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Abstract

Background: Ontologies are commonly used to annotate and help process life sciences data. Although their original
goal is to facilitate integration and interoperability among heterogeneous data sources, when these sources are annotated
with distinct ontologies, bridging this gap can be challenging. In the last decade, ontology matching systems have
been evolving and are now capable of producing high-quality mappings for life sciences ontologies, usually limited to
the equivalence between two ontologies. However, life sciences research is becoming increasingly transdisciplinary
and integrative, fostering the need to develop matching strategies that are able to handle multiple ontologies and
more complex relations between their concepts.

Results: Wehavedevelopedontologymatching algorithms that are able to find compoundmappings betweenmultiple
biomedical ontologies, in the form of ternary mappings, finding for instance that “aortic valve stenosis”(HP:0001650) is
equivalent to the intersection between “aortic valve”(FMA:7236) and “constricted” (PATO:0001847). The algorithms
take advantage of search space filtering based on partial mappings between ontology pairs, to be able to handle the
increased computational demands. The evaluation of the algorithms has shown that they are able to produce meaningful
results, with precision in the range of 60-92% for new mappings. The algorithms were also applied to the potential
extension of logical definitions of the OBO and the matching of several plant-related ontologies.

Conclusions: This work is a first step towards finding more complex relations between multiple ontologies. The
evaluation shows that the results produced are significant and that the algorithms could satisfy specific integration
needs.
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Background
Life sciences research is becoming increasingly integra-
tive, with research areas such as Systems Biology and
Translational Medicine bridging distinct domains to pro-
vide novel insights. The need for data integration across
domains coupled with the massive amounts of data being
produced both by biological and clinical domains poses
new challenges. A common strategy to deal with this
data deluge involves linking the information to ontolo-
gies, making it easier to search through databases and
to develop algorithms to process information. Ontologies
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have been remarkably successful in the life sciences, espe-
cially in the biomedical domain, where the Gene Ontology
[1] is the most notable success case. BioPortal1, a por-
tal for life sciences’ ontologies, lists over 400 ontologies
dedicated to diverse domains ranging from molecules to
phenotypes.
However, when data is annotated with different ontolo-

gies, to allow data interoperability the ontologies them-
selves need to become interoperable. This can be achieved
through a process called ontology matching [2], whereby
meaningful links are established between semantically
related concepts. The matching of biomedical ontolo-
gies poses specific computational challenges due to their
large size and vocabulary complexity [3], and also by their
increasing semantic richness in the form of new kinds
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of relations between classes and complex axioms. These
open challenges have attracted the interest of the com-
munity and spurred the inclusion of specific tracks dedi-
cated to biomedical ontologies in the Ontology Alignment
Evaluation Initiative [4].
Currently, ontology matching techniques and systems

are mostly devoted to finding links between two equiva-
lent entities from two distinct ontologies, but when data
crosses domains, the need arises for matching techniques
that go beyond this and allow linking more than two
ontologies through more complex relations. Compound
ontology matching [5] allows the matching of several
ontologies with distinct but related domains through the
establishment of compoundmappings that involve several
entities. A specific case is the ternary compound mapping
whereby two classes are related to form a class expression
that is then mapped to a third class. For instance, the class
HP:0000337 labelled “broad forehead” is equivalent to
an axiom obtained by relating the classes PATO:0000600
(“increased width”) and FMA:63864 (“forehead”) via an
intersection. Such mappings allow a fuller semantic inte-
gration of multidimensional semantic spaces, supporting
more complex data analysis and knowledge discovery
tasks.
In this paper, we present a set of new algorithms

which are able to create ternary compound alignments for
large biomedical ontologies. The algorithms were evalu-
ated against reference ontology alignments and applied
to potentially extend ontology logical definitions and to
match plant ontologies.

Related work
Ontology matching can be defined as a function f that
returns an alignment between the classes of a pair of
ontologies O and O′ [2]. An alignment consists of a
set of correspondences (mappings) between semanti-
cally related entities of different ontologies. This pro-
cess can be extended by using other parameters and
resources, e.g., weights, thresholds, and even external
knowledge. Most ontology matching systems usually
include three main types of components: (1) loading
and pre-processing, where ontology files are loaded and
other procedures are employed such as normalization
of labels; (2) matching, where pairs of mapped ontol-
ogy entities are given a score reflecting their close-
ness; (3) refinement, where the list of mappings is fil-
tered to adhere to quality, cardinality and consistency
requirements among others. Typically, ontology match-
ing corresponds to binary mappings between classes,
properties or instances. However, more complex kinds of
ontology matching that extend the definition have been
proposed.
One of the first steps in this direction was the defini-

tion of complex ontology matching, which is commonly

described as a correspondence between two classes from
two different ontologies, where one of them is a com-
plex concept or property description. It involves only
two ontologies, but each mapping relates to more than
two entities in those ontologies. An example of a com-
plex mapping could be the alignment of the concept
“AcceptedPaper” in one ontology, to the entity “Paper”
in a second ontology, which has the associated property
“Accepted” [6]. Ritze et al. [7] developed a pattern-based
approach to finding these mappings, where they present
correspondence patterns and define matching conditions
for each of them.
The CGLUE [8] and the iMAP systems [9] were both

developed to find complex matches. CGLUE applies a rule
learning process and iMAP uses several searchers, each
considering a meaningful subset of the space, to find com-
plex mappings. They both apply a beam search to control
the search through the space of candidate matches, given
its large size.
Partial matching has also been investigated. Dhom-

bres and Bodenreider [10] employed lexical and logical
approaches to derive partial mappings for theHP ontology
and SNOMED CT.
A related, but more complex approach, is compound

matching [5] which is the process of identifying “com-
pound mappings”, i.e. matches between class or prop-
erty expressions involving more than two ontologies.
This means that a ternary compound mapping is a
tuple <X,Y,Z,R,M>, where X, Y and Z are classes from
three distinct ontologies, R is a relationship established
between Y and Z to generate a class expression that
is mapped to X via a mapping relation M. The ontol-
ogy to which X belongs is considered to be the source
ontology, and the ontologies that define Y and Z are con-
sidered as the target ontologies. In this particular case,
the relation R is always an intersection (regardless of
any qualifier) and the mapping M an equivalence. The
concept of compound alignment is defined as a set of
mappings between classes from a source ontology Os
and class expressions obtained by combining two other
classes, each belonging to a different target ontology
Ot1 and Ot2.
To the best of our knowledge, there are currently no

ontology matching systems capable of generating such
mappings. However, a preliminary approach was tested
by [5] that first matched the source ontology to each
of the target ontologies individually, using an anchor-
based word matching algorithm, and then matched all
pairs of target classes that map individually to the same
source class. Despite the reduced search space, they
could not test their algorithm in larger sets of ontolo-
gies and evaluated only the MP-PATO-CL and MP-
PATO-NBO alignments, obtaining recall values of 30
and 11% respectively, but precision values below 1%.
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This work was the starting point for the develop-
ment of our novel approach (with preliminary results
presented in [11]).

Methods
The design, development and implementation of com-
pound matching algorithms involved three stages: (i) an
exploratory stage, which consisted in a pattern anal-
ysis of a representative set of biomedical ontologies
to devise strategies and explore the challenges of the
development of compound matching algorithms; (ii) the
adaptation and extension of existing classical match-
ing algorithms to compound ontology matching, which
were (iii) implemented in a state-of-the-art ontology
matching system.

Pattern analysis
The first stage of this work had an exploratory nature
and aimed to understand the mappings between source
and target ontologies and to seek new strategies to apply
to ternary compound matching. We used the ontologies
for which we were able to create a reference alignment
for compound matching from logical definitions of OBO
ontologies (see “Reference alignments” section).
Table 1 presents these biomedical ontologies with the

number of different classes and names (labels and syn-
onyms) that each one had at the time of the download.
Using a source ontology and a single target ontology as

input, several binary alignments were created by apply-
ing AML’s Word Matcher and String Matcher (see the
“AgreementMakerLight” section). The mappings of those
alignments were manually analysed to uncover the fol-
lowing patterns: (1) “addition”, where the source or target
class label had one or more extra words; (2) “variation”,
which had labels with the same number of words, but
one word did not match; (3) “combination” with map-
pings that combined the previous patterns; and, (4) “full
match”, which had terms that match completely, but can

sometimes have words in a different order. The reference
alignments were also split into pairs to form binary align-
ments and a manual search for the previously defined
patterns was performed. This search led to the discov-
ery of a new pattern which is the occurrence of synonyms
between the two classes that are being matched. Table 2
shows one example mapping for each of the situations
described.
The analysis of all the alignments led to the conclusion

that the majority of the mappings fit in at least one of the
pattern categories. Most, however, are a combination of
the first two patterns, with the “addition” pattern being the
more prevalent one (see Table 3).
The mappings that were classified with the addition

pattern are mostly partial mappings, i.e., only some
words matched between the labels of the classes mapped.
Dhombres and Bodenreider [10] worked on a method
to identify partial lexical matches between HP and
SNOMED CT. The authors used existing matching tech-
niques and extended them to find partial mappings.
Their approach identified 7358 partial lexical matches
and 82% of them had an inferred logical mapping. Com-
paring with the 14,535 mappings analysed approximately
82% fit the addition pattern and can be considered a
partial match.
These findings served as the conceptual foundation

for the development of the compound matching algo-
rithms. For instance, the prevalence of the“addition” pat-
tern indicated that a bag-of-words approach could be
an efficient solution. The existence of mapped classes
with different word order, however, can change the
meaning of a concept in a class and this situation
would be overlooked by the bag-of-words approach.
This approach would also not directly handle the syn-
onym pattern. Finally, the variation pattern led to the
use of a popular word stemmer, the Snowball stemmer2,
which was applied to the words in each label of all
the classes.

Table 1 Biomedical ontologies downloaded from the OBO Foundry in May 2015 (http://obo.sourceforge.net)

Ontology Acronym Classes Names Reference

Cell type CL 4775 4375 [29]

Foundational model of anatomy FMA 78977 126190 [30]

Gene ontology (biological process domain) GO 43048 276577 [1]

Human phenotype HP 28621 18431 [31]

Mammalian phenotype MP 28643 29592 [32]

Neuro behaviour ontology NBO 116710 1168 [33]

Phenotypic quality PATO 2497 3378 [34]

Uber anatomy ontology UBERON 18322 50713 [35]

Caenorhabditis elegans phenotype WBP 2290 2739 [36]

http://obo.sourceforge.net
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Table 2 Examples of the patterns found in a manual analysis of binary alignments

Pattern Source URI and label Target URI and label

Addition WBP:0001911 axon regeneration defective GO:0031103 axon regeneration

Variation MP:0002269 muscular atrophy GO:0014889 muscle atrophy

Combination MP:0013527 absent conjunctiva goblet cells CL:2000084 conjunctiva goblet cell

Full match MP:0002119 dipsosis NBO:0000541 dipsosis

Synonym HP:0010108 aplasia of the hallux FMA:25047 big toe

None MP:0002229 neurodegeneration GO:0070657 neuromast regeneration

Algorithm implementation
The CompoundMatching algorithm has three main steps:
Step 1 - First-pass recall selection.
The algorithm performs a pairwise mapping of the

labels of the source ontology with the labels of the target

ontology to match first (target 1). Each word is weighted
by its Evidence Content (EC) [12]. The EC is the inverse
logarithm of the frequency of a word and reflects the usage
of that word within the ontology. The similarity is then
calculated by finding the ratio between the sum of the EC

Table 3 Distributions of mappings fitting lexical patterns 1 or 2

Matcher Ontology Addition Variation Size

String Matcher

MP-CL 26 7 34

MP-GO 287 210 501

MP-NBO 354 205 594

MP-UBERON 58 11 71

WBP-GO 182 137 322

HP-FMA 272 23 304

MP-PATO 18 1 29

WBP-PATO 28 2 41

HP-PATO 12 1 25

Word Matcher

MP-CL 4 1 5

MP-GO 32 25 65

MP-NBO 118 44 219

MP-UBERON 42 5 50

WBP-GO 183 33 219

HP-FMA 158 44 252

MP-PATO 33 21 59

WBP-PATO 19 1 25

HP-PATO 6 0 12

Reference

MP-CL 439 12 474

MP-GO 805 83 944

MP-NBO 177 24 219

MP-UBERON 1693 126 1999

WBP-GO 256 39 325

HP-FMA 1691 66 1893

MP-PATO 3096 35 3636

HP-PATO 1710 8 1893

WBP-PATO 302 4 325

Total 12001 1168 14535
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of the words shared by the source label (ls) and the target
1 label (lt1), and the sum of the EC of the words in lt1.

sim1 (ls, lt1) =
∑

EC (word ∈ (ls ∩ lt1))
∑

EC (word ∈ lt1)
(1)

Step 2 - Search space reduction.
The algorithm filters out all mappings with similar-

ity below a given threshold and removes all the source
classes which were not mapped to any target 1 classes. It
also reduces the number of words of the source labels by
removing from themapped classes all the words that had a
match with a word from a target 1 class. Taking the exam-
ple of “Aortic valve stenosis” (HP:0001650), after matching
HP with FMA, which would capture the mapping for “aor-
tic valve” (FMA:7236), HP’s class label would be reduced
to “stenosis”.
Step 3 - Longest match precision selection.
For each of the remaining mappings, the algorithm per-

forms a pairwise mapping of the reduced source labels
against the labels of the last target (target 2). In this step,
however, the denominator corresponds to the sum of EC
of the words in the longer label, to ensure a complete
match.

sim2 (ls, lt2) =
∑

EC (word ∈ (ls∗ ∩ lt2))
∑

EC
(
word ∈ longest (ls, lt2)

) (2)

The final similarity between the matched labels is com-
puted as the average between the similarities computed in
steps 1 and 2. Mappings with an average below the second
threshold are filtered out.
The resulting alignment is a list of all mappings above

the selected threshold, without any consideration for
cardinality. To ensure proper cardinality, refinement (or
selection) strategies need to be employed. The reference
alignments have a cardinality of 1, meaning that for each
source class there is a single compound mapping. How-
ever, given the potential for conflicts, it was also desirable
to investigate the option of allowing two mappings for the
same source class. To this end, both a top-one and top-two
ranked selectors were implemented.
Both are greedy algorithms that select mappings based

on their similarity. They start by sorting the mappings
in the compound alignment in descending order of their
similarity values. When there are competing mappings
with equal similarity values, the top-one selector chooses
a single mapping taking the one that was sorted as first,
whereas the top-two selector, chooses the two first sorted
mappings.

AgreementMakerLight
The AgreementMakerLight (AML) ontology matching
system [13] focuses on the efficient matching of very large
ontologies and is one of the most successful systems for
aligning ontologies [14]. AML has three main modules:

(1) ontology loading, (2) ontology matching and (3) align-
ment selection and repair. When an ontology is loaded
into AML, a Lexicon is built with all class labels and syn-
onyms. AML has several matchers that explore lexical and
structural information. The selection and repair module
ensures that the final alignment has the desired cardinality
and removes mappings causing logical inconsistencies.
In this work, we adapted the loading module to han-

dle three ontologies. The implementation of our matching
algorithm takes advantage of the data structures AML
builds for its Word Matcher. The Word Matcher uses a
bag-of-words approach and creates a new Lexicon with
every word frequency and EC. The similarity between
classes of different ontologies is then based on a weighted
Jaccard index. We also made use of AML’s selection
strategies, which were adapted to work over compound
mappings.

Evaluation
The compound alignments were evaluated with classifi-
cation metrics automatically against reference alignments
and also manually, to better understand the results and
point towards possible improvements.

Reference alignments
The technique for the construction of the compound ref-
erence alignments used in the evaluation originated from
the work of [5], where ternary compound mappings were
derived from logical definitions of OBO ontologies to be
used as a gold-standard.
Logical definitions are applied to classes and use genus-

differentia constructs of the form “X is a G that D”, where
X is the defined class, G is the genus and D the differentia.
The genus is a more general class than X and D discrim-
inates instances of X from other instances of G [15]. The
following text shows an example of a logical definition:

id: MP:0000216 ! absent erythroid
progenitor cell
intersection_of: PATO:0002000 ! lacks
all parts of type
intersection_of: inheres_in CL:0000038
! erythroid progenitor cell

OBO ontologies with over 100 logical definitions that
had a class expression intersected by two classes from two
other ontologies were selected (see the example above).
Following these rules, we created six reference align-
ments, which determined the sets of biomedical ontolo-
gies used throughout this work.

Precision, recall and F-measure
The automatic evaluation of the algorithms was per-
formed based on the classification metrics precision,
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recall and F-measure, which are defined in this context as
follows.

Pr(A) = | {m|m ∈ A ∧ m ∈ R} |
|A|

Rec(A) = | {m|m ∈ A ∧ m ∈ R} |
|R| (3)

F-measure(A) = 2 · Pr(A) · Rec(A)

Pr(A) + Rec(A)
(4)

where A is an alignment resulting from the algorithms
developed, Pr(A) and Rec(A) are the precision and recall,
respectively, of the alignment. m is a mapping in an
alignment. R is the reference alignment to which A is
compared.

Thresholds
The thresholds used in the evaluation process were
defined through a series of tests aimed to find consistent
values across all six sets of ontologies, which returned the
best metrics.
The evaluation process involved testing the algorithms

with different thresholds for the first and third algorithm
steps and checking which were the two optimal values
to use throughout the evaluation process. These values
had to return good precision or recall but also needed to
have a reasonable runtime with a considerable amount of
mappings found3.
The first-pass recall selection needs to return a high

recall so that the search space is not too narrowed for
the subsequent steps of the algorithm while still providing
good filtering of irrelevant mappings. For this to happen
the first threshold (T1) needs to be low to return a high
recall, at expense of the precision. To determine the best

T1 the compound reference were reduced to binary ref-
erences by removing the second target from each class.
These binary references were compared with the map-
pings resulting from the first-pass recall selection in terms
of recall, total number of mappings found and runtime.
Figure 1 presents the results for the first-pass recall

selection experiments with T1 equal to 0.1, 0.2, 0.3, 0.4, 0.5
and 0.6. This range was selected since thresholds above
0.6 are commonly used thresholds for full equivalence
binary mappings. Since all ontology sets have different
sizes, to compare the mappings and runtime, their values
were normalised to obtain result from 0 to 1. They were
then averaged over all sets for each threshold to obtain the
overall variation of mappings and time.
Figure 1 shows that between the thresholds 0.1 and 0.3

there is a steep decline in both time and number of map-
pings. This decline, for example for the HP-FMA-PATO
set, reflects a reduction from 73 h to 51 min and for the
MP-UBERON-PATO set from 2.5 h to 44 s. Therefore,
both 0.1 and 0.2 were excluded for the T2 tests. The 0.6
threshold was also not considered for the tests for T2 since
it is the threshold with less mappings, lowest recall and it
does not improve the runtime.
The T2 tests used the longest match precision selec-

tion step to find the best combination of first and second
thresholds. Using the set of T1 [0.3, 0.4, 0.5] in combina-
tion with the set of T2 [0.7, 0.8, 0.9], the final thresholds
selected to run the evaluation of the algorithm were the
ones that returned the best precision, while still consider-
ing recall and runtime.
Figure 2 shows the results for the longest match preci-

sion selection with different combinations of thresholds.
From the set of T2 tested, 0.9 consistently achieves the
higher precision and recall. In combination with the first

Fig. 1 First-pass recall selection for the first threshold. The left axis shows the values for recall and the right axis shows the normalised averages for
the runtime and number of mappings across all sets of ontologies
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Fig. 2 Longest match precision selection for the second threshold. Longest match precision selection for the second threshold. The left axis
indicates the values for precision and recall and the right axis shows the normalised averages across all ontology sets for the runtime

threshold, 0.3 achieves slightly higher recall than 0.4 but
has a runtime around 4 times higher. This increased
runtime translates, for example, for the set HP-FMA-
PATO in a reduction from 2.5 to 52 min or for the set
MP-UBERON-PATO the runtime decreases from 57 min
to 19min. The 0.5-0.9 thresholds achieve even lower recall
than previous combinations even though the time differ-
ence is still significant. For example, the HP-FMA-PATO
set runs in 2 min, while the MP-UBERON-PATO finishes
in 8 min.
Considering these experiments, for the remaining eval-

uation of the algorithms, the thresholds used were T1 =
0.4 and T2 = 0.9. The first threshold was chosen for
its high recall and the second for its high precision. This
combination achieves a high precision, while maintaining
a good recall and both thresholds achieve a reasonable
runtime.

Results
Automated evaluation
The first evaluation consisted in the comparison of the
alignments obtained through the algorithms with the
compound reference alignments by analysing precision,
recall and F-measure.
Table 4 contains the precision, recall and F-measure val-

ues of the compound alignments using the top-one ranked

selector. The results show that the precision is consis-
tently higher than the recall, with the highest F-measure
being 61.8% for MP-GO-PATO and the lowest 10.9% for
HP-FMA-PATO. However, the algorithms still have a low
performance, with only three sets achieving a precision
over 50% and only one with a recall over this mark.
The top-two ranked selector was developed and applied

after the manual analysis showed that most of the cor-
rect mappings could be found, if not in the first position,
immediately on the second. Table 5 shows that the top-
two selector returns higher recall values for all ontology
sets, sometimes at the expense of the precision. The
MP-CL-PATO was also the only set which obtained a
significantly higher precision with the top-two selector
than the top-one selector. Four of the six sets of ontologies
obtained a higher F-measure due to the marked increase
in the recall values.
Both the increase in recall and decrease in precision can

be explained by the presence of two mappings for some
source classes instead of one. For example, both the map-
ping “retinal ganglion cell degeneration” (MP:0008067)
with “retinal ganglion cell” (CL:0000740) and “degenera-
tion” (PATO:0002037) and the mapping “retinal ganglion
cell degeneration” (MP:0008067) with “retinal ganglion
cell” (CL:0000740) and “degenerate” (PATO:0000639) are
present in the alignment with the top-two selector. When

Table 4 Evaluation results from the comparison with the automatically generated reference alignments with the Top-one Ranked
Selector. The “Ref.” column indicates the number of mappings present in the the reference alignments

Ontology sets Precision Recall F-measure Ref.

MP-CL-PATO 24.5% 24.3% 24.4% 474

MP-GO-PATO 62.9% 60.7% 61.8% 944

MP-NBO-PATO 50.0% 39.7% 44.3% 219

MP-UBERON-PATO 55.2% 46.8% 50.7% 1999

WBP-GO-PATO 11.7% 10.2% 10.9% 325

HP-FMA-PATO 27.3% 20.3% 23.3% 1893
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Table 5 Evaluation results from the comparison with the automatically generated reference alignments with the top-two ranked
selector

Ontology sets Precision Recall F-measure Ref.

MP-CL-PATO 34.9% 53.0% 42.0% 474

MP-GO-PATO 41.5% 61.5% 49.6% 944

MP-NBO-PATO 42.7% 41.1% 41.9% 219

MP-UBERON-PATO 52.8% 51.4% 52.1% 1999

WBP-GO-PATO 11.6% 13.5% 12.5% 325

HP-FMA-PATO 24.0% 22.9% 23.4% 1893

using the top-one selector, however, only one of these
mappings will be present in the alignment. Since both
mappings have the same similarity, the one chosen for the
final alignment will be randomly selected and it is not
necessarily the one featured in the reference alignment.
Thus the presence of both mappings reduces the preci-
sion, because one of them is always wrong, but increases
the recall, since the alignment coversmoremappings from
the reference.
The MP-CL-PATO benefits the most from the top-

two selector because it is the set which contains more
of these competing mappings. The prevalence of simi-
lar mappings points to the possibility of the existence of
disagreement between reality models in the source and
target ontologies, i.e., sister classes in one ontology might
be considered synonyms in another. For instance, “present
in fewer numbers in organism” (PATO:0001997) is a sis-
ter class of “has fewer parts of type” (PATO:0002001) and,
despite having different definitions, both have “decreased
number” as an exact synonym. Thus, when matching this
ontology to others, these two classes can have the same
meaning and lead to the presence of competing mappings.
These mappings create the need for two-to-one align-
ments, and a selection algorithm such as the top-two
selector will thrive in these kinds of alignments since it can
cover more possibilities than the top one ranked selector.

Manual evaluation
The manual evaluation focused on the mappings that
were not found in the reference alignment. In a first step,
mappings generated by the top-one Ranked selector were
assigned into one of three categories: “correct mappings,
“conflicting mappings” and “missing mappings”. Correct
mappings match the same two target classes to the same
source. Conflicting mappings are the ones whose source
class is contained in the reference alignment, whereas
missing mappings are those for which the source class is
not present in the reference alignment.
Table 6 shows the number of mappings that fit in

each one of these categories. Three of the sets (MP-GO-
PATO, MP-NBO-PATO and MP-UBERON-PATO) have
the most mappings matching exactly the reference, while

the remaining three sets either have a majority of map-
pings missing from the reference or a majority of conflicts.
A random subset of 40 mappings from each matching

task was selected with 25 being conflicting mappings and
15 missing mappings. These were analysed by two inde-
pendent human annotators, with 5 year graduate studies
in life sciences, who categorised the conflicting mappings
into three mutually exclusive classes (“more correct in
reference”, “more correct in alignment”, or “equally correct
in both”), and the missing mappings into two mutually
exclusive classes (“correct” ,“incorrect”). The annotators
are experienced users of biomedical ontologies and were
asked to check class definitions and ancestry when mak-
ing their decision. The agreement between the annotators
was calculated as the proportion of mappings classified
into the same category by both annotators. The results of
this analysis are presented in Table 7.
Table 7 shows that, with relatively high agreement, most

of the conflicts are considered correct in both the align-
ment and the reference or more correct in the alignment.
For our analysis, we will consider these mappings as true
positives. The exception is the MP-GO-PATO set were
the sum of the potentially correct mappings is still lower
than the mappings considered correct in the reference.
This is also the only set where the agreement between the
annotators is below 50%.
The high number of conflicts potentially correct

in both the alignment and the reference occurs, for
example, in the MP-CL-PATO, with mappings which

Table 6 Comparison of the compound alignments and the
compound references

Ontologies Correct Missing Conflict

MP-CL-PATO 132 158 158

MP-GO-PATO 556 204 79

MP-NBO-PATO 84 35 50

MP-UBERON-PATO 831 390 192

WBP-GO-PATO 31 105 140

HP-FMA-PATO 482 611 196
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Table 7 Manual evaluation of mapping subsets

Ontologies Conflicts Missing

Reference Alignment Both Agreement Correct Incorrect Agreement

MP-CL-PATO 0.0% 3% 97% 87% 62% 38% 88%

MP-GO-PATO 60% 30% 10% 41% 60% 40% 76%

MP-NBO-PATO 47% 40% 13% 100% 78% 22% 72%

MP-UBERON-PATO 20% 40% 40% 67% 84% 16% 84%

WBP-GO-PATO 7% 20% 73% 80% 74% 26% 64%

HP-FMA-PATO 3% 44% 53% 75% 92% 8% 100%

involve a reference to an increased/decreased num-
ber of cells. The algorithms always match those cases
to “decreased amount” (PATO:0001997)/“increased
amount” (PATO:0000470) instead of “has fewer
parts of type”(PATO:0002001)/“has extra parts of”
(PATO:0002002), which are the classes present in the
reference alignment. The conflicts potentially more
correct in the alignment occur, for example, in the set
MP-UBERON-PATO with the mapping “flattened snout”
(MP:0000447) with “snout” (UBERON:0006333) and
“flattened” (PATO:0002254), which could be considered
more accurate than the mapping present in the refer-
ence alignment which is “flattened snout” (MP:0000447)
with “midface” (UBERON:0004089) and “flattened”
(PATO:0002254).
For the mappings missing from the reference, with

high agreement, most of them are considered cor-
rect. An example of a mapping considered correct
from the MP-UBERON-PATO set is “absent tho-
racic vertebrae” (MP:0004655) with “thoracic verte-
bra” (UBERON:0002347) and “lacks all parts of type”
(PATO:0002000).

Discussion
One challenge of computing compound alignments is the
memory requirements involved in the process. If match-
ing two large biomedical ontologies is already challeng-
ing for many ontology matching systems, handling three
ontologies in a compound alignment scenario is even
more demanding. The algorithms here presented decrease
the search-space by using a three-stepmatching approach,
which both reduces the time and memory requirements.
The algorithms were tested automatically and manu-

ally. While the automatic results against the reference
alignments underperformed, with lower than expected
statistics, the manual evaluation showed that the algo-
rithms were in most cases returning a majority of correct
mappings. This indicated, on one hand, that the refer-
ence alignments are incomplete, and on the other hand,
that the algorithms are failing to capture a considerable
portion of reference mappings. As ontologies are con-
stantly evolving, evaluations made against more complete

versions can potentially provide better results. Moreover,
this evaluation also led us to find several mappings which
conflicted with the mappings present in the reference
alignment. Using the top-two ranked selector allowed
some of the alignments to overcome the issue by featur-
ing both the conflict and the non-conflicting mappings in
the alignments at the expense of the precision. This selec-
tion strategy can be used in a user interaction scenario,
where the user then decides between the two conflicting
mappings.
Despite a clear variability in performance between

ontology sets, the manual evaluation showed that in 4 out
of 6 matched sets the precision of conflicting mappings is
greater than 80% and for missing mappings it is 74%.
Notwithstanding the overall good performance of the

proposed algorithms, there are still some open challenges.
Theoretically, the main compound matching algorithm is
symmetric, i.e., the target order does not matter. How-
ever, we empirically found that the algorithm performs
better if the ontologies are aligned in a specific order. In
this case, we always matched PATO last since we consis-
tently obtained better results with this specific order. In
the future, it would be desirable to automate the selection
order by evaluating the coverage of each of the matching
orders.
Currently, the user needs to possess specific previous

knowledge of the ontologies to be able to perform the
alignment, i.e., the user needs to know which two ontolo-
gies are able to form a set of terms which is equivalent
to the label of the source ontology. One solution to this
challenge could be to use several ontologies as input
to automatically determine the ontologies which could
form potential compound mappings. AML currently uses
a similar strategy to determine which ontologies can be
used as background knowledge in a binary alignment set-
ting [16], which can in principle be adapted to select the
appropriate ontologies for compound matching.
Exploring external knowledge with existing techniques

proved to be too computationally demanding. How-
ever, given the fact that some mappings need external
knowledge to be identified, there is still a need to adapt
these strategies to a ternary compound matching setting.
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In addition, the proposed methodology does not explic-
itly handle the possibility that there are binary equivalence
mappings between ontology pairs. This could eventually
occur if a concept in the source ontology also occurs in
one of the targets. However, from a practical point of view
and considering that for biomedical ontologies a high pro-
portion of equivalence mappings is found through string
and lexical approaches, the intermediate step of the algo-
rithm prevents these mappings from occurring in the
alignment. This is ensured by removing words already
matched to the first target, and considering that it is likely
that a high proportion of equivalence mappings would
involve all of the words in a class label, this would result
in the mapping between source and first target not pro-
ceeding to the next step of the algorithm. Nevertheless,
the proposed methods could be combined with a pre-
processing step where binary matching algorithms would
be applied to identify redundancies to remove.

Applications
Logical definitions
One notable effort in increasing the interoperability of
ontologies has been the creation of logical definitions.
Almost all classes in a biomedical ontology have a tex-
tual definition, which can be interpreted by a human
user but cannot be easily accessed by a computer with-
out sophisticated natural language processing. Therefore,
efforts have been made to transform these definitions
into a computable form as a set of logical definitions.
However, creating, implementing and maintaining these
computable definitions can be difficult, as it requires a
lot of manual labour. The creation of the logical defini-
tions was partially automated with Obol [17], a tool that
applies a set of fairly complex ontology-specific grammar
rules to generate proposed logical definitions from pre-
existing classes, which are then vetted by experts. Using
this approach the authors managed to map 73% of MP
classes, 19% of WBP, 20% of HP and 42% of the Plant
Trait Ontology, using PATO. In a later work, Obol was
also applied to the creation of logical definitions for the
GO to improve its integration with other OBO ontologies
[15]. These logical definitions were then used as an input
for the creation of the Cellular Phenotype Ontology [18],
which is an ontology that describes cells and their associ-
ated processes and, thus, provides uniform definitions to
annotate cellular phenotypes.
The significant percentage of new mappings and con-

flicts revealed by the manual evaluation (see Table 7)
led us to investigate how the algorithms could impact
the current state of the OBO logical definitions since
the reference alignments were based on them. Our pro-
posal is that ternary compound matching could be used
to identify candidates for logical definitions, which could
then be refined through the application of reasoning and

expert validation. Table 8 compares the number of new
and conflicting mappings produced for each of the three
ontologies in relation to the total number of OBO classes
represented in the logical definitions.
These mappings differ from the ones in Table 7, since

here the “New” mappings are classes from the source
ontology that are not present in the respective logical
definitions, which puts some of the mappings previously
classified as “New” in the conflict column. These map-
pings correspond to non-ternary logical definitions that
were excluded from the reference alignments.
Table 8 shows that there are 335 candidate logical defini-

tions to be considered for the MP logical definitions. The
WBP could have 72 new candidate logical definitions and
the HP ontology 498. This represents more than 900 new
candidate logical definitions for classes that had none.
However, the algorithms also produced more than 750

mappings that are in conflict with the logical definitions.
Over 400 of these correspond to non-ternary logical def-
initions. For instance, the logical definitions of the MP
ontology contains the following:

id: MP:0004403 ! absent cochlear outer
hair cells
intersection_of: PATO:0002000 ! lacks
all parts of type
intersection_of: inheres_in
UBERON:0001844 ! cochlea
intersection_of: towards CL:0000601 !
outer hair cell

This logical definition is present in the alignment as
“absent cochlear outer hair cells” (MP:0004403) with
“outer hair cell” (CL:0000601) and “lacks all parts of type”
(PATO:0002000). This mapping is not erroneous since
“cochlear outer hair cells” is an exact synonym of this
label. However, because a logical definition for this source
class existed, this mapping was added to the number
of conflicts. Cases such as these showcase the possibil-
ity of producing more than one correct logical definition
for each class. Besides these non-ternary conflicts, the
ternary conflicts still account for more than 300 possible
new logical definitions. Therefore, an expert analysis of
the conflict mappings can potentially reveal novel logical
definitions that can further improve the ontologies.
Both the consideration of new mappings and the analy-

sis of the conflict mappings could lead to the improvement

Table 8 Candidate logical definitions

Ontology New mappings Conflicts OBO classes

MP 335 442 7694

WBP 72 140 957

HP 498 169 14059
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of logical definitions. This method could go beyond the
currently employed methods since it can find new poten-
tial logical definitions, and propose improved alternatives
to some pre-existing ones.
One relevant consideration is that the candidate logical

definitions once integrated into the ontologies can cause
logical inconsistencies. Logical inconsistencies due to the
integration of two ontologies with different modelling
views is a well known challenge in the biomedical ontol-
ogy matching area [19, 20]. There are several approaches
to detect and repair these issues in binary ontologymatch-
ing [21, 22]. Applying these types of approaches could
further improve the quality of candidate logical defini-
tions. However, applications of compound matching that
do not require integrated reasoning over the ontologies
may not benefit from enforcing logical consistency due to
information loss [23].

Crop ontology
One of the tasks in the “Planteome” project4 involved
aligning the Wheat Crop Ontology [24] to reference
ontologies Trait Ontology (TO) [25], Plant Ontology (PO)
[26] and PATO. Their initial plan was to use the stan-
dard AML matchers to complete the task. However, they
needed to find more complex matches, such as “leaf
length” (CO:321_0000044) with “leaf” (PO:0025034) and
the PATO class “length” (PATO:0000122), since their pur-
pose is to create formal definitions for plant traits which
would allow reasoning over these ontologies. The novel
proposed compound algorithms were applied to the tasks
of aligning CO-PO-PATO and TO-PO-PATO. To find the
optimal thresholds for this new data, we performed sim-
ilar tests to the ones presented in the Thresholds section,
but since there is no reference alignment available, the
alignments were manually checked and the thresholds
chosen were the ones which resulted in a reasonable
amount of mappings found, with a significant number of
correct results.
Table 9 shows a representative selection of the most

promising pairs of thresholds with the results regarding
the two sets of ontologies tested. It presents the number
of mappings found and the percentage which we consid-
ered correct. For TO-PO-PATO the highest percentage of
correct mappings was found using 0.1/0.9 as thresholds

(96%), which could also be considered the best thresholds
for CO-PO-PATO since the algorithms find more map-
pings (14) and keeps a relatively high percentage of correct
mappings (93%).
The few adjustments needed to make the algorithms

run optimally to obtain significant results were positively
unexpected since the whole project was designed to work
with large biomedical ontologies. These ontologies rely
mainly on narrow synonyms. Therefore, the only adjust-
ment to the algorithm was to give a higher weight to
narrow synonyms since it was too low and was severely
reducing the final similarity of the alignments.
These experiments illustrate that the proposed algo-

rithms can be generalized to other life sciences ontologies
with positive results.

Conclusion
Biomedical ontologies are crucial to support the manage-
ment and analysis of life sciences data. Classical binary
ontology matching techniques have been used to ensure
interoperability between ontologies covering the same or
closely related domains. However, broadening the concept
of ontology matching is necessary to handle the complex
relations in biomedical ontologies, to which we contribute
with the first efficient and effective algorithms for the
compound matching of three distinct ontologies. Despite
the promising results, the algorithms still present some
shortcomings mainly due to the computational intensive-
ness of the matching process which poses challenges in
expanding the algorithms to take into account for instance
word order or external resources. Another limitation
is the definition of the relations between mapped con-
cepts. Currently, the algorithm is using simple relations
(e.g. “intersection”) to classify the relationship between
the mapped concepts, but it could potentially support
more complex relations such as location. Another pos-
sible direction for improvement is the development of
logical repair techniques that are able to remove ternary
mappings causing inconsistencies.
In the future, compound ontology matching could also

be adapted to the integration of multidimensional seman-
tic spaces [27], where it could enable the creation of more
complex semantic annotations and it would allow the dis-
covery of new and interesting associations of concepts

Table 9 Evaluation of the plant based alignments

T1 T2 CO-PO-PATO TO-PO-PATO

Found Correct Time Found Correct Time

0.1 0.9 14 93% 20s 259 96% 149s

0.1 0.7 45 36% 20s 487 55% 169s

0.3 0.85 4 100% 6s 152 95% 15s

0.5 0.9 0 0% 5s 25 92% 7s
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frommultiple dimensions. Compound ontology matching
could also be used to help in the creation of new log-
ical definitions with ternary intersections, as shown by
the results. This application, however, would need to be
enhanced by the use of ontology design patterns [28] to
take into account all the constraints that are required for
the development of new ontologies.

Endnotes
1 http://bioportal.bioontology.org
2 https://snowballstem.org
3 Experiments ran with an Intel® Xeon® E5606 2.13GHz

with 8 cores and 94 GB of memory.
4 http://planteome.org/
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