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Abstract 
We describe a system that combines default reasoning with 
contexts.  Contexts are arranged in a hierarchy where more 
specific contexts represent revisions of the state of belief in 
more general contexts.  We describe our algorithm for 
default reasoning in a context hierarchy and provide a 
translation of our representation into a default logic theory 
whose inferences agree with our algorithm. We conclude 
with a discussion of different notions of context and give a 
justification of our default rules when contexts are 
understood as states of belief. 

Introduction   

People apply default reasoning all the time; we fill in 
missing information about a particular situation based on 
our experience and knowledge of what is usually true.  
Applying this type of reasoning is useful as it saves us from 
having to re-obtain information that remains largely static 
across most similar situations.  Default reasoning in formal 
systems is likewise useful; it saves us from re-representing 
information that does not (usually) change. 

People also believe different things at different times and in 
different situations; we operate in different states of belief 
according to changes in the information we have.  The 
ability to revise our states of belief is an essential part of 
living in a dynamic world.  Representing different states of 
belief in an automatic inference system is also useful; it 
allows us to do 'what-if' reasoning and can have a positive 
impact on inference efficiency.  In this paper we view 
contexts as states of belief and investigate how default 
reasoning and contexts interact in reasoning.  

We describe an algorithm for default reasoning in contexts 
that we have implemented in an automated inference 
system.  We then provide a translation of our representation 
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into a formal theory of default reasoning and show that our 
algorithm agrees with the theory.  Finally we justify the 
theory when contexts are understood as states of belief.  

Default Reasoning with Contexts in AKS 

We have designed and implemented the AIT Knowledge 
Server (AKS), a computationally-efficient, constraint-based 
knowledge server that provides a semantics richer than 
conventional frame system attribute/value relations 
[Minsky, 1975].  In addition, the AKS supports contexts, 
which partition the knowledge base.  Contexts enable 
reasoning within a subset of the knowledge base, and they 
allow different parts of the knowledge base to be 
inconsistent with each other, facilitating “what if” 
reasoning.  In the AKS, contexts are arranged in a single 
(tree-structured) inheritance hierarchy such that anything 
that is true in a context is also true in its subcontexts.  

The expressions in our representation language that are 
relevant to default reasoning are: 

• instance(C, I, K): class K is the most specific 
superclass of instance I in context C 

• parent_class(C, H, K): class K is a most specific 
superclass of class H in context C 

• subcontext(C2, C1): context C1 is the most specific 
supercontext of context C2 

• direct_assignment(C, I, S, V): V is assigned to be a 
value of slot S on instance I in context C 

• default_value(C, K, S, D): D is the default value of 
slot S on class K in context C  

Default Reasoning in AKS 

The AKS also supports a form of default reasoning in which 
a slot on a class may be assigned a default value.  Default 
values are inherited by subclasses and instances of the class; 



these default values can be overridden by subclasses and 
instances.  In the event that an instance does not specify a 
value for a slot, then the inherited default value for the slot, 
if specified, becomes the value of the instance’s slot.  Slots 
are not required to have any value assigned to them.  

The value for a slot on an instance can either be assigned 
directly or inherited from a default value in a superclass.  If 
slot S on instance I (notated as I.S) has no directly assigned 
value, we search upwards in the class hierarchy for a most 
specific superclass of I that has a default value for S.  With 
contexts, the reasoning becomes more complicated.  
Consider Figure 1 where we have two contexts: 

1. a context called birds in which we are agnostic as 
to whether or not birds can fly, but we know that 
penguins, in general, cannot 

2. a subcontext called birds_can_fly in which we 
have modified our belief to be that birds, in 
general, can fly 

 
Context birds

Class bird
slot: can_fly

Class penguin : bird
slot: can_fly = false

Context birds

Class bird
slot: can_fly

Class penguin : bird
slot: can_fly = false

Class bird
slot: can_fly = true

Instance george : penguin

Context birds_can_fly: birds

Class bird
slot: can_fly = true

Instance george : penguin

Context birds_can_fly: birds

 
Figure 1.  Class hierarchy over two contexts 

The question is whether or not george can fly in the context 
birds_can_fly.  Given a context C, an instance I of class K 
(where K is a most specific superclass of I), and a slot S on 
I, we use the following algorithm to determine the value of 
I.S in C.  We use a special symbol no_value_found to 
indicate that no value has been assigned to I.S in C. 

The function value_of(C, I, S ) returns a value for slot S on 
instance I in context C.  value_of first looks for a value that 
is directly assigned to I.S in C or any supercontexts of C. 
Failing that, value_of looks for a default value on slot S in 
the superclass of I in context C. 

value_of(C, I, S ): 
 V = direct(C, I, S) 
 
 if V == no_value_found 
  return default(C, K, S) 
 else  
  return V 

direct(C, I, S) returns a value that is directly assigned to slot 
S on instance I in context C or any ancestor contexts of C. 

direct( C, I, S ) : 

 if direct_assignment(C, I, S,V ) then  
  return V 
 else  
  if subcontext( C, Cp )  
   return direct(Cp, I, S ) 
  else 
   return no_value_found 

The function default(C, K, S) returns a default value for slot 
S on class K in context C.  The context hierarchy is 
searched before the class hierarchy.  All ancestor contexts 
of C are searched for a default value on K.S before any 
superclasses of K are searched. 

default(C, K, S ) : 
 V = default_for_class(C, K, S ) 
 if V != no_value_found 
  return V 
 else  
  for each Kp where parent_class(C, K, Kp )  
   V = default(C, Kp, S ) 
   If V != no_value_found 
    return V 
  return no_value_found 

The function default_for_class(C, K, S) returns a default 
value for slot S on class K in context C.  default_for_class 
does not examine any superclasses of K; it searches only in 
context C and its supercontexts for a default value on K.S. 

default_for_class(C, K, S ) : 
 if default_value(C, K, S, V )  
  return V 
 else  
  if subcontext( C, Cp ) 
   return default_for_class(Cp, K, S) 
  else  
   return no_value_found 

For the situation illustrated in Figure 1 this algorithm gives 
the result:   

  value_of( birds_can_fly, george, can_fly ) = false 

Justification of Default Reasoning Mechanism 

[Etherington, 1988] provides a translation of a class 
inheritance hierarchy with exceptions into a set of default 
rules in Reiter’s system of default logic. A similar 
translation can be given for our system of default reasoning. 

In Reiter’s system of default logic [Reiter, 1980], a default 
theory is a pair ∆ = <D, W>, where W is a set of first-order 
formulas and D is a set of rules of the form: 
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where )(),( xx χα , and )(xβ   are first-order formulas 
whose free variables are among x .   

W is the set of facts and D provides a means of drawing 
tentative conclusions.  The intuitive meaning of the above 
default rule is that if )(aα  is known and it is consistent to 
believe )(aβ , then )(aχ may be inferred.  ( a  is a 
sequence of individual constants replacing the variables x .) 

A more formal interpretation of a default theory is provided 
by the notion of an extension.  An extension of a default 
theory <D, W> is a set E of formulas that is a minimal fixed 
point1 of an operator Γ on sets of formulas satisfying: 

1. W ⊆   Γ(S) 

2. Γ(S)  is closed under logical consequence 

3. Given )(/)(:)( xxx χβα   ∈ D, if  )(aα  ∈ 
Γ(S)  and   ∉¬ )(aβ  S  , then   )(aχ   ∈   Γ(S)   

An extension for a default theory is often regarded as a set 
of propositions constituting an “acceptable” set of beliefs 
given the theory.    

A default rule with )(xβ   = )(xχ  is said to be normal; 
one with )(xβ   = )()( xx ϕχ ∧  for some )(xϕ  is semi-
normal.  Our translation will always result in either normal 
or semi-normal default rules. 

If Σ is a set of AKS assertions describing an inheritance 
hierarchy with contexts, we give a translation of Σ into a 
default theory <D(Σ), W(Σ)> as follows: 

1. If instance(C, I, A) ∈   Σ, then C → A(I)  ∈  W(Σ) 

2. If parent_class(C, B, A) ∈  Σ, then (x)(C∧B(x) → 
A(x))  ∈  W(Σ) 

3. If subcontext(C2, C1) ∈ Σ, then C2 → C1 ∈ W(Σ) 

4. If direct_assignment(C,I,S,V) ∈  Σ, then the 
default ),(/),(: 1 VISCCVISC k¬∧¬∧ … ∈ 
D(Σ), where the Ci are nearest subcontexts of C 
such that direct_assignment(Ci, I, S, V′) ∈ Σ  for 
some V′ (i.e. there is no context between C and Ci 
in which a direct assignment to S for I is made).  

5. If default_value(C, K, S, D) ∈ Σ,  then 
),(/),(:)( 1 DxSEEDxSxKC k¬∧¬∧∧ …

∈ D(Σ), where the Ei are all the exceptions 
(defined below) to default_value(C, K, S, D). 

The exceptions to default_value(C, K, S, D) are the following: 

i. If direct_assignment(C′, I, S, V) ∈ Σ, where C′ is 
C or a subcontext of C and I is an instance of K, 
then )( IxC =∧′  is an exception. 
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ii. If direct_assignment(C′, I, S, V) ∈ Σ, where C′ is a 
supercontext of C and I is an instance of K, then 

Ix= is an exception. 

iii. If default_assignment(C′, H, S, D′) ∈ Σ, where C′ 
is a subcontext of C and H is K or a subclass of K, 
then C′∧H(x) is an exception. 

iv. If default_assignment(C′, H, S, D′) ∈ Σ, where C′  
is a supercontext of C and H is a subclass of K, 
then H(x) is an exception. 

Given this translation, the algorithm for default reasoning 
described in the previous section can be shown to agree 
with the conclusions derivable from <D(Σ), W(Σ)>.  More 
precisely, we have the following theorem: 

Theorem 1.  If AKS infers conclusion P from default theory  
<D(Σ), W(Σ)>, then P is in an extension of <D(Σ), W(Σ)>2. 

What Contexts Represent 

Applying the translation to the example in the previous 
section yields the following default theory: 

W = { birds_can_fly → birds, birds_can_fly → penguin(george) } 

D = { birds∧penguin(X) : can_fly(X,false)/can_fly(X,false), 

         birds_can_fly∧bird(X) :  can_fly(X,true) ∧¬penguin(X)/    

                   can_fly(X,true) } 

It is straightforward to show that can_fly(george,false) is 
derivable from birds_can_fly.  
 
 

 

 

 

 

Figure 2.  Avian inheritance hierarchy. 

As the above default theory shows, we regard penguins as 
exceptions to birds flying even in subcontexts of the context 
in which penguins are declared not to fly by default; yet we 
don’t regard birds in the context birds_can_fly as special 
kinds of birds whose default properties can override those 
of other subclasses of bird.  This introduces an asymmetry in 
the treatment of subclasses and subcontexts.  We might 
have regarded contexts as defining special subclasses of the 
classes defined within them, in which case we could 
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paper.  They are available upon request from the authors. 
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represent the entire class/context hierarchy in the previous 
section in terms of a single class hierarchy with no explicit 
contexts as shown in Figure 2.  The context information is 
embedded in a special subclass of  bird, the class bird-in-C 
(where C stands for a subcontext of the context birds).   

If the default flying status for a bird-in-C is that it flies, then, 
we cannot arrive at a clear conclusion about George’s flying 
ability.  (This example is isomorphic to the notorious 
“Nixon diamond” [Touretzky, 1984].)  

We wish to argue that whether or not any inference can be 
made about George’s flying abilities given the above default 
rules depends upon how contexts are interpreted.  [Akman 
and Surav, 1996] surveys the multifarious ways in which 
the notion of context has been understood. Some think of 
contexts as being the same or similar to situations as 
understood, say, in situation theory [Barwise and Perry, 
1983].  A situation is regarded as a collection of states of 
affairs, where states of affairs might be thought of as 
possible facts.  An actual situation might even be identified 
with a particular spatio-temporal slice of the universe.  

If contexts are thought of as situations, then it does make 
sense to regard the restriction of a class to those instances 
occurring in a particular context as a subclass of that class1. 
For on this construal of contexts, C2 is a subcontext of C1 if 
C2 is a restriction of C1 to some particular subset of the 
facts occurring in C1.  Thus the set of instances of a class K 
that occur in context C2 will be a subset, and often a proper 
subset, of the set of instances of K occurring in C1. For 
example, if by default penguins don’t fly and one considers, 
say, birds-inhabiting-Patagonia, which do fly by default, 
there’s no reason to simply assume that penguins-
inhabiting-Patagonia don’t fly.  (Perhaps unusual 
gravitational conditions in Patagonia give all birds the 
ability to fly.)  

 Another interpretation of “context” is as a state of belief.  
On this interpretation a subcontext represents an extension 
of its parent’s state of belief.  Thus a subcontext represents 
a state of belief in which all of the beliefs in the parent are 
still held plus other beliefs that are added in the subcontext 
(provided the new beliefs are consistent with the old ones).   

On this interpretation of what a context is, defaults holding 
in supercontexts are inherited by a context unless 
overridden.  Hence the context birds_can_fly  simply adds to 
the information present in its parent context birds,  the 
information that by default birds can fly.  This default rule 
is consistent with the information contained in birds that by 
default penguins cannot fly and so that piece of information 
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rules for a given microtheory range only over objects 
existing in the situation described by the microtheory.   

is inherited by birds_can_fly.  The default inference rules for 
AKS class/context hierarchies can therefore be justified 
when contexts are understood as belief states2. 

Conclusion 

We have described an implementation of a default 
reasoning system that combines class inheritance 
hierarchies with contexts.  A translation of assertions in our 
system into default rules in Reiter's system of default logic 
was given.  These default rules can be justified when the 
notion of a context is understood as a state of belief and a 
subcontext as an extension or revision of a state of belief.   
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