
Reasoning about multi-contextual
ontology evolution

Maciej Zurawski

CISA (Centre for Intelligent Systems and their Applications)
School of Informatics, Edinburgh University

Appleton Tower, Crichton Street,
Edinburgh, EH8 9LE, Scotland, UK

m.zurawski@sms.ed.ac.uk

Abstract
In this paper we develop a formalization and algorithms that
can manage the evolution of several ontologies from
different contexts, using automated reasoning. It is in
general difficult to maintain consistency between several
ontologies, but we focus on developing computationally
efficient ways of achieving this. Our formalization uses
both the notions of several local contexts and of a sequence
of states. We believe such a system can become a
component in for example a distributed knowledge
management system or some other knowledge infrastructure
that requires semantic autonomy, i.e. lack of centralized
semantics, but presence of a type of semantic coherence. In
this paper version we summarize our approach.

Background and motivation1
We envision that there will be a need for different kinds of
systems that can support several ontologies, their
individual evolution and maintain a type of coherence
between them. For example, we would like to be able to
build systems that will function as organizational
knowledge infrastructures. The organizations using these
will probably be decentralized and consist of separate
divisions that have local autonomy in their knowledge-
creating processes. Here we particularly mean semantic
autonomy (see the partial definition in figure 1). Such an
organization should act as a unified whole, because
otherwise entities from outside (e.g. customers) interacting
with the organization might be disappointed that it
contradicts itself. Creating an organizational knowledge
infrastructure is one application area (Zurawski, 2004), but
there should exist other applications as well that also
requires semantic autonomy. In both cases, this is modeled
using several ontologies that can evolve, but where a kind
of consistency is maintained between them.

1Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

We mention here again very briefly a partial definition
of semantic autonomy (for a full definition and detailed
discussion about all the requirements, see Zurawski 2004).
Semantic autonomy requires the properties in figure 1 to
hold. Considering these requirements it is natural that our
system should have an explicit notion of states. In the
mentioned paper we discussed these requirements and why
they make sense, and have to be possessed by distributed
knowledge management system (DKM). In this paper we
will instead focus on how to actually develop algorithms
that have satisfied the requirements listed here.
This paper version is only a short summary of our
approach. We don’t present the full formalization, but
focus more on the motivation.

Notions
We will first explain the basic notions we are using in
order to design a system that has the above-mentioned
properties.

 By multi-contextual we mean that we have defined a
finite set of subsets that all have their unique identifiers,

Semantic autonomy requires (among others) these
properties to hold at the same time:

1. The local contexts have the freedom to propose a

change in their local ontology (i.e. the ontology of the
local context).

2. The system does “in some way” maintain global
ontological consistency (although it may be the case
that the system doesn’t have a global theory).

3. The ontological language is dynamic and open-ended
(i.e. not confined by a pre-defined set) and there is an
oracle (knowledge source) that can answer questions
about this language.

Figure 1. In this paper we focus on developing algorithms that
exhibit these three properties.

individual ontologies and represent a certain cognitive
perspective, i.e. an individual way of representing a certain
domain. Because different contexts describe the same
domain (but using different ontologies) it will be natural
that it is possible to create mappings between concepts in
the different ontologies. We use the compose-and-conquer
type of context-sensitivity (Bouquet et al. 2001).
By ontology we currently mean a subsumption hierarchy of
logical concepts, that belongs to a certain context (we
don’ t have any global ontology).

 By evolution we mean that every individual ontology
can change. We will particularly focus on the case when a
new concept is added to an ontology together with a
mapping within its home ontology and a mapping to
another ontology. Because ontology evolution is so
important, we have defined the notion of states that
describe in which state a certain ontology is in. Every time
an ontology changes it moves from one state to the next
one, and all states are ordered.

The logical representation of ontology
mappings

Because of limited space we don’ t define the model theory
here, but we however summarize its characteristics. Now
we will focus on how to formalize the ontology mappings
themselves. The logic we are using has two fundamental
dimensions that are used simultaneously: contexts and
states. The basic entities that inhabit this logical space are
concepts. Every concept belongs to a unique context, and
there are no concepts outside the contexts. Every concept
has to be created in a certain state and persists either
forever or until it is deleted in some state in the future.
Concepts can be applied to instances and then they act as
logical predicates applied to constants. However, in the
algorithms that we mention we will only focus on concepts
and mappings – no instances will explicitly be present.
Two concepts belonging to the same ontology can also be
used be combined in these formulas: i iR Q∧ and i iR Q∨
(and these can be nested). We have to some extent been
inspired by intensional logic (see L. T. F. Gamut, 1991),
although we will later focus only on the proof theory and
rewrite rules.

State operators and their combination
In order to understand the ontology mapping notation we
have understand its three main components, and the first
component is the collection of state operators. We don’ t
provide the formal definition here. However, informally
speaking, Gr means that something will be true in all future
states after r, that Fr means that something will be true at
least once in the future after state r and Nr that something
is true in state r. We also use a state c from which a state
operator is evaluated (i.e. observed).
Moreover, we have defined a way of combining state
operators, so that two state operators can be combined into

one. The motivation is that this is needed when we want to
combine two ontology mappings into one (and all
mappings contain state operators as we will see). The
reason for introducing the variables r and c is that this
becomes practical later for talking about when an ontology
mapping was created and in which states it is valid.

Quantifiers and their combination
The second component of ontology mappings is quantifier
symbols, and there just two of them: 1α and 2α . We don’ t
provide the formal definitions here, but 1α approximately
means that we use a universal quantifier and 2α an
existential one. The reason why we have introduced these
symbols is that they will be used in the ontology mappings,
and can discern the difference between saying that a
certain concept is true for all instances or for at least one
instance.

Boolean functions and their combination
This is the third component of ontology mappings. We use
the standard Boolean functions of two variables and they
are represented in 2-DNF form. Two such Boolean
functions can be combined by conjunction into a new
Boolean function, using standard logical operations.

The ontology mapping notation
Here we show a part of the notation that is used for
describing ontology mappings. The reason why we choose
this kind of formalization is it that it seems to be good
when doing efficient and automated proofs about ontology
mappings. Let us call every mapping between two
concepts mi, where i is its unique identifier. A mapping mi
that holds between the concept C1 in ontology j and the
concept C2 in the ontology k can always be expressed
using on of the two following forms:

1 2 1 2(,) (((,)))i j k j km C C op f C Cα= or

1 2 1 2 1 2(,) (((,))) (((,)))i j k j k j km C C op f C C op f C Cα α′ ′ ′= ∧

where

{ }, , , , ,a b cop N F G a b c S∈ ∈ (the set of states)

{ }1 2() , and α λ α α∈

{ }1 2 1 2 1 2 1 2 1 2(,) , , ,j kf C C e e e e e e e e∈ ∧ ∧ ¬ ¬ ∧ ¬ ∧ ¬

where 1 1 2 2() and ()j j k ke C x e C y= =

(the notation of the Boolean function is the set of the
conjunctions that a 2-DNF form would contain)

Combining ontology mappings by using the three
kinds of rewrite or combination rules
Using the three kinds of rewrite or combination rules, we
can now use them in a sequence and use them for

combining any two ontology mappings into one – that is
their purpose. The first transformation is the application of
rewrite rules for state operators in a way that combines two
state operators into one. The second transformation is the
application of rewrite rules for expressions with quantifiers
in a way two combines to operators into one. The third
transformation is the application of combination of
Boolean functions in a way that combines two such
functions into one.

Examples of mappings
The language mentioned above allows creating a huge
variety of mappings. We can for example imitate the five
proposed mapping types by Giunchglia (see for example
Bouquet 2003) and restate them in this new concise
language. Both formalisms use the notion of contexts, but
the difference is that our definitions utilize the notion of
states as well. The state when a mapping was created is
denoted by r. Here are some examples:

CORRESPONDENCE – COR(C1j, C2k)

1 1 2 1 2 1 1 2 1 2{ , } { , }r rN e e e e G e e e eα α∧ ¬ ∧ ¬ ∧ ∧ ¬ ∧ ¬

IS (C1j, C2k)

1 1 2 1 2 1 2

1 1 2 1 2 1 2

{ , , }

{ , , }
r

r

N e e e e e e

G e e e e e e

α

α

∧ ¬ ∧ ¬ ¬ ∧ ∧

∧ ¬ ∧ ¬ ¬ ∧

DISJOINT (C1j, C2k)

1 1 2 1 2 1 2

1 1 2 1 2 1 2

{ , , }

{ , , }
r

r

N e e e e e e

G e e e e e e

α

α

¬ ∧ ¬ ∧ ¬ ∧ ¬ ∧

¬ ∧ ¬ ∧ ¬ ∧ ¬

COMPATIBLE (C1j, C2k)

2 1 2{ }rF e eα ∧

(We should stress that for example
 1 2 1 2 1 2{ , , }e e e e e e∧ ¬ ∧ ¬ ¬ ∧ is equivalent to

to 1 2e e→ , i.e. it is a DNF-form)

 For example, the relationship Compatible means “There
is at least one future state after r where there is at least a
pair of instances (one from ontology j and one from
ontology k) where the concept C1j is true (when applied to
its instance) at the same time as the concept C2k is true
(when applied to its instance)”.

Algorithms for verifying consistency between
ontology mappings

The problem we are trying to solve can be described as the
following proof task. Given a set of existing ontology
mappings 1(,)ax bym C C , 2 (,)ax bym C C … (,)n ax bym C C ,

how can we prove if it is consistent the additional mapping
1(,)n ax bym C C+ or not? The variables x and y refer to the

ontologies of the concepts and a and b are unique concept
identities (note that all these variables can be different for
every mapping).
To be able to address this proof task we need to have
operators that let us express the following things:

x ym m∧ , x ym m� and xm¬ (and formulas that this can

generate). Please note that this language is different from
the one that was defined in the beginning (for talking about
concepts). Now the basic entity is a mapping.

 Then we need two algorithms (called A and B) that will
build proof trees using refutation proofs and breath-first
search (for proofs), for solving the proof task mentioned.
Because of limited space we don’ t write them down here in
full detail, but the algorithms returns an answer (yes/no)
each to the following questions:

Algorithm A - “Is mapping G inconsistent with the current
mappings?” Output: yes/no

Algorithm B - ”Is mapping G valid, because it can be
inferred from existing mappings?” Output: yes/no

 This means that in both cases G is the newly proposed
mapping, and there is a set of existing mappings (i.e. these
are the inputs to algorithms). The algorithms are used in
the following way. A newly proposed ontology mapping G
is given and first we run algorithm A. If it answers “yes”,
then we know it is inconsistent with the existing ones. If it
answers “no” we run algorithm B. If that algorithm
answers “yes” then we know that the newly proposed is
valid because it can be inferred from existing mappings
(i.e. redundant in some way), and it answers “no” then the
proposed mappings is consistent with the existing ones, but
can’ t be inferred from them. Therefore, by using these two
algorithms we have covered all three possible cases.
We don’ t provide here a proof of correctness and
completeness. However, we just want to mention that our
proof search procedure for refutation proofs using a
breadth-first search, and the language used are horn
clauses (since we use conjunction, implication and
negation). So if the procedure finds a proof, it is valid, and
if there is a proof, the procedure will find the shortest one.

Applying the algorithms to ontology evolution
Once both algorithms are in place, it is actually rather
straightforward to use them for ontology evolution. An
ontology transformation has to be translated to “one or
more ontology mappings that are proposed to be added”.
For example, the addition of a new concept can be seen as
inventing a new concept in an ontology and adding an
internal mapping (within its home ontology) and a
mapping to an external ontology. Then we run algorithms

A and B for both these proposed mappings, and only if
there is no created inconsistency detected in neither of the
cases, the evolutionary step is accepted and the ontology
changes to a new state. Otherwise, the evolutionary step
would be forbidden, and the ontology would remain
unchanged.

Related research
Background to multi-context logic is give by (Giunchiglia
1993) and multiple languages and bridge rules are
discussed. A description and motivation of cognitive
context is given by (Giunchiglia et al. 1997) and the
notions of locality and compatibility are discussed. In the
interesting paper by (McGuiness et al. 2004) automated
reasoning using SAT-solvers for class hierarchies is
discussed. That is a separate case from the one we are
investigating, because WordNet is not an ontology in the
sense that there is a strict subsumption relationship
between all connected terms. The paper by (Serafini et al.,
2003) also investigates semantic matching using SAT and
class hierarchies. Some of the inspiration how to design
and formalize our logical representation comes from
(Gamut, 1991) that describes intensional logic. A variety
of different ontology-change operations are classified and
described by (Noy & Klein, 2004). Much of the motivation
why we need a system that can evolve multiple ontologies
is given in (Zurawski 2004).

Conclusions
It will be important for many applications to be able to
support many ontologies, that all can evolve at the same
time as consistency is maintained between them. We have
proposed an approach that uses a logical formalization that
consists both of contexts and of states. Every local context
has its own individual ontology, and it can evolve – this
moves it into the next state. We have already implemented
a part of the system (in Java) and when the whole system
will be implemented we will evaluate the scalability by
running some experiments. Our approach is an alternative
to the model theoretical approach where SAT-solvers are
used. Many of the systems described in the literature
usually only allow for a few types of ontology mappings
whereas our ontology mapping language is relatively rich.
We have to investigate how this approach compares to
other approaches (such as SAT-solving) and investigate
how well it scales in cases when there are extensive
amounts of ontology mappings that have to be taken into
account. The problem of maintaining consistency between
multiple evolving ontologies might seem to be intractable,
but by adapting the reasoner to the unique properties of the
problem, we might make the problem tractable (but
experimental evaluation is needed as well). Finally, we
believe that these methods could become one of the
components in the design of an organizational distributed
knowledge management system or some other knowledge

infrastructure that will become valuable in the upcoming
era of the knowledge society.

Acknowledgements
This research was funded by the Marcus Wallenberg
Foundation for Education in International Industrial
Enterprise. The author would like to thank Dave Robertson
and Jessica Chen-Burger (both at CISA) for their valuable
comments and feedback.

References
Bouquet, P., Ghidini, C., Giunchiglia, F., Blanzieri, E., “ Theories
and uses of context in knowledge representation and reasoning” ,
IRST Technical Report 0110-28, Istituto Trentino di Cultura,
October, 2001.

Bouquet, P., Giunchiglia, F., van Harmelen, F.,Serafini, L.,
Stuckenschmidt, H. ” C-OWL: Contextualizing Ontologies” ,
Proceedings of the Second International Semantic Web
Conference, K. Sekara and J. Mylopoulis (Ed.), pp 164-179,
LNCS. Springer Verlag, October, 2003.

Gamut, L. T. F. “ Logic, Language, and Meaning, Volume 2:
Intensional Logic and Logical Grammar” . The University of
Chicago Press, 1991.

Giunchiglia, F., “ Contextual reasoning” , In: Epistemologia -
Special Issue on I Linguaggi e le Macchine, XVI, pp 345-364,
1993.

Giunchiglia F., Bouquet P., “ Introduction to contextual reasoning.
An Artificial Intelligence Perspective” , In: Perspectives on
Cognitive Science, B. Kokinov (ed.), 3, NBU Press, Sofia
(Bulgaria), 1997.

McGuiness, D. L., Shvaiko, P., Giunchiglia, F., da Silva, P. P.,
“ Towards explaining semantic matching” . Technical Report DIT-
04-019, Informatica e Telecomunicazioni, University of Trento,
2004.

Noy, N. F. and Klein, M., “ Ontology evolution: Not the same as
schema evolution” . In: Knowledge and Information Systems, 6(4),
pp 428-440, 2004.

Serafini, L., Bouquet, P., Magnini, B., Zanobini, S., “ An
algorithm for matching contextualized schemas via SAT” .
Technical Report DIT-03-003, Informatica e Telecomunicazioni,
University of Trento, 2003.

Zurawski, M., “ Towards a context-sensitive distributed
knowledge management system for the knowledge organization” ,
Workshop on Knowledge Management and the Semantic Web,
14th International Conference on Knowledge Engineering and
Knowledge Management. EKAW 2004, Northamptonshire, UK,
October, 2004.

