
First-Orderized ResearchCyc :
Expressivity and Efficiency in a Common-Sense Ontology

Deepak Ramachandran1 Pace Reagan2 and Keith Goolsbey2
1Computer Science Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801

dramacha@uiuc.edu
2Cycorp Inc., 3721 Executive Center Drive, Suite 100, Austin, TX 78731

{pace,goolsbey}@cyc.com

Abstract

Cyc is the largest existing common-sense knowledge base. Its
ontology makes heavy use of higher-order logic constructs
such as a context system, first class predicates, etc. Many
of these higher-order constructs are believed to be key to
Cyc’s ability to represent common-sense knowledge and rea-
son with it efficiently. In this paper, we present a translation
of a large part (around 90%) of the Cyc ontology into First-
Order Logic. We discuss our methodology, and the trade-
offs between expressivity and efficiency in representationand
reasoning. We also present the results of experiments using
VAMPIRE, SPASS, and the E Theorem Prover on the first-
orderized Cyc KB. Our results indicate that, while the use of
higher-order logic is not essential to the representability of
common-sense knowledge, it greatly improves the efficiency
of reasoning.

1 Introduction
ResearchCycTM is a version of Cycorp Inc.’s CycR©1 Knowl-
edge Base - the world’s largest general common-sense on-
tology and reasoning engine. ResearchCyc is available un-
der a free license, and consists of 1,074,484 assertions in a
language of 122,658 symbols (not including strings or num-
bers). By contrast, the IEEE Suggested Upper Merged On-
tology (Niles & Pease 2001) consists of 60,000 axioms over
20,000 terms.

A significant feature of ResearchCyc’s design is the incor-
poration of higher-order assertions in its KB. (For the rest
of this paper we will use the term ”higher-order” to mean
any feature beyond ordinary first-order logic, like a context
system or quantification over predicates.) The reasons for
this are both philosophical and pragmatic; it is widely be-
lieved that a complete specification of what is understood
to be “common-sense knowledge” requires some kind of
higher-order features. For example, Boolos (Boolos 1984)
discusses two sentences that cannot be represented in a logic
without predicate quantification (non-firstorderizable):

1. Some critics admire only one another.

2. Some of Fianchetto’s men went into the warehouse unac-
companied by anyone else.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Cyc is a registered trademark and ResearchCyc and OpenCyc
are trademarks of Cycorp, Inc.

The second sentence is non-firstorderizable if we consider
“anyone else” to mean anyone who was not in the group of
Fianchetto’s men who went into the warehouse.

Another reason for the use of these higher-order con-
structs is the ability to represent knowledge succinctly and
in a form that can be taken advantage of by specialized rea-
soning methods. The validation of this claim is one of the
contributions of this paper.

In this paper, we present a tool for translating a significant
percentage (around 90%) of the ResearchCyc KB into First-
Order Logic (a process we callFOLification). Our meth-
ods involve a number of non-trivial transformations of the
higher-order constructs appearing in ResearchCyc into FOL.
In some cases (e.g. axiom schemata), the assertions could be
translated precisely without any loss of semantics, but with
an increase in the size of the representation (both the num-
ber of symbols and axioms). In other cases (e.g. contexts)
only an approximate translation could be made. We describe
our techniques in detail and the tradeoffs involved in expres-
sivity and efficiency. Our final FOLified ResearchCyc KB
consisted of 1,253,117 axioms over 132,116 symbols (not
including strings or numbers).

We also present the preliminary results of some exper-
iments performed on the FOLified KB using VAMPIRE
(Riazanov 2003), SPASS (Weidenbach 1999), and the E
theorem prover (Schulz 2002) with a sample collection of
common-sense queries typical for ResearchCyc. The ATP
systems performed orders of magnitude more slowly than
the ResearchCyc inference engine that is custom built for
Cyc’s ontology and thus able to reason with its higher-order
representations directly. From these results, we conclude
that the types of problems Cyc is designed to handle differ
substantially from the types of problems that the ATP sys-
tems are designed to handle. To our knowledge, this is the
largest ever set of axioms upon which first-order theorem
proving has been attempted. Our results are open to inter-
pretation and we discuss them in the conclusion.

The rest of this paper is organized as follows: In Section
2 we provide some background. In Section 3 we discuss our
FOLification procedure. In Section 4 we discuss the design
of the CYC inference engine. Section 5 presents our prelim-
inary experimental results. Finally in Section 6 we discuss
conclusions and future work.



2 Background
We assume that the reader is familiar with all the standard
terminology from the fields of Knowledge Representation
and Automated Reasoning.

The Cyc common-sense knowledge base has been in
development since 1984, first as a project at MCC, and
since 1994 by Cycorp Inc. (www.cyc.com). A descrip-
tion of the motivation and goals of the Cyc project is given
in (Lenat & Guha 1990). The complete Cyc knowledge
base is under a proprietary license, but recently Cycorp
has released a significant proportion of the KB to the aca-
demic community through the ResearchCyc project (re-
search.cyc.com). ResearchCyc is available under a restricted
but free license to all research institutions and universities.
The eventual goal is to make almost all of the Cyc KB, ex-
cept for certain sensitive sections, available in ResearchCyc.
OpenCycTM(www.opencyc.org) is the open-source version
of a subset of the Cyc KB (mostly the upper ontology) freely
distributed under the Creative Commons license. In the rest
of this paper, for brevity we will refer to all three KBs simply
as Cyc, except where we wish to distinguish among them.

CycL is the declarative knowledge representation lan-
guage used to store Cyc’s KB. It has a Lisp-like syntax, with
each atom and each term appearing within a pair of paren-
theses. As mentioned before, it is higher-order and has all
the standard logical connectives and operators. The Cyc as-
sertions and queries we use in the rest of this paper are writ-
ten in simplified CycL.

TPTP (Thousands of Problems for Theorem Provers)
(Sutcliffe & Suttner 1998) is the most popular library of test
problems for automated theorem proving (ATP) systems and
is the basis for the CADE ATP System Competition (Pel-
letier, Sutcliffe, & Suttner 2002). Our FOLification tool
translates CycL into the TPTP format. We chose this for-
mat because many theorem provers accept it as input, and
there exist tools for converting TPTP files into virtually ev-
ery other first-order format.

3 First-Orderization of Higher-Order
Constructs

In this section, we describe some of the transformations used
to convert Cyc’s higher-order KB into FOL.

It should be noted that our use of the term “higher-order”
is rather loose; it signifies any conceivable extension to the
usual syntactic restrictions of FOL: variable-arity predicates,
sentences as arguments, etc.

3.1 Contexts
Contexts have been viewed both as a scheme for acheiving
generality (McCarthy 1986) and locality (Giunchiglia 1993).
ResearchCyc’s context system enables both.

Each assertion in the KB is associated with amicrotheory
(“mt”) that determines its context. The microtheories are ar-
ranged in a hierarchy, with each microtheory having access
to all the assertions in its parents.

Microtheories are implemented by extending the lan-
guage with the modal operatorist(k, ϕ)(“is true”) to
express that the assertionϕ is true in the contextk. For

example, consider the context of world mythology, in which
we assert the fact that vampires fear garlic:

ist(WorldMythologyMt, (Vampire(X) ∧
Garlic(Y)) ⇒ (feelsTowardsObject ?X ?Y
Fear positiveAmountOf))

CycL has a predicategenlMt to assert that a microthe-
ory is a child of another in the hierarchy (and thus inherits
all its assertions):

genlMt(WorldMythologyMt, HumanActivi-
tiesMt)

The closest analogue to Cyc’s microtheory system in the
literature is Buvac’s quantificational theory of context (Bu-
vac 1996).

There are two methods for handling microtheories in pure
first-order logic. One is to treat each context as a sepa-
rate module, choose at inference time which modules are
required, and compile them into a single flat KB. This is the
approach used by the Suggested Upper Merged Ontology
(Niles & Pease 2001).

A more sophisticated scheme is to approximate theist
modality with anmtVisible predicate. For example,

mtVisible(WorldMythologyMt) ⇒ ((Vam-
pire(X) ∧ Garlic(Y)) ⇒ (feelsTowardsOb-
ject ?X ?Y Fear positiveAmountOf))

Contexts can then inherit from each other:

mtVisible(WorldMythologyMt) ⇒ mtVisi-
ble(HumanActivitiesMt)

Criteria can be imposed for selecting certain contexts:

∀k[(mtVisible(k) ⇒ ∃XDragon(X))
⇒ FictionalContext(k)]

Both techniques mentioned above have one limitation:
the inability to represent inter-contextual reasoning. In
the module-based method there are no means of referring
to other contexts. In themtVisible method, while it
is possible for assertions to refer to other contexts, the
meaning is usually not what is intended. For example,
suppose contextk1 knows that axiomφ is true in context
k2. If we try to translate this as:

mtVisible(k1) ⇒ (mtVisible(k2) ⇒ φ)

This is equivalent to the statement:

mtVisible(k2) ⇒ (mtVisible(k1) ⇒ φ)

which was not intended at all.
Our translation tool uses a combination of both methods.

In general, each assertion is prefixed with themtVisible
condition for the microtheory it belongs to. But in the case of



some microtheories being universally or almost universally
visible, we use the modular approach. For example, when
the assertion is from eitherUniversalVocabularyMt
orBaseKB, then it is FOLified without adding themtVis-
ible predicate at all, since assertions from these microthe-
ories are visible to practically every query.

3.2 Ontology

The backbone of Cyc’s ontology of types and objects is
the genlshierarchy. It is analogous to thegenlMt hier-
archy of microtheories. EveryThing in Cyc is either an
Individual or a Collection. Both Individuals
and Collections can be instances ofCollections.
Instancehood is declared using theisa predicate:

(isa Fido Dog)
(isa Dog Collection)

Collections can be declared to be subcollections, or
“specs” of other collections using thegenls predicate as a
subclassing relation as follows:

(genls Fruit PlantPart)

which means that every instance ofFruit is also an in-
stance ofPlantPart.

The FOLifier creates a unique unary predicate for each
collection, e.g.Fruit(x), PlantPart(x). This has
the potential to make resolution-style inference easier be-
cause there is less choice of literals to resolve on due to
greater variety in the predicate position. Furthermore, itis
assumed that the heuristics of theorem provers are gener-
ally optimized for type hierarchies being expressed as unary
predicates.

Given this, thegenls assertion shown earlier can simply
be translated as:

∀x[Fruit(x) ⇒PlantPart(x)]

Exceptions to the above technique are thereified
collection-denoting terms, e.g. (JuvenileFn Human)
which represents the collection of all young humans.
(Note that a collection-denoting function need not neces-
sarily denote a subcollection of its argument, for example
(FruitFn AppleTree) does not denote a subcollection
of AppleTree.) In our FOLification, we ignore the func-
tional nature of the term and simply create a new predicate
by concatenating the names of the function and its argu-
ment(s).

3.3 Predicate and Function Quantification

Allowing predicates to be arguments to other predicates and
functions often enables more compact representations in the
Cyc KB.

For example the meta-predicateTransitivePred(x)
can be defined as follows:

TransitivePred(P) ⇒
∀x∀y∀zP(x, y) ∧ P(y, z) ⇒P(x, z)

A more complicated example is

relationAllExists(pred, type1, type2)

which states that for every instance oftype1, x, there
must be some instance oftype2, y s.t. pred(x,y).
For examplerelationAllExists(has,Dog,Nose)
states that every dog has a nose.

In ResearchCyc terminology, pseudo-higher-order con-
structs such as the above are calledrule macro predicates
and it is usually straightforward to convert these into FOL
by replacing the literal with a first-order axiom schema, as
in theTransitivePred example.

Another case in which predicate/function quantification
can be translated into FOL is withargIsa assertions that
are used to constrain the value of arguments to a predicate.
For example,

argIsa(performedBy, 1, Action)

states that the first argument of aperformedBy asser-
tion must be an instance ofAction. This can be translated
into FOL as follows:

∀x∀y[performedBy(x, y) ⇒Action(x)]

3.4 Variable Arity Predicates and Functions
It is natural to regard many predicates and functions as hav-
ing variable arities, e.g.TheSet which extensionally enu-
merates a set. In some cases, the arities can be bounded by a
small number, e.g. the Cyc functionMeter can take either
1 or 2 arguments.(Meter 1) denotes “one meter”, and
(Meter 1 2) denotes “between one and two meters”. In
those cases, we can translate into FOL by suffixing the name
of the predicate or function with the arity with which it ap-
pears in the assertion i.e.

In many cases, for exampleTheSet, the arity is fun-
damentally unbounded. In these cases, no straightforward
translation seems to exist. An exception is thediffer-
ent predicate which, when applied ton arguments, can be
translated intoO(n2) inequality relations.

3.5 Exceptions
Exceptions to assertions in Cyc can be declared using the
exceptFor andexceptWhen predicates, e.g.

(exceptFor Taiwan-RepublicOfChina
(implies (isa ?X ChineseProvince)
(geopoliticalSubdivision China-
PeoplesRepublic ?X)))

Exception assertions like the above are used to give Cyc
non-monotonic behavior.

When translating an exception assertion into FOL, the
FOLifier could take the exception conditions and add them



FOL untranslatability reason # of Assertions
UNBOUNDED ARITY FUNCTION 77756
META-SENTENCE 54209
META-VARIABLE 18923
VARIABLE ARITY FUNCTION 14187
FUNCTION ARG CONSTRAINT 7481
HOOK 6407
COLLECTION QUANTIFICATION 2263
UNBOUNDED ARITY PREDICATE 1554
FUNCTION QUANTIFICATION 1072
PREDICATE QUANTIFICATION 766
ILL-FORMED 458
INTER-MT 295
UNEXPECTED 247
SEQUENCE-VAR 206
NON-COLLECTION 132
NON-FUNCTION 114
NON-PREDICATE 62
VARIABLE ARITY PREDICATE 0

Table 1: ResearchCyc Translation Statistics

as negated literals in the antecedent of the excepted rule. In
the general case this is more difficult to handle. Also, there
can be problems when the assertion and the exception ap-
pear in different microtheories.

Currently, our FOLifier does not handle exceptions.

3.6 Translation Statistics

Table 1 gives a breakdown of how each assertion in the
ResearchCyc KB was handled by our FOLifier. Overall
960,327 (out of 1,074,484) assertions were translated suc-
cessfully. For the others, we list the reasons why a transla-
tion was not possible and the number of assertions for which
that reason applies.

UNBOUNDED ARITY PREDICATE and UN-
BOUNDED ARITY FUNCTION indicate that the assertion
has a predicate or function with variable arity, and that there
is no upper bound on the maximum arity, as described in
Section 3.4.

VARIABLE ARITY PREDICATE and VARIABLE AR-
ITY FUNCTION indicate that the assertion has a predicate
or function with variable arity, but there is an upper bound
on the maximum arity. Many of these arise from Cyc’s rep-
resentation of scalar intervals. These are in principle trans-
latable as described in Section 3.4, but our initial FOLifier
implementation only handled fixed-arity relations.

META-SENTENCE indicates that a sentence occurs as a
term (e.g. within a modal, or an exception).

META-VARIABLE indicates that the assertion references
a meta-variable, which is an intrinsically higher-order lan-
guage feature.

FUNCTION ARG CONSTRAINT indicates a constraint
on the argument of a function. Our FOLifier implementation
does not currently handle these.

HOOK indicates that the assertion contains a “hook” into
some procedural code.

FUNCTION QUANTIFICATION, COLLECTION
QUANTIFICATION and PREDICATE QUANTIFICA-
TION indicate that the assertion quantified over a function,a
collection (which translates into a predicate), or a predicate
that was not a rule macro predicate.

INTER-MT indicates that the assertion involved some
kind of inter-contextual reasoning between microtheories
using theist predicate that could not be translated into
FOL.

SEQUENCE-VAR indicates that the assertion used a vari-
able that stands for a sequence of terms rather than a single
term. These are used in Cyc to write higher-order rules that
quantify over predicates that could have varying arities.

NON-COLLECTION, NON-FUNCTION, NON-
PREDICATE, and UNEXPECTED were cases which
our FOLifier was unable to handle. Some of these were
due to Lambda and Kappa, since function-denoting
functions and predicate-denoting functions are inherently
non-firstorderizable.

ILL-FORMED illustrates some kind of syntactic or se-
mantic problem with the Cyc assertion itself.

4 The Cyc Inference Engine
The Cyc Inference Engine is a higher-order theorem prover
optimized for the Cyc Knowledge Base. It differs from most
automated theorem provers in several fundamental ways.
Cyc’s inference engine is designed to reason over a very
large common-sense KB. It is incomplete, non-monotonic,
and handles context reasoning natively. It is highly modu-
lar; in addition to modules implementing inference rules, it
has modules implementing meta-reasoning and meta-meta-
reasoning. It can dynamically handle theory revisions re-
quiring only limited, local knowledge recompilation, and
truth maintenance is always on.

4.1 Large Common-Sense KB

ResearchCyc contains over a million axioms, so the infer-
ence engine’s datastructures and heuristics are designed to
handle hundreds of thousands of constants and tens of thou-
sands of predicates efficiently. Furthermore, the knowledge
in Cyc’s KB is common-senseknowledge. Common-sense
knowledge is more often used in relatively shallow, “needle
in a haystack” types of proofs than in deep mathematics-
style proofs. Common-sense knowledge is more often used
for constructive proofs than proofs by contradiction.

These factors have significantly influenced the design of
Cyc’s inference engine in ways quite different from most
other automated theorem provers, which are often optimized
for very different types of knowledge, such as formal verifi-
cation, mathematics, or a single specific domain.

4.2 Incompleteness

Common-sense knowledge is tightly interconnected, and
that fact combined with a very large KB make for intractably
large branching factors in inference. Cyc’s inference engine
is heuristically guided and resource-bounded; it trades com-
pleteness for efficiency. At some point, the size and density



of a KB become so large that any complete inference algo-
rithm would be so slow as to be pragmatically useless. At
that point, it becomes wise to give up completeness in favor
of efficiency.

4.3 Highly Modular
Cyc, like most state of the art theorem provers, has a so-
phisticated set of heuristics used to rank potential inferences
in a preference order. Also like most theorem provers, Cyc
considers applying a set of inference rules at each inference
step.

However, most theorem provers have a small handful
of inference rules, usually including hyperresolution and
paramodulation. In contrast, Cyc employs a “pandemo-
nium” model in which hundreds to thousands of “Heuristic-
Level (HL) modules”, each of which implements an infer-
ence rule, check whether they are applicable to the given
subproblem and make a bid to solve it. HL modules can
be dynamically added or removed from the system without
requiring any sort of retuning or recompilation.

4.4 Higher-Order
Some higher-order features are efficiently implemented via
HL modules. For example, Cyc has an HL module that ap-
plies only to transitive predicates. When invoked, it per-
forms a graph walk over the indexing structures of the KB,
which is considerably more efficient than performing unre-
stricted resolution.

By representing the knowledge that a given predicate P is
transitive asTransitivePred(P) rather than as a rule,
Cyc gains parsimony in knowledge representation as well as
efficiency in inference. If there areN transitive predicates in
the universe of discourse, Cyc can represent this knowledge
in N + 1 clauses: 1 clause per predicate plus 1 very general
higher-order rule. In a straightforward FOL representation,
3N clauses would be required: 1 three-clause rule to express
the transitivity of each predicate.

Many other higher-order features are handled analo-
gously, with corresponding gains in both inference effiency
and KR parsimony.

4.5 Contexts
Reasoning within a hierarchy of contexts is built into the in-
nermost loop of Cyc’s inference engine. Cyc maintains a
dynamic contextual scope which can differ for each literal
of each subproblem of an inference. Each axiom considered
for use in a proof is first checked for relevance to the con-
textual scope. In the general case, this is done via efficient
graph walking of the context hierarchy (a directed graph, not
necessarily acyclic), and for the common cases, the com-
putation is cached. Hence, Cyc can handle contextual and
inter-contextual reasoning very efficiently.

5 Experimental Results (Preliminary)
Here we present the results of our preliminary experiments
on performing inference with the first-orderized Research-
Cyc KB.

In the last 20 years a number of efficient first-order theo-
rem provers have been developed for doing sound and com-
plete reasoning in first-order logic. The most common and
successful design for these theorem provers is a resolution-
style saturation strategy with sophisticated heuristics to de-
termine clause and literal weights.

The gold standard for these theorem provers has been the
TPTP (Thousands of Problems for Theorem Provers) library,
which contains first-order encodings of problems from var-
ious domains as diverse as lattice theory to circuit verifica-
tion. The challenge in most of these problems has been to
find “deep inferences”: starting from a relatively small set
of axioms (small as compared to, say, Cyc’s common-sense
ontology) and returning a proof that requires a large number
of inference steps.

Common-sense queries, on the other hand, typically re-
quire “shallow inferences”, i.e. proofs that use a very small
percentage of the entire KB and do not have many steps.
The problem is to choose at each stage the correct line of
inference to pursue out of all the possibilities. It has been
observed (Reif & Schellhorn 1997) that goal-directed strate-
gies are the only practical methods to use when the numbers
of axioms are more than a few hundred.

Our ResearchCyc FOLification was motivated in part by
the opportunity to experiment with first-order theorem prov-
ing strategies on the ResearchCyc KB and compare those
results with the performance of Cyc’s own inference engine.

Unfortunately we ran into a number of practical difficul-
ties in using first-order theorem provers for our common-
sense KB, a task for which they were not optimized. At
the time of publication, we were unable to obtain the kind
of extensive results that would enable us to draw confident
conclusions. We instead present some initial work and our
speculations.

With the exception of E, none of the theorem provers we
tried were able to load more than 20% of the ResearchCyc
KB without failing due to memory errors. In most cases, this
was due to internal data structure limitations in the theorem-
proving programs, which we are trying to fix with the help
of the maintainers of these programs. Meanwhile, we have
performed a few experiments with a subset of the Research-
Cyc KB, as a feasibility study.

These experiments were performed as follows: We se-
lected a set of 8 common-sense queries from an existing test
corpus of queries for the ResearchCyc KB. This fixed set of
queries was chosen before running any experiments. We se-
lected these 8 in particular because they represent a diverse
collection of different types of common-sense queries repre-
sentable in ResearchCyc. None of these 8 queries turned out
to be inherently dependent on higher-order reasoning; all of
them were answerable by pure first-order reasoning on the
translated KB.

We then randomly generated a subset of the FOLified Re-
searchCyc KB2 containing less than 10% of the total num-
ber of axioms (about 100,000 out of 1,250,000) and manu-
ally ensured that the all the axioms needed to prove all the

2In the case of SPASS however, because of licensing issues, this
was done on the OpenCyc KB, with virtually identical results.



Query VAMPIRE SPASS E Cyc
(sec.) (sec.) (sec.) (sec.)

(isa isa Individual) 18.1 16.4 26 0.006

(implies (and (subOrganizations ?Z ?X) (hasMembers
?X ?Y)) (hasMembers ?Z ?Y))

3.4 5.2 12 2.5

(typePrimaryFunction Bathtub TakingABath deviceUsed) 1.6 2.8 9 0.02
(typeBehaviorIncapable Doughnut Talking doneBy) 43.4 29.1 132 0.03

(implies (and (parts ?X ?Y) (parts ?Y ?Z)) (parts ?X
?Z))

8.7 12.2 23 0.6

(disjointWith Baseball-Ball Cube) 176.5 343.0 1491 0.02

(disjointWith HumanInfant Doctor-Medical) 847.6 1239.1 2934 0.04

(implies (and (isa ?CUP CoffeeCup) (isa ?COFFEE
Coffee-Hot) (in-ContOpen ?COFFEE ?CUP)) (orienta-
tion ?CUP RightSideUp))

218.4 462.5 574 0.7

Table 2: Inference Experiments

queries were present. (This manual step explains why we
could only experiment with 8 queries.)

Finally we ran the theorem provers VAMPIRE, SPASS
and E (which collectively represent the state of the art among
ATP systems) on the KB + negated query. For SPASS, we
had to first convert our KB into its native DFG format (Wei-
denbach 1999). The results are shown in Table 2. We have
also shown the performance of the Cyc inference engine
on these queries. The experiments were performed on an
Athlon 2800 with 512 MB of RAM.

As an example of the completely different approaches to
inference taken by the ATP systems and the Cyc inference
engine, consider their behavior on the sixth query,(dis-
jointWith Baseball-Ball Cube).

Cyc solves the query in the following way: The inference
engine delegates the problem to an HL module that can effi-
ciently solvedisjointWith queries. First it walks up the
genls graph forCube, marking each node as a goal. Then
it walks up thegenls graph forBaseball-Ball, and
for each more general collection, it walks across all explicit
disjointWith assertions to check whether it hits a goal
node. In this particular example, the inference path is:

1. Mark Cube, RectangularParallelepiped,
Parallelepiped, Polyhedron, etc. as goals

2. Iterate through each genl G ofBaseball-Ball, e.g.
Ball.

3. Iterate through each of G’s asserted disjoins D, e.g.
Polyhedron.

4. Check to see if D is a goal node.

This simplified walkthrough glosses over many details,
not the least of which is the fact that microtheory reasoning
is built into the innermost loop of this algorithm; on each
traversal of each link in thegenls anddisjointWith
graphs, Cyc does another graph walk of thegenlMt graph,

the graph in which Cyc’s hierarchy of contexts is stored, to
ensure that the link is relevant to the current context.

In comparison, the first-order approach is simple and
uniform: Eachgenls anddisjointWith assertion is
translated into a rule such as∀x∀yBaseball-Ball(x) ⇒
Ball(x) or ¬(Ball(x) ∧ Polyhedron(x)). Negating the
query, ∃y(Baseball-Ball(y) ∧ Cube(y)) and running a
resolution-style proof search will then yield a contradiction
and hence a positive answer.

5.1 Interpretation
A few caveats have to be made before conclusions can be
drawn from these experiments. In order to obtain these re-
sults, a number of simplifications were required in our ex-
perimental procedure. First, we had to scale down the size
of the KB as described above in order to load it into all the
theorem provers, whereas Cyc’s inference engine was run
on an unmodified KB (over 10 times the size of that used by
the theorem provers). Furthermore, for all the queries except
the last one, we ’flattened’ the query context for the theorem
provers, i.e. the query was asked in the BaseKB and all its
supporting axioms were placed in the BaseKB. This in effect
meant that first-order inference required one less unit prop-
agation step on themtVisible literal. The last query was
not flattened, but was asked in the context ofTerrestri-
alFrameOfReferenceMt. This may be a factor in its
relative slowness. Cyc’s inference engine did not flatten any
of its queries or any of its KB. In all the deviations we made
in the testing conditions for the FOL theorem provers versus
the ResearchCyc inference engine, we ensured that we erred
on the side of the theorem provers, i.e. the changes sped up
their running times.

The immediate observation is that Cyc’s performance is
orders of magnitude better on almost all the queries. We be-
lieve that this validates our hypothesis that a specializedin-
ference engine working natively with compact higher-order



representations and special-purpose reasoning modules will
perform better on common-sense queries than general first-
order theorem proving strategies. However, much work re-
mains to be done before this claim can be asserted with con-
fidence.

The only query for which Cyc’s result is within an or-
der of magnitude of any of the other results is the second
one, thehasMembers query. This is because Cyc solves
the query by hypothesizing terms for?X, ?Y , and?Z and
performing forward inference on them before moving on to
query-focused backward inference. 2.3 of the 2.5 seconds
are spent in forward inference, which proves to be unnec-
essary for this particular query. This suggests further opti-
mizations to Cyc; e.g. if the forward inference were done
lazily rather than eagerly, Cyc could answer the question in
0.2 seconds rather than 2.5 seconds.

An alternative explanation for the difference in results is
that our tests with most theorem provers were not performed
under ideal settings. We did not have a chance to exper-
iment extensively with the various parameter settings and
heuristics that the programs offered; we used a uniform Set-
Of-Support resolution setting for all of them. It could be
that with, for example, an improved clause/literal weighting
strategy, these theorem provers would become competitive
with Cyc.

Another possible explanation for the difference in results
is the inherent incompleteness of the FOLification proce-
dure, as discussed in section 3. Perhaps it omits some ax-
ioms that are key to proving the queries efficiently in FOL,
or perhaps it could translate to a form more amenable to
other theorem provers. We hypothesize that this is not the
case, and we plan to test our hypothesis by gathering in-
put from the authors of other theorem provers, refining our
FOLification procedure, and rerunning the experiment.

It should be noted, however, that most state of the art theo-
rem provers have been optimized for mathematical problems
requiring deep inference, such as those in the TPTP library.
Cyc would almost certainly perform very poorly on those
problems. Conversely, the FOLified ResearchCyc KB can
be viewed as a new challenge problem for Automated Theo-
rem Proving. With our results as a baseline, can theorem-
proving strategies be found that improve performance on
common-sense queries to match those of a specialized in-
ference engine like Cyc?

The apparent poor performance of E relative to the other
two theorem provers is surprising, especially given the fact
that E performed very well in recent ATP competitions (Pel-
letier, Sutcliffe, & Suttner 2002) and that E was the only
program that could load the entire ResearchCyc KB. This
might be explained by the fact that E does not directly do
Set-Of-Support resolution, but instead uses a clause weight-
ing strategy that simulates it.

6 Conclusions and Future Work
The ResearchCyc FOLification tool was motivated by a
number of goals. First, we aimed to measure the inher-
ent higher-orderness of the ResearchCyc KB, which is a
good indication of how much higher-orderness common-
sense KBs in general can be expected to require. Going by

sheer number, we were able to translate around 90% of the
axioms. However, the other 10% of axioms that remained
untranslated may form the core of Cyc’s ontology. To ver-
ify this, experiments need to be set up with a large corpus
of queries from ResearchCyc’s test suite. The percentage of
queries that can be answered by both ResearchCyc and any
ATP system gives a measure of how much of the informa-
tion content of the KB is actually translated, and how much
of the inferential power actually carries over to FOL.

The second goal was to measure the performance of
the Cyc inference engine against state of the art theorem
provers. Our tentative conclusions are given in Section 5.1.
The benefits of such a comparison could be mutual. First,
if it is found that on certain classes of queries, there are
theorem-proving strategies that work better than Cyc’s in-
ference engine, then we would like to explore the possibility
of incorporating these methods into ResearchCyc, perhaps
as HL modules. We are encouraged in this direction by the
success of SUMO (Niles & Pease 2001) in using VAMPIRE.

Conversely, common-sense queries over large KBs of
this scale represent an entirely new class of problems that
have not been studied extensively in the automated reason-
ing community, mainly due to a lack of problem sets. The
FOLified ResearchCyc KB could help kickstart research into
this area. We have discussed with the maintainers of the
TPTP problem library the possibility of generating a suite of
common-sense benchmark problems from the ResearchCyc
KB.

As for our experiments, a lot of work remains to be done
before a completely fair comparison can be made between
ResearchCyc and the ATP systems. Once we are able to per-
form experiments on the entire FOLified KB, then we can
automatically run them on hundreds of queries in the Re-
searchCyc Test Corpus. The statistics gathered can then be
used to draw definite conclusions about both representability
and efficiency in reasoning.

It is quite likely that on many of the problems that mod-
ern theorem provers excel at (for example a theorem from
group theory), Cyc’s inference engine would perform poorly
or not return an answer at all. Given the radically differ-
ent design decisions of Cyc’s inference engine versus those
of most other theorem provers, it is not surprising that they
have very different performance characteristics on different
types of problems. Now that ResearchCyc is available to the
academic community, these design decisions can finally be
put to the proving ground. Is it possible to design a first-
order theorem prover that can efficiently answer realistic
common-sense queries over a large KB? Could such a the-
orem prover already exist, modulo a (perhaps more sophis-
ticated) HOL to FOL translation mechanism? The experi-
mental results presented in this paper are a first step toward
answering these questions, and we challenge and encourage
others to continue this work.

7 Acknowledgements
We would like to thank a number of people for their past and
ongoing help. The first author would like to thank Eyal Amir
for his encouragement and advice. We would like to thank
the designers and maintainers of the theorem provers we



used in our experiments, for helping us use their software on
our KB: Stephen Schulz (E), Andrei Voronkov (VAMPIRE)
and Thomas Hillenbrand (SPASS). We would especially like
to thank Geoff Sutcliffe for his help with the TPTP transla-
tion and for running the model checking software Paradox
on OpenCyc. This work was funded in part by ARDA’s
NIMD program.

References
Boolos, G. 1984. To be is to be the value of a variable (or to
be some values of some variables).Journal of Philosophy
81:430–449.
Buvac, S. 1996. Quantificational logic of context. InPro-
ceedings of the Thirteenth National Conference on Artifi-
cial Intelligence.
Giunchiglia, F. 1993. Contextual reasoning.Epistemologia
XVI:345–364.
Lenat, D., and Guha, R. 1990.Building Large Knowledge
Based Systems. Reading, Mass.: Addison Wesley.
McCarthy, J. 1986. Notes on formalizing contexts. In
Kehler, T., and Rosenschein, S., eds.,Proceedings of the
Fifth National Conference on Artificial Intelligence, 555–
560. Los Altos, California: Morgan Kaufmann.
Niles, I., and Pease, A. 2001. Towards a standard upper
ontology. In Welty, C., and Smith, B., eds.,Proceedings of
the 2nd International Conference on Formal Ontology in
Information Systems(FOIS-2001).
Pelletier, F.; Sutcliffe, G.; and Suttner, C. 2002. The De-
velopment of CASC.AI Communications15(2-3):79–90.
Reif, W., and Schellhorn, G. 1997. Theorem proving in
large theories. In Bonacina, M. P., and Furbach, U., eds.,
Int. Workshop on First-Order Theorem Proving, FTP’97,
119–124. Johannes Kepler Universität, Linz (Austria).
Riazanov, A. 2003.Implementing an Efficient Theorem
Prover. Ph.D. Dissertation, University of Manchester.
Schulz, S. 2002. E - a brainiac theorem prover.Journal of
AI Communications15(2):111–126.
Sutcliffe, G., and Suttner, C. 1998. The TPTP Problem
Library: CNF Release v1.2.1.Journal of Automated Rea-
soning21(2):177–203.
Weidenbach, C. 1999.Handbook of Automated Reasoning.
Elsevier. chapter SPASS: Combining superposition, Sorts
and Splitting.


