virtualization rather than materialization.

DIF SUPPORTING TOOL
The tool, designed and developed to support the DIF framework, presents the typical
architecture of integration systems based on the mediation approach (Fig. 5), providing
two main components: mediator and wrapper.
According to Definition 4.1 and the description of the activities to be performed

during integration and mediation processes, the architecture is composed by Acquisition,
Integration and Mediation subsystems.

Source wrapping
Data sources that the framework allows to integrate are structured and semi-structured
(in particular, spreadsheet, JSON, and XML data sources). The source wrapping activity is
performed by a class that implements the IWrapper interface. The output of this activity,

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 10/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-5
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/
http://dx.doi.org/10.7717/peerj-cs.254

for each data source S, is a pair (O,SML) composed by the local ontologyO, which describes
the data source S, and the associated source mapping list SML.

Relational data sources integration
The system allows the integration of relational data sources via JDBC connection
(http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html) and
supported databases are: MySQL, PostgreSQL, H2, DB2, Microsoft SQL Server, Oracle,
Telid and MonetDB.

Relational data sources are connected to the framework by defining R2RML
(https://www.w3.org/TR/r2rml/) mappings. Each R2RML mapping therefore represents a
source-mapping, according with Definition 4.1. Local ontology is generated by identifying
conditions associated to the database tables (Ghawi & Cullot, 2007) and, through identified
conditions, associating each database element (table, column) to the corresponding
ontology (class, datatype property, object property).

In addition to R2RML mapping, you can use a more compact notation, called axiom
mapping, consisting of three elements:

• MappingID: mapping identifier;
• Source: a SQL query posed over the database;
• Target: RDF triple containing variables that refer to the names of the columnsmentioned
in the source query.
Each source source mapping SM (id,srck,dsth) (Definition 4.1, contained in the source

mapping list SML, contains an OWL resource (or local schema element) srck and an
R2RML mapping (or an axiom mapping) dtsh.

Spreadsheet data sources integration
Spreadsheet data sources are integrated with a new approach that seeks to examine the
internal structure of the tables in order to extract an ontology that reflects as much as
possible the data source. The approach is divided into several phases:
1. Source Scanning: the spreadsheet file is scanned in order to locate tables. At the end of

the scan, a text string that describes the table structure is produced.
2. Parsing: the text string is parsed in order to generate the ontology elements, the

relationships between them, and the physical location of cells within the spreadsheet
data source. The output of this step is a list of schema attribute tables.

3. Analysis: an analysis of the list of attribute tables built to the previous step is performed
to aggregate attributes with the same name in different concepts.

4. Restructuring: the generated ontology is refined in order to improve its quality.
Each source-mapping SM (id,srck,dsth) contained the source mapping list SML

(Definition 4.1) contains an OWL resource (or local schema element) srck and a data
structure to track cells within the spreadsheet data source dtsh.

XML data sources integration
XML data sources integration is based on its XSD schema (Ghawi & Cullot, 2009). If the
XML schema does not exist, it is generated. Possible mappings are:

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 11/30

https://peerj.com
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
https://www.w3.org/TR/r2rml/
http://dx.doi.org/10.7717/peerj-cs.254

• Class mapping: XML nodes mapped as classes are complex types and element-group
declarations (if they contain complex types). The XML schema supports two inheritance
mechanisms (extensions and restriction), which are also mapped as classes.
• Property mapping: if an XML node has a simple type, or is an attribute-group
declaration, or is an element-group declaration without additional associated complex
types, it is mapped as properties, and its domain is the class corresponding to the
parent node. Attributes are treated as simple types. In Ghawi & Cullot (2009), instead,
all element-groups and attributes-groups are mapped as classes.
• Relation mapping: if an element is a complex type and contains another element, whose
type is also complex, a relationship is created between the respective classes.
The algorithm, in the ontology generation step, receives the XSG graph of the

XML schema (XML Schema Graph) input. Starting from the root node, a deep visit is
performed, generating an XPath expression for each visited node. Each source-mapping
SM (id,srck,dsth) contained the source mapping list SML (Definition 4.1) contains an OWL
resource (or local schema element) srck and the XPath expression dtsh.

Schema maching
The goal of schema matching activity is to generate a set of mapping between local and
global ontologies, which will then be validated by the user. The adopted approach generates
mappings between classes, considering both semantic and contextual characteristics. Before
to execute schema matching, a semantic annotation activity of ontologies is performed,
whose output is a set of annotations AN , one for each ei element of the schema, where each
annotation ANi is a triple (toki,POSi,sensei) consisting of:

• toki: the token associated with the element ei;
• POSi: the lexical category of the token toki;
• sensei: the meaning associated with toki token for the lexical category POSi, obtained as
the output of the disambiguation process.
In the semantic matching task, a semantic-basedmatcher is applied to all pairs (CGi,CLj),

whereCGi is the i-th class of the global schema, whileCLj is the j-th class of the local schema.
The semantic matcher, for each pair (CG,CL), generates the following information:

• SemanticRel : the type of semantic relation (≡,v,w,idk);
• SemanticSim: is a coefficient∈ [0,1] that specifies the reliability of the generated semantic
relation.
Given n and m the number of local and global schema classes, respectively, the output

of the semantic matching activity is:

(CGi,CLj)⇒i∈ [1,m]
j ∈ [1,n]

{
SemanticRel
SemanticSim

}

The contextualmatching activity generatesmappings between classes taking into account
how they are modeled, that is considering their properties. First, you must determine the
equivalent properties between the two schemes. This is done by applying to all pairs

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 12/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

(PG,PL), where PG and PL are the properties of the global and local schema respectively, the
syntax-based or the semantic-based matcher. The syntax-based matcher, by analyzing the
syntactic structure of words, returns for each pair (PG,PL) a coefficient in a range [0,1]. If
the latter is greater than or equal to the β threshold value, a mapping is generated between
PG and PL. The semantic-based matcher, instead, using WordNet to extract property sense,
generates a mapping between PG and PL if there is an equivalence relation for at least one
token pair. The semantic-based matcher is useful if synonyms are used to represent the
same property and/or to discover mappings 1:n. Once the mappings have been discovered,
it is possible to calculate, for all pairs (PG,PL), the degree of contextual similarity, defined
as ContextualSim, by applying the Jaccard measure:

ContextualSim(CG,CL)=
|P(CG)∩P(CL)|
|P(CG)∪P(CL)|

where P(CG) and P(CL) are the set of properties of the classes CG and CL respectively.
The cardinality of the intersection of the two sets is equal to the number of existing

mappings between the properties of the two classes. Given n and m the number of local
and global schema classes, respectively, the output of the contextual matching activity is a
set of pair as:

(CGi,CLj)⇒i∈ [1,m]
j ∈ [1,n]

{
ContextualSim
MP(CGi),P(CLj)

}

whereMP(CGi),P(CLj) is the set of mappings between the properties of classes CGi and CLj :

MP(CGi),P(CLj)=

P1(CGi) ←→ P1(CLj)
P2(CGi) ←→ P2(CLj)

···

Pk(CGi) ←→ Pz(CLj)

where k is the number of properties of the class CGi and z is the number of properties of
the class CLj .

To determine which mappings can be returned to the user, a selection step is performed.
The principle is that if there is a semantic relation SemanticRel and the degree of contextual
similarity ContextualSim is greater than or equal to a threshold value, the corresponding
mappings can be returned. By lowering these values, more weight is given to semantic
characteristics rather than contextual ones. Given a semantic relation Rel and a threshold
value α, the algorithm selects 1:1, 1:n, n:1 and n:m mappings between all pairs of classes
(CGi,CLj) if there is a semantic relation equal to Rel and if ContextualSim≥ α. If more
mappings 1:n, n:1 and n:m for the same pair of classes (CGi,CLi) have a threshold value
grater than α, is returned the mapping with the largest number of classes. The output is
the set of selected mappings. The output of schema matching activity, according to the
Definition 4.1, is a alignment A consisting of a set of mappings between the local and global

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 13/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

schema classes, obtained after the selection step:

A={M ({CG}k,{CL}z)}⇒ (CGi,CLj)⇒i∈ [1,k]
j ∈ [1,z]

SemanticRel
Similarity

MP(CGi),P(CLj)

Mappings can be 1:1, 1:n, n:1 and n:m.

Schema merging
The goal of schema merging activity, starting from user validated mappings, is the fusion
between the local and global schema, generating a new virtual view. Schema merging
activity is divided into two steps:

• In the first step, changes in the global schema are generated;
• In the second step, based on the proposed changes, the fusion of schemas is performed.
In the first step, given an input alignment A (the mappings list), the global schema G

and the local one L, the new global schema T is initially created, which is initially equal
to G, and the empty mapping list ML that will contain the mappings between L and T
elements. Merging is performed by applying merge operators to each input mapping. Next,
the local schema classes and relations, not included in the global schema, are added to T .
The new resulting schema is modified by deleting redundant relationships and performing
refactoring operations. The framework has an internal data structure to track changes to
the new global schema T .

In the second step, given the changes produced and after deciding whether to validate
or not, the real schema merging is performed.

Output of schemamerging activity, besides to the new global schema T , according to the
Definition 4.1, also consists of the mapping table MT , whose rows represent a eG element
of the global schema G and columns represent the eL1,eL2,...,eLn elements of the local
schemas L that are mapped to eG. Since it is possible to define complex mappings n:m,
the mapping table will be a table whose rows represent an EGi expression of an element of
the global schema G and the columns represent the expressions ELjk of the j-th element of
the k-th local schema. A generic MT [i,j] element of the mapping table represents, in fact,
a mapping M (id,EGi,ELjk,n,rel) between the expression of an element i-th of the global
schema and an expression of an element j-th of the k-th local schema.

Mapping table
In the mapping table, according with the Definition 4.1, rows represent elements of the
global schema, and columns represent elements of the local schemes. Elements are generic
OWL expressions and Table 2 shows the possible mappings in the mapping table:

The framework, however, allows mappings to be defined in a generic way, without
explicit reference to a global or local schema. For this reason, the framework must be
configured by setting a parameter dir = {global,local} indicating the direction of the
mappings in such a way as to support queries reformulation. If not specified, it is assumed
that in the rows there are expressions referring to the global schema and in the columns

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 14/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

Table 2 Mapping table.

Global
schema g

Local schemas
1,2,...,n

CE mapping CEg
⋃

i∈[1,n]CEi

OPE mapping OPEg
⋃

i∈[1,n]OPEi

DPE mapping DPEg
⋃

i∈[1,n]DPEi

the expressions referring to the local schemes. When it is necessary to insert a mapping in
the opposite direction, it is inverted.

The mapping table is represented using the EDOAL (http://alignapi.gforge.inria.fr/
edoal.html) language. For example, we consider the following mapping:

M (Hospital,Infirmary,≡,0.4,[(Name,Name)])

For the mappingM (Hospital,Infirmary), assuming to assign to the first schema the prefix
src# and to the second schema the prefix trg#, the mapping representation for the property
Name will be as follows:
<map >
<Cell >

<entity1 >
<edoal:Property rdf:about="src#Name"/>

</entity1 >
<entity2 >

<edoal:Property >
<edoal:or rdf:parseType =" Collection">

<edoal:Property >
<edoal:and rdf:parseType =" Collection">

<edoal:Property rdf:about="trg#Name"/>
<edoal:PropertyDomainRestriction >

<edoal:class >
<edoal:Class rdf:about="trg#Infirmary"/>

</edoal:class >
</edoal:PropertyDomainRestriction >

</edoal:and >
</edoal:Property >

</edoal:or>
</edoal:Property >

</entity2 >
<relation >=</relation >
<measure rdf:datatype=’http ://www.w3.org /2001/ XMLSchema#float ’>0.4</measure >

</Cell >
</map >

Query processing
The framework allows query execution by defining a query, posed over the global schema,
through SPARQL (https://www.w3.org/TR/rdf-sparql-query/).

The query rewriting process (Thiéblin et al., 2016) exploits correspondences 1:n between
global and local schema elements, expressed in descriptive logic, and applies a set of
transformation rules to such correspondences.

Inputs of query rewriting process are a SPARQL query and a mapping table MT (in
EDOAL format) and generates a set of queries, also expressed in SPARQL. Subsequently
generated queries are transmitted to the acquisition subsystem for their evaluation, that is,
to perform the local query processing task.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 15/30

https://peerj.com
http://alignapi.gforge.inria.fr/edoal.html
http://alignapi.gforge.inria.fr/edoal.html
https://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.7717/peerj-cs.254

Global query processing
Query rewriting process is performed by rewriting the graph pattern of a SPARQL query,
applying the transformation rules to each triple pattern in it. Since a triple pattern can
refer to data (for example, instance relationships) or schema (class and/or property
relationships), or both, a pattern subdivision is performed based on the type. A triple
pattern is a triple (subject ,predicate,object), which can be classified as:

• DTP (Data Triple Pattern): if it is related to information concerning data and not the
schema;
• STP (Schema Triple Pattern): if it is related to information concerning data and not the
schema.
The reformulation process (Algorithm 1) applies the three-step transformation rules. In

the first step, the triple is rewritten by considering the specified mappings for the predicate
part. In the second step are considered mappings for the object part, and finally for the
subject part. SPARQL variables, constants, and RDF/RDFS/OWL properties, which may
appear in the subject, predicate, and object part of a triple, are not rewritten. As a result,
the they will also appear in the rewritten query.

Algorithm 1 SPARQL rewriting
Input: SPARQL query Qin, mapping tableMT
Output: SPARQL query Qout

1: GPin← graph pattern of Qin
2: GPout← GPin after replacing IRIs in FILTER, using 1:1 mappingsMT
3: GPout← Triple pattern rewriting(GPout ,MT , predicate)
4: GPout← Triple pattern rewriting(GPout ,MT , object)
5: GPout← Triple pattern rewriting(GPout ,MT , subject)
6: Qout← new query containing GPout

Transformation rules (Thiéblin et al., 2016) are described by a set of functions of the
type:

Dx
y (t ,µ)→TR (1)

Sxy (t ,µ)→TR (2)

where t is aDTP (in Eq. (1)) or STP (in Eq. (2)),µ is themapping between es (source schema
entity) and et (target schema entity) for the subject, predicate or object part of t , x ∈ {s,p,o}
denotes the part of the triple used by the function, y ∈ {c,op,dp,∗} represents the type of x
(a class, relation, property or any, respectively) and TR represents the transformation rule.
A mapping µ is a generic element MT [i,j] =M (id,EGi,ELjk,n,rel) of the mapping table
MT . Although the mapping table allows managing 1:1, 1:n, n:1 and n:m mappings, the
query reformulation process does not consider n:1 and n:m mappings. Functions Eqs. (1)
and (2) are used to rewrite each triple of the input graph pattern. Output of global query
processing is a set of queries, posed over the local ontologies, still expressed in SPARQL.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 16/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

Figure 6 First data source: (A) entity-relationship diagram and (B) local view.
Full-size DOI: 10.7717/peerjcs.254/fig-6

Local query processing
Local query processing is the second activity of the mediation process. Each reformulated
query is still expressed in SPARQL and a second reformulation step is required for those
data sources that use a language other than SPARQL to retrieve data.

Relational sources that the framework allows to integrate use SQL to express a query.
To perform query reformulation, a SPARQL engine is used, which uses query rewriting
techniques and inference mechanisms: Quest (Rodriguez-Muro, Hardi & Calvanese, 2012).

Query processing for XML data source is supported by a framework, integrated
in the system, that allows query reformulation from SPARQL to XQuery (https:
//www.w3.org/TR/xquery-30/: SPARQL2XQuery (Bikakis et al., 2009).

CASE STUDY
In order to validate the proposed framework, a case study was conducted using three
heterogeneous data sources (two relational data sources, and one semi-structured,
specifically a spreadsheet) designed in different contexts, related to the health domain
applications.
As initial step the first source is acquired, which entity-relationship diagram and local

view are shown in Fig. 6. At this point its local view becomes the new virtual view. In this
case the only steps that must be performed are those of source wrapping and annotation
of the schema. The extraction of semantic information, through the schema annotation
activity, is necessary as this information will be used to generate the mapping with the
source schemes that will be acquired later. The output of the schema annotation activity
is a set of annotations AN , one for each element ei of the schema, where each annotation
ANi is a triple (toki,POSi,sensei) composed by:

• toki: the token of the element ei;
• POSi: the lexical category of the token toki;
• sensei: the sense of the token toki for the lexical category POSi, as output of the
disambiguation process.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 17/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-6
https://www.w3.org/TR/xquery-30/
https://www.w3.org/TR/xquery-30/
http://dx.doi.org/10.7717/peerj-cs.254

Table 3 Output of the schema annotation activity.

Class Token Sense

Hospital Hospital Sense#1: a health facility where patients receive treatment
Professional Professional Sense#2: an athlete who plays for pay
Supplier Supplier Sense#1: someone whose business is to supply a particular

service or commodity
Instrumentation Instrumentation Sense#1: an artifact (or system of artifacts) that is

instrumental in accomplishing some end

Figure 7 Second data source: (A) entity-relationship diagram and (B) local view.
Full-size DOI: 10.7717/peerjcs.254/fig-7

In Table 3 is shown an extracted of the output of the schema annotation activity
performed over the first local view.

Then, the second source is acquired, which entity-relationship diagram and local view
are shown in Fig. 7.

As in the first integration step, the source wrapping and schema annotation activities
are performed. Subsequently, the schema matching activity is performed. To this aim, the
following thresholds setting is adopted:

α≡ = 0.2

αv/w = 0.3

αidk = 0.8

β = 0.8

Once the schema matching is completed the mappings are obtained. Some examples are:

M (Hospital,Hospital,≡,1,[(Address,Address,1),(Name,Name,1),(Code,Hosp_Code,0.99)])

M (Oerating_Room,Surgery,w,1,[(Code,Surgery_Code,0.99),

(NumTables,NumberTables,0.84)])

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 18/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-7
http://dx.doi.org/10.7717/peerj-cs.254

M (Supplier,Person,v,1,[(Name,Name,1),(Address,Address,1),

(Code,Code,1),(City,CityBirth,0.99)])

M (Office,Lab,idk,1,[(Type,TypeLab,0.99),(Name,NameLab,0.99),

(Code,Code_Lab,0.99)])

During the validation step of the mappings, the user should to delete the
mapping M (Office,Lab) and replace the semantic relationship of the mapping
M (Operating_Room,Surgery) to (≡), as that relationship, in the Surgery class of the first
scheme, refers to a room in which a doctor can be consulted, while in the second scheme
to an operating room. He also should to delete the correspondence between properties
City and CityBirth in the mapping M (Supplier,Person). The M (Office,Lab) mapping
is returned because the two classes match all properties and, as a result, the contextual
similaritymeasure is 1. Thismappingmust be deleted otherwise during the schemamerging
activity a wrong association relationship will be created between the two classes. The αidk
threshold was chosen at 0.8 to highlight this observation. If association relationships have
no reason to be created, the schema matching activity should be performed with a high
value for the αidk threshold. The threshold value αv/w was chosen equal to 0.3 because,
if it was lower, the mapping M (Ward,Person) would be added a semantic relationship of
hyponymy, but this mapping is wrong.

In the set of mappings should also to appear the mapping 1:n
M (Hospital,{Hospital,Statistics}) but is not returned because of the threshold αidk high.
To take into account the representation of the hospital concept through the Hospital
and Statistics classes, there are therefore two alternatives. The first one is to keep the
threshold value of αidk high and insert manually the mapping. The second one is to lower
the threshold and eliminate the other mappings in which there is a idk relationship, except
the mapping except the mapping mentioned above. However, the following mapping is
also obtained:

M (Hospital,{Hospital,Statistics})= [M (Hospital,Hospital),M (Hospital,Statistics)] = [
M (Hospital,Hospital,≡,1,[
(Address,Address,1), (Name,Name,1),
(Code, Hosp_Code, 0.99)]),M (Hospital,Statistics,idk,0.21,[
(NumAdmission,NumberAdmission,0.88), (NumDead,NumberDead,0.80),
(NumOperation,NumberOperation,0.88)])]
The global view is initially the local view of the first source. At this point the schema

merging activity is performed. The new global view is shown in Fig. 8. As an example,
considering the mapping M (Hospital,{Hospital,Statistics}). Assuming the prefix merged#
to the global view, the prefix hospital_1# to the first local view and hospital_2# to the
second local view, once the schema merging activity is performed, the representation of
the mappingM (Hospital,{Hospital,Statistics}), will be as follows:

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 19/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

Figure 8 Global view after the second source integration.
Full-size DOI: 10.7717/peerjcs.254/fig-8

<map >
<entity1 >

<edoal:Class rdf:about=" merged#Hospital"/>
</entity1 >
<entity2 >

<edoal:Class >
<edoal:or rdf:parseType =" Collection">

<edoal:Class rdf:about=" hospital_1#Hospital"/>
<edoal:Class rdf:about=" hospital_2#Hospital"/>

</edoal:or>
</edoal:Class >

</entity2 >
<relation >=</relation >

</map >
<map >

<entity1 >
<edoal:Class rdf:about=" merged#Statistics "/>

</entity1 >
<entity2 >

<edoal:Class >
<edoal:or rdf:parseType =" Collection">

<edoal:Class rdf:about=" hospital_2#Statistics "/>
</edoal:or>

</edoal:Class >
</entity2 >
<relation >=</relation >

</map >

In a similar way the correspondences for the other elements of the schemes are defined.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 20/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-8
http://dx.doi.org/10.7717/peerj-cs.254

Figure 9 Third data source: (A) Part of spreadsheet 1 and (B) part of spreadsheet 2.
Full-size DOI: 10.7717/peerjcs.254/fig-9

The third source acquired is a composed of different spreadsheets. Some parts of the
spreadsheets are shown in Fig. 9.

An extracted of the local view of the third source is shown in Fig. 10.
After source wrapping and schema annotation activities are performed, the schema

matching activity is performed using the following threshold values:

α≡ = 0.2
αv/w = 0.3
αidk = 0.95
β = 0.1

The threshold value of the contextual similarity β is equal to 0.1 because, although there
are classes designed with different attributes, they represent the same concept of the real
world and for which, therefore, the mappings must be returned. This situation is managed
by lowering the value of β but not those of αv/w and α≡. The high value of αidk is meant
to filter almost all idk mappings, since they are not correct. It has been increased through
tuning activities, in order to filter all those concepts with an empty set of mappings between
their properties. In this way we can provide to the user just few mappings to be validated.
An example of returned mappings to the user, are the following:

M (Hospital,Hospital,≡,1,[(Code,Hospital_Code0.99),(Name,HospitalName,0.99),

(Address,Street_Address,0.99),(City,City,1)])

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 21/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-9
http://dx.doi.org/10.7717/peerj-cs.254

Figure 10 Local view of the third source.
Full-size DOI: 10.7717/peerjcs.254/fig-10

M (Hospital,Rehabilitation_Hospital,≡,0.5,[(Code,Hospital_Code,0.99),

(Name,HospitalName,0.99),

(Address,Street_Address,0.99),(City,City,1)])

M (Hospital,Children_SpecialtyHospital,≡,0.33,[(Code,Hospital_Code,0.99),

(Name,HospitalName,0.99),

(Address,Street_Address,0.99),(City,City,1)])

M (Hospital,Psychiatric_Hospital,≡,0.5,[(Code,Hospital_Code,0.99),

(Name,HospitalName,0.99),(Address,Street_Address,0.99),(City,City,1)])

M (Person,Contact_Person,w,0.5,[(Address,Email_Address,0.99),(Name,Name,1)])

M (Person,Administrator,w,1,[(Address,Email_Address,0.99),(Name,Name,1)])

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 22/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-10
http://dx.doi.org/10.7717/peerj-cs.254

Figure 11 New global view after the third data source is integrated.
Full-size DOI: 10.7717/peerjcs.254/fig-11

During the validation step of the mappings, the user should to insert a idk
mapping between the Hospital and Specialized_Hospital_Characteristics
classes, delete the correspondences between the Address and Email_Address properties
in the mapping M (Person,Administrator) and replace the semantic relationship of
the mapping M (Person,Contact_Person) to idk. He also should to insert a mapping
≡ between the Operating _Room and Surgery classes, as they both refer to an
operating room. Besides, he should to replace the semantic relationship of the
mappings M (Hospital,Rehabilitation_Hospital), M (Hospital,Psychiatric_Hospital) and
M (Hospital,Children_SpecialtyHospital) to w. Since the user has knowledge about the
application domain, he is able to recognize which mappings must to be deleted or not.
Once the schemamatching activity has been completed, the next step is the schemamerging
activity. The new global view, in which all attributes are not shown, is shown in Fig. 11.
After the third source is integrated, a lot of mappings are included, but many of them, as
well as an example of the mapping table, are removed from the example, in order not to
create confusion in the reader in understanding the full integration process.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 23/30

https://peerj.com
https://doi.org/10.7717/peerjcs.254/fig-11
http://dx.doi.org/10.7717/peerj-cs.254

Query processing
In the query processing activity the user has the possibility to run a query over the
global virtual view, through SPARQL (https://www.w3.org/TR/rdf-sparql-query/), as
mentioned in ‘Query processing’. We provide a short example of the query rewriting
process, considering three queries. URIs used are merged# for the global virtual view and
hospital_1#, hospital_2# e hospital_3#, respectively, for the first, second and third source.

The first query is: ’’Return all instances of the Hospital class, with the corresponding
names’’:
SELECT ?x ?y
WHERE {?x rdf:type merged#Hospital. ?x merged#Name ?y}

In this case, in the global view are merged hospital_1#, hospital_2# and hospital_3#
, respectively, from the first, second and third local views. The mediation subsystem
translates the above query in three queries, one for each of the integrated data sources. The
reformulated queries are the followings:
SELECT ?x ?y
WHERE

{ ?x rdf:type hospital_1#Hospital.
?x hospital_1#Name ?y ;

rdf:type hospital_1#Hospital
}

SELECT ?x ?y
WHERE

{ ?x rdf:type hospital_2#Hospital.
?x hospital_2#Name ?y ;

rdf:type hospital_2#Hospital
}

SELECT ?x ?y
WHERE

{ ?x rdf:type hospital_3#Hospital.
?x hospital_3#HospitalName ?y ;

rdf:type hospital_3#Hospital
}

The second query is: ‘‘Return all instances of the Person class, with the corresponding
names’’:
SELECT ?x ?name
WHERE { ?x rdf:type merged#Person. ?x merged#Name ?name}

The reformulated queries are the followings:
SELECT ?x ?name
WHERE

{ ?x rdf:type hospital_1#Professional
{ ?x hospital_1#Name ?name ;

rdf:type hospital_1#Supplier}
UNION

{ ?x hospital_1#Name ?name ;
rdf:type hospital_1#Professional}

}

SELECT ?x ?name
WHERE

{ ?x rdf:type hospital_2#Person.
?x hospital_2#Name ?name ;

rdf:type hospital_2#Person
}

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 24/30

https://peerj.com
https://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.7717/peerj-cs.254

Table 4 Size of the local views.

First
source

Second
source

Third
source

Number of classes 11 10 33
Number of relations 15 11 5
Number of properties 25 35 27
Number of instances 340 280 220

SELECT ?x ?name
WHERE

{ ?x rdf:type hospital_3#Administrator.
?x hospital_3#Name ?name ;

rdf:type hospital_3#Administrator
}

The third query is: ‘‘Return all instances of the Person class living in Benevento’’:
SELECT ?person ?city

WHERE { ?person rdf:type merged#Person. ?person merged#Address ?city
FILTER regex(?city , "Benevento", "i") }

The reformulated queries are the followings:
SELECT ?person ?city
WHERE

{ { ?person rdf:type hospital_1#Professional
{ ?person hospital_1#Address ?city ; rdf:type hospital_1#Professional}

UNION
{ ?person hospital_1#Address ?city ; rdf:type hospital_1#Hospital}

UNION
{ ?person hospital_1#Address ?city ; rdf:type hospital_1#Supplier}
}
FILTER regex(?city , "Benevento", "i")

}

SELECT ?person ?city
WHERE

{ { ?person rdf:type hospital_2#Person
{ ?person hospital_2#Address ?city ; rdf:type hospital_2#Person}

UNION
{ ?person hospital_2#Address ?city ; rdf:type hospital_2#Hospital}
}
FILTER regex(?city , "Benevento", "i")

}

SELECT ?person ?city
WHERE

{ ?person rdf:type hospital_3#Administrator ;
hospital_3#Street_Address ?city ; rdf:type hospital_3#Hospital

FILTER regex(?city , "Benevento", "i")
}

If an element does not have a correspondence with an element of the some local view,
the translated query for that view is the same of the global view. Each wrapper will return
an empty result when the query will be performed.

Analysis
We report time overheads in each of the phases of the approach proposed. In the case
study presented is shown the application of the approach rather than optimizations of the
performance of the activities of the integration process. For this reason, as shown in Table 4,
the size of the data sources, in terms of the number of the elements of the structures that
represent them, is not high. Nevertheless, the developed software prototype shows good

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 25/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

Table 5 Time overheads of the proposed approach.

Activity Time
(ms)

Source wrapping (first source) 166
Source wrapping (second source) 87
Source wrapping (third source) 552
Schema matching (first and second views) 462
Schema matching (global and third views) 616
Schema merging (first and second views) 71
Schema merging (global and third views) 85
Total time of the integration process 2,039

Table 6 Time overheads of the query processing activity.

First
query

Second
query

Third
query

Query rewriting time (ms) 255 220 207
Query execution time (ms) 2,007 2,002 2,229

performance in terms of the execution time of the proposed approach phases, as shown in
Table 5. The acquisition of Excel data sources has a longer execution time than acquiring
relational data sources. This is because we need to consider the access times to the file and
the identification of the tables that will constitute the elements of the local view. The low
execution times of the schema matching and merging activities are relatively low, as there
are optimizations of the algorithms and data structures used. To the total execution time
of the full integration process, the time necessary to validate the mappings, which depends
on the user, and the setup time needed for the schema matching activity (about 6 s) must
be added. During the setup of the schema matching activity, performed only once, the
modules needed for the annotation activity of the local views are loaded. Table 6, instead,
shows the execution times of the query processing activity. The transformation of the
queries has low execution times because the prototype is supported by the mapping table.
With the mapping table we can reduce the time for searching an element (class, property
or relationship) inside the local view that should be replaced in the query. This is not true
when the query is really executed, because the time of execution depends on the specific
technology of a data source.

CONCLUSIONS
The purpose of this paper is to allow unified access to heterogeneous and independent
source data, offering a data integration approach that addresses all the issues discussed. The
architecture adopted is that of mediation systems, which create a virtual view of the real
data and allow to external applications to access data through that view in a transparent
manner. Transparency is guaranteed by translating queries posed over the virtual view into
queries that are directly executable from local sources.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 26/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

The proposed approach allows unified access to heterogeneous sources through the
following activities:

• Source wrapping: the initial activity is the construction of an ontology for each source
you want to integrate, whose structure is subsequently refined by using information
extraction techniques to improve the quality of ontology.
• Schema matching: ontologies are then put in a matching process in order to
automatically search mappings between the elements of the structures, using both
syntax-based and semantic-based techniques. Mappings are identified by combining
both semantic and contextual characteristics of each element. These mappings are then
validated and, if necessary, modified by the user.
• Schema merging: based on the generated mappings, a global ontology is created which
is the virtual view of the system.
• Query reformulation: at this stage, a query posed over the virtual view is reformulated
into a set of queries directly executable by local sources. The reformulation task is
performed automatically, generating an execution plan of the reformulated queries, with
the possibility for the user to modify each single query.
Overall, the approach is semi-automatic, but compared to existing systems, the user’s

effort is minimized as he only intervenes in the matching configuration activity, by setting
the threshold values for the mappings generation, and mappings validation. Both simple
(1:1) and complex mappings (1:n, n:1 and n:m) are generated.

The outlined approach is supported by a specially designed and developed software
system. The system provides a first level of abstraction of the activities and components
involved in their execution and a second level of component specialization. Although
the design of the system is aimed at covering all aspects of data integration described so
far, implementation has some limitations. In particular, the acquisition of unstructured
sources is not yet contemplated in development and the data reconciliation process requires
the development of appropriate components. Except for such activities, integration and
mediation processes are fully supported by the system.

Research activities that will be carried out in the future will have the goal of overcoming
the limitations shown and consolidating, at the same time, the part of the system developed
so far. In particular, accurate experimentation is required for validating the proposed
approach, for ensuring high quality of mappings and local and global views, for optimizing
the mediation process.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 27/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

Author Contributions
• Giuseppe Fusco and Lerina Aversano conceived and designed the experiments,
performed the experiments, analyzed the data, performed the computation work,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

Data and code are available at GitHub:
https://github.com/gppfusco/DataIntegrationFramework.

REFERENCES
Arens Y, Chee CY, Hsu C-N, Knoblock CA. 1993. Retrieving and integrating data from

multiple information sources. International Journal of Intelligent and Cooperative
Information Systems 2(02):127–158 DOI 10.1142/S0218215793000071.

Arens Y, Hsu C-N, Knoblock CA. 1996. Query processing in the sims information
mediator. Advanced Planning Technology 32:78–93.

Beneventano D, Bergamaschi S. 2004. The MOMIS methodology for integrating
heterogeneous data sources. In: Building the information society. Boston: Springer,
19–24.

Bikakis N, Gioldasis N, Tsinaraki C, Christodoulakis S. 2009. Querying xml data
with sparql. In: International conference on database and expert systems applications.
Boston, MA: Springer, 372–381.

Calvanese D, Lembo D, Lenzerini M. 2001. Survey on methods for query rewriting
and query answering using views. In: Integrazione, Warehousing e Mining di sorgenti
eterogenee. 1–25.

Chawathe S, Garcia-Molina H, Hammer J, Ireland K, Papakonstantinou Y, Ullman J,
Widom J. 1994. The TSIMMIS project: integration of heterogenous information
sources. In: Information processing society of Japan (IPSJ 1994), October 1994. Tokyo,
Japan.

Chiticariu L, Kolaitis PG, Popa L. 2008. Interactive generation of integrated schemas.
In: Proceedings of the 2008 ACM SIGMOD international conference on management of
data. New York: ACM, 833–846.

Civili C, Console M, De Giacomo G, Lembo D, Lenzerini M, Lepore L, Mancini R,
Poggi A, Rosati R, Ruzzi M. 2013.MASTRO STUDIO: managing ontology-based
data access applications. Proceedings of the VLDB Endowment 6(12):1314–1317
DOI 10.14778/2536274.2536304.

Fong J, Pang F, Fong A,Wong D. 2000. Schema integration for object-relational
databases with data verification. In: Proceedings of the 2000 international computer
symposium workshop on software engineering and database systems, Taiwan. 185–192.

Ghawi R, Cullot N. 2007. Database-to-ontology mapping generation for semantic
interoperability. In: VDBL’07 conference, VLDB Endowment ACM. New York: ACM,
1–8.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 28/30

https://peerj.com
https://github.com/gppfusco/DataIntegrationFramework
http://dx.doi.org/10.1142/S0218215793000071
http://dx.doi.org/10.14778/2536274.2536304
http://dx.doi.org/10.7717/peerj-cs.254

Ghawi R, Cullot N. 2009. Building ontologies from XML data sources. In: Database and
expert systems application, 2009. DEXA’09. 20th international workshop on. IEEE,
480–484.

Goh CH, Bressan S, Madnick S, Siegel M. 1999. Context interchange: new features and
formalisms for the intelligent integration of information. ACM Transactions on
Information Systems (TOIS) 17(3):270–293 DOI 10.1145/314516.314520.

Hull R, King R (eds.) 1995. Reference architecture for the intelligent integration of infor-
mation. Available at http:// csce.uark.edu/~cwt/DOCS/PAPERS/1987-1995/1995-
08--DARPA%20Intelligent%20Integration%20of%20Information%20Reference%
20Architecture%20(I3)%20v2%20draft.pdf .

Katsis Y, Papakonstantinou Y. 2009. View-based data integration. In: Encyclopedia of
database systems. Boston: Springer, 3332–3339.

Kong H, HwangM, Kim P. 2005. A new methodology for merging the heterogeneous
domain ontologies based on the wordnet. In: International conference on next
generation web services practices, 2005. Piscataway: IEEE, 6.

LeeM, Ling T. 2003. A methodology for structural conflict resolution in the integration
of entity-relationship schemas. Knowledge and Information Systems 5(2):225–247
DOI 10.1007/s10115-003-0077-x.

Lenzerini M. 2002. Data integration: a theoretical perspective. In: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on principles of database
systems. PODS ’02. New York: ACM, 233–246 DOI 10.1145/543613.543644.

Mena E, Kashyap V, Illarramendi A, Sheth AP. 1996a.Managing multiple information
sources through ontologies: relationship between vocabulary heterogeneity and loss
of information. In: CEUR workshop proceedings, 4. Dayton: Kno.e.sis Publications,
50–52.

Mena E, Kashyap V, Sheth A, Illarramendi A. 1996b. OBSERVER: an approach for
query processing in global information systems based on interoperation across
pre-existing ontologies. In: Proceedings of the first IFCIS international conference on
cooperative information systems. Piscataway: IEEE, 14–25.

Orsini M, Beneventano D, Cruz IF, Direttore II. 2009. Query management in data
integration systems: the MOMIS approach. PhD thesis, International Doctorate
School in Information and Communication Technologies of the University of
Modena and Reggio Emilia.

Preece A, Hui K, Gray P. 1999. KRAFT: supporting virtual organisations through
knowledge fusion. In: Artificial intelligence for electronic commerce: papers from the
AAAI-99 workshop. 33–38.

Preece A, Hui K-Y, Gray A, Marti P, Bench-Capon T, Jones D, Cui Z. 2000. The KRAFT
architecture for knowledge fusion and transformation. Knowledge-Based Systems
13(2):113–120 DOI 10.1016/S0950-7051(00)00052-6.

Rodriguez-MuroM, Hardi J, Calvanese D. 2012. Quest: efficient SPARQL-to-SQL
for RDF and OWL. In: Proceedings of the 2012th international conference on posters
demonstrations track-volume, 914. 53–56 Available at http:// ceur-ws.org/ .

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 29/30

https://peerj.com
http://dx.doi.org/10.1145/314516.314520
http://csce.uark.edu/~cwt/DOCS/PAPERS/1987-1995/1995-08--DARPA%20Intelligent%20Integration%20of%20Information%20Reference%20Architecture%20(I3)%20v2%20draft.pdf
http://csce.uark.edu/~cwt/DOCS/PAPERS/1987-1995/1995-08--DARPA%20Intelligent%20Integration%20of%20Information%20Reference%20Architecture%20(I3)%20v2%20draft.pdf
http://csce.uark.edu/~cwt/DOCS/PAPERS/1987-1995/1995-08--DARPA%20Intelligent%20Integration%20of%20Information%20Reference%20Architecture%20(I3)%20v2%20draft.pdf
http://dx.doi.org/10.1007/s10115-003-0077-x
http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1016/S0950-7051(00)00052-6
http://ceur-ws.org/
http://dx.doi.org/10.7717/peerj-cs.254

Shvaiko P, Euzenat J. 2005. A survey of schema-based matching approaches. In: Journal
on data semantics IV. Boston: Springer, 146–171.

Thiéblin É, Amarger F, Haemmerlé O, Hernandez N, Trojahn C. 2016. Rewriting
SELECT SPARQL queries from 1: n complex correspondences. Ontology Matching
49.

Wache H, Voegele T, Visser U, Stuckenschmidt H, Schuster G, NeumannH, Hübner S.
2001. Ontology-based integration of information-a survey of existing approaches. In:
IJCAI-01 workshop: ontologies and information sharing, vol. 2001. 108–117.

Xiao G, Calvanese D, Kontchakov R, Lembo D, Poggi A, Rosati R, ZakharyaschevM.
2018. Ontology-based data access: a survey. In: Proceedings of the twenty-seventh
international joint conference on artificial intelligence. International Joint Conferences
on Artificial Intelligence Organization, 55115519.

Xu L, Embley DW. 2004. Combining the best of global-as-view and local-as-view for data
integration. In: ISTA, vol. 48. 123–136.

Fusco and Aversano (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.254 30/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.254

