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Abstract 
This paper presents our ongoing effort on developing a 
principled methodology for automatic ontology mapping 
based on BayesOWL, a probabilistic framework we devel-
oped for modeling uncertainty in semantic web. The pro-
posed method includes four components: 1) learning prob-
abilities (priors about concepts, conditionals between sub-
concepts and superconcepts, and raw semantic similarities 
between concepts in two different ontologies) using Naïve 
Bayes text classification technique, by explicitly associating 
a concept with a group of sample documents retrieved and 
selected automatically from World Wide Web (WWW); 2) 
representing in OWL the learned probability information 
concerning the entities and relations in given ontologies; 3) 
using the BayesOWL framework to automatically translate 
given ontologies into the Bayesian network (BN) structures 
and to construct the conditional probability tables (CPTs) of 
a BN from those learned priors or conditionals, with reason-
ing services within a single ontology supported by Bayesian 
inference; and 4) taking a set of learned initial raw similari-
ties as input and finding new mappings between concepts 
from two different ontologies as an application of our for-
malized BN mapping theory that is based on evidential rea-
soning across two BNs.  

Overview   
Semantic heterogeneity between two different applications 
or agents comes from their use of conflicted or mismatched 
terms about concepts. Same term or concept name might 
have different meanings in different agents, different terms 
from different agents might have the same meaning, one 
term from an agent might matches to several or might not 
matches to any terms of the other agent exactly, or two 
terms with the same or similar meaning are structured dif-
ferently in different agents (e.g., different paths from their 
respective root concepts). With the development of the 
semantic web1, ontologies have become widely used to 
represent the conceptualization of a domain, i.e., concepts, 
properties about concepts, relations between concepts, and 
instances about concepts. In ontology-based semantic inte-
gration, two agents in communication need to find a way to 
share the semantics of the terms in their ontologies in order 
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to fully understand each other. This can be done in several 
possible directions depends on the needs of particular ap-
plications: 1) one may force both agents to use a single 
centralized global ontology; 2) one may merge the source 
ontologies into one unified ontology before agent interac-
tions; 3) one may search for a set of mappings (or matches) 
between two ontologies; 4) for a multi-agent system one 
may resolve semantic differences in runtime when they 
arise during agent interaction; and 5) one may translate one 
of the ontologies into a target ontology with the help of an 
intermediate shared ontology. In this context, we are par-
ticularly interested in ontology mapping. (Noy 2004) pro-
vides a brief survey about existing ontology-based ap-
proaches, which are either based on syntactic and semantic 
heuristics, machine learning text classification techniques 
by attaching a set of documents to each concept to repre-
sent its meaning, or linguistics (spelling, lexicon relations, 
lexical ontologies, etc.) and natural language processing 
techniques. 
 Ontology languages in the semantic web, such as OWL2 
and RDF(S)3, are based on crisp logic and thus can not 
handle incomplete or partial knowledge about an applica-
tion domain. However, uncertainty exists in almost every 
aspects of ontology engineering. For example, in domain 
modeling, besides knowing that “A is a subclass of B”, one 
may also know and wishes to express that “A is a small 
subclass of B”; or, in the case that A and B are not logically 
related, one may still wishes to express that “A and B are 
largely overlapped with each other”. In ontology reason-
ing, one may want to know not only if A is a subsumer of 
B, but also how close of A is to B; or, one may want to 
know the degree of similarity even if A and B are not sub-
sumed by each other. Moreover, a description (of a class or 
object) one wishes to input to an ontology reasoner may be 
noisy and uncertain. Uncertainty becomes more prevalent 
in concept mapping between two ontologies where it is 
often the case that a concept defined in one ontology can 
only find partial matches to one or more concepts in an-
other ontology. 
 Narrowly speaking, a mapping can be defined as a cor-
respondence between concept A in Ontology 1 and concept 
B in Ontology 2 which has similar or same semantics as A. 
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Most existing ontology-based semantic integration ap-
proaches provide exact mappings in a semi-automatic way 
with manual validation, without taking the degree of uncer-
tainty into consideration. In tackling this problem, (Mitra, 
Noy and Jaiswal 2004) improves existing mapping results 
using BNs (Pearl 1988) by a set of meta-rules that capture 
the structural influence and the semantics of ontology rela-
tions. 
 
 

 
Figure 1. The System Framework 

 
 Different from their contributions, we propose a new 
methodology in supporting uncertainty modeling and rea-
soning in a single ontology, as well as ontology mapping 
using Bayesian networks. As can be seen from Figure 1 
above, the system includes four components: 1) a learner to 
obtain probabilistic ontological information and raw map-
pings using data obtained from web; 2) a representation 
mechanism for the learned uncertain information concern-
ing the entities and relations in given ontologies; 3) a 
BayesOWL (Ding, Peng, and Pan 2004; Ding and Peng 
2004) module to translate given ontologies (together with 
the learned uncertain information) into BNs; and 4) a con-
cept mapping module which takes a set of learned raw 
similarities as input and finds mappings between concepts 
from two different ontologies based on evidential reason-
ing across two BNs. The ideas about these four compo-
nents, as well as their related works, are presented in the 
next four sections respectively. The paper ends with a dis-
cussion and suggestions for future research. 

Learning Probabilities from Web Data 
In this work, we use prior probability distributions P(C) to 
capture the uncertainty about concepts (i.e., how an arbi-
trary individual belongs to class C), conditional probability 
distributions P(C|D) for relations between C and D in the 
same ontology (e.g., how likely an arbitrary individual in 
class D is also in D’s subclass C), and joint probability 
distributions P(C,D) for semantic similarity between con-
cepts C and D from different ontologies.  In many cases 
these kinds of probabilistic information are not available 
and are difficult to obtain from domain experts. Our solu-

tion is to learn these probabilities using Naïve Bayes text 
classification technique (Craven et al. 2000; McCallum and 
Nigam 1998) by associating a concept with a group of 
sample documents called exemplars. The idea is inspired 
by those machine learning based semantic integration ap-
proaches such as (Doan et al. 2002; Lacher and Groh 2001; 
Prasad, Peng and Finin 2002) where the meaning of a con-
cept is implicitly represented by a set of exemplars that are 
relevant to it. 
 Learning the probabilities we need from these exemplars 
is straightforward. First, we build a model containing sta-
tistical information about each concept’s exemplars in On-
tology 1 using a text classifier such as Rainbow1, and then 
classify each concept in Ontology 2 by their respective 
exemplars using the model of Ontology 1 to obtain a set of 
probabilistic scores showing the similarity between con-
cepts. Ontology 1’s exemplars can be classified in the same 
way by model built using Ontology 2’s exemplars. This 
cross-classification (Figure 2) process helps find a set of 
raw mappings between Ontology 1 and Ontology 2 by set-
ting some threshold values. Similarly, we can obtain prior 
or conditional probabilities related to concepts in a single 
ontology through self-classification with the model for that 
ontology.  
 
 

  
Figure 2. Cross-classification using Rainbow 

 
 The quality of these text classification based mapping 
algorithms is highly dependent on the quality of the exem-
plars (how relevant they are to the concept and how com-
prehensive they are in capturing all important aspects of 
the concept), and it would be a very time-consuming task 
for knowledge workers to choose high quality exemplars 
manually. The need to find sufficient relevant exemplars 
for a large quantity of concepts manually greatly reduces 
the attractiveness and applicability of these machine learn-
ing based approaches.  
 Our approach is to use search engines such as Google2 to 
retrieve exemplars for each concept node automatically 
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from WWW, the richest information resource available 
nowadays. The goal is to search for documents in which 
the concept is used in its intended semantics. The rationale 
is that the meaning of a concept can be described or de-
fined in the way it is used. 
 To find out what documents are relevant to a term, one 
can use words of the term as keywords to query the search 
engine. However, a word may have multiple meanings 
(word senses) and a query using only words of the term in 
attention may return irrelevant documents based on a dif-
ferent meaning of that word. For example, in an ontology 
for “food”, a concept named “apple” is a subconcept of 
“fruit”. If one only uses “apple” as the keyword for query, 
documents showing how to make an apple pie and docu-
ments showing how to use an iPod may both be returned. 
Apparently, the documents using “apple” for its meaning 
in computer field is irrelevant to “apple” as a fruit. Fortu-
nately, since we are dealing with concepts in well defined 
ontologies, the semantics of a term is to a great extent 
specified by the other terms used in defining this concept 
in the ontology, names, the properties of that concept class, 
its super- and sub-concept classes. For example, if a given 
ontology is a concept taxonomy, the search query can be 
formed with all the terms on the path from root to the node 
in the taxonomy. By this method, the number of irrelevant 
documents returned is greatly reduced. In the “apple” ex-
ample, the query would then become “food fruit apple” 
instead of “apple” itself. Documents about iPod and Apple 
computers will not be returned. 
 Search results returned by search engines are html files. 
There are some choices on how to use them. The simplest 
one is to use the entire html file as one exemplar. A second 
option is to use each paragraph where a keyword in the 
query shows up. A third option is to collect sentences con-
taining a keyword in the html file and use this collection as 
an exemplar. We are currently experimenting these op-
tions, and the preliminary results suggest the second ap-
proach is the most suitable one. 

Representing Probabilities in OWL 
Information about the uncertainty of the classes and rela-
tions in an ontology can often be represented as probability 
distributions (e.g., P(C) and P(C|D) mentioned earlier), 
which we refer to as probabilistic constraints on the ontol-
ogy. These probabilities can be either provided by domain 
experts or learned from web data as described in the previ-
ous section.  
 Although not necessary, it is beneficial to represent the 
probabilistic constraints as OWL statements. We have de-
veloped such a representation. At the present time, we only 
provide encoding of two types of probabilities: priors and 
pair-wise conditionals. This is because they correspond 
naturally to classes and relations (RDF triples) in an ontol-
ogy, and are most likely to be available to ontology de-
signers. The representation can be easily extended to con-
straints of other more general forms if needed.  

 The model-theoretic semantics of OWL treats the do-
main as a non-empty collection of individuals. If classe A  
represents a concept, we treat it as a random binary vari-
able of two states a  and a , and interpret )( aAP =  as the 
prior probability or one’s belief that an arbitrary individual 
belongs to class A , and )|( baP  as the conditional prob-
ability that an individual of class B  also belongs to class 
A . Similarly, we can interpret )(aP , )|( baP , )|( baP , 

and )|( baP  with the negation interpreted as “not belong-
ing to”.  
 We treat a probability as a kind of resource, and define 
two OWL classes: “PriorProb” and “CondProb”. A prior 
probability of a variable is defined as an instance of class 
“PriorProb”, which has two mandatory properties: “has-
Varible” (only one) and “hasProbValue” (only one). A 
conditional probability of a variable is defined as an in-
stance of class “CondProb” with three mandatory proper-
ties: “hasCondition” (at least has one), “hasVariable” (only 
one), and “hasProbValue” (only one).  
 The range of “hasCondition” and “hasVariable” is a 
defined class named “Variable” with two mandatory prop-
erties: “hasClass” and “hasState”. “hasClass” points to the 
concept class this probability is about and “hasState” gives 
the “True” (belong to) or “False” (not belong to) state of 
this probability.  
 For example, 3.0)( =cP , the prior probability that an 
arbitrary individual belongs to class C , can be expressed 
as 
 
 <Variable rdf:ID="c"> 

 <hasClass>C</hasClass> 
 <hasState>True</hasState> 

 </Variable> 
 <PriorProb rdf:ID="P(c)"> 

 <hasVariable>c</hasVariable> 
 <hasProbValue>0.3</hasProbValue> 

 </PriorProb> 
 
and conditional probability 8.0)2,1|( =ppcP  can be en-
coded as 
 
 <CondProb rdf:ID="P(c|p1, p2)"> 

 <hasCondition>p1</hasCondition> 
 <hasCondition>p2</hasCondition> 
 <hasVariable>c</hasVariable> 
 <hasProbValue>0.8</hasProbValue> 

 </CondProb> 
 
with variables c, p1, and p2 properly defined. 
 Similar to our work, (Fukushige 2004) proposes a vo-
cabulary for representing probabilistic relationships in a 
RDF graph. Three kinds of probability information can be 
encoded in his framework: probabilistic relations (prior), 
probabilistic observation (data), and probabilistic belief 
(posterior). And any of them can be represented using 
probabilistic statements which are either conditional or 
unconditional.  



The BayesOWL Framework 
BayesOWL (Ding, Peng and Pan 2004; Ding and Peng 
2004) is a framework which augments and supplements 
OWL for representing and reasoning with uncertainty, 
based on Bayesian networks (BN). This framework pro-
vides a set of rules and procedures for direct translation of 
an OWL ontology into a BN structure and a method that 
incorporate encoded probability information when con-
structing the conditional probability tables (CPTs) of the 
BN. The translated BN, which preserves the semantics of 
the original ontology and is consistent with the probability 
information, can support ontology reasoning, both within 
and across ontologies as Bayesian inferences. Below we 
give a brief summary. 

Structural Translation 
A set of translation rules is developed to convert an OWL 
ontology (about TBox only at the present time) into a di-
rected acyclic graph (DAG) of BN. The general principle 
underlying these rules is that all classes (specified as “sub-
jects” and “objects” in RDF triples of the OWL file) are 
translated into nodes in BN, and an arc is drawn between 
two nodes in BN if the corresponding two classes are re-
lated by a “predicate” in the OWL file, with the direction 
from the superclass to the subclass. Control nodes are cre-
ated during the translation to facilitate modeling relations 
among class nodes that are specified by OWL logical op-
erators, and there is a converging connection from each 
concept nodes involved in this logical relation to its spe-
cific control node. There are five types of control nodes in 
total, which correspond to the five types of logical rela-
tions: “and” (owl:intersectionOf), “or” (owl:unionOf), 
“not” (owl:complementOf), “disjoint” (owl:disjointWith), 
and “same as” (owl:equivalentClass). 

Constructing CPTs 
The nodes in the DAG obtained from the structural transla-
tion step can be divided into two disjoint groups: XR, nodes 
representing concepts in ontology, and XC, control nodes 
for bridging logical relations. The CPT for a control node 
in XC can be determined by the logical relation it represents 
so that when its state is “True”, the corresponding logical 
relation holds among its parent nodes. When all the control 
nodes’ states are set to “True” (denote this situation as CT), 
all the logical relations defined in the original ontology are 
held in the translated BN. The remaining issue is then to 
construct the CPTs for each node in XR so that P(XR|CT), 
the joint distribution of all regular nodes in the subspace of 
CT, is consistent with all the given probabilistic constraints 
(which can be learned from web data as described earlier).  
 This is difficult for two reasons. First, the constraints are 
usually not given in the form of CPT. For example, CPT 
for variable C with two parents A and B is in the form of 
P(C|A,B) but a constraint may be given as Q(C|A) or even 
Q(C). Secondly, CPTs are given in the general space of X 

= XR∪XC, but constraints are for the subspace of CT (the 
dependencies changes when going from the general space 
to the subspace of CT). For example, with the constraint 
Q(C|A), P(C|A,B), the CPT for C, should be constructed in 
such a way that P(C|A,CT) = Q(C|A). To overcome these 
difficulties, we developed an algorithm named D-IPFP 
(Ding, Peng, and Pan 2004) to approximate these CPTs for 
XR based on the “iterative proportional fitting procedure” 
(IPFP), a well-known mathematical procedure that modi-
fies a given distribution to meet a set of probabilistic con-
straints while minimizing I-divergence to the original dis-
tribution (Deming and Stephan 1940; Csiszar 1975; Bock 
1989; Vomlel 1999; Cramer 2000). 
 Figure 3 below is a BN translated from a simple ontol-
ogy. In this ontology, “Animal” is a primitive concept 
class; “Male”, “Female”, “Human” are subclasses of “Ani-
mal”; “Male” and “Female” are disjoint with each other; 
“Man” is the intersection of “Male” and “Human”; 
“Woman” is the intersection of “Female” and “Human”; 
“Human” is the union of “Man” and “Woman”.  
 The following probability constraints are attached to 

RX  = {Animal, Male, Female, Human, Man, Woman}: 
 
 P(Animal) = 0.5;      P(Male|Animal) = 0.5; 
 P(Female|Animal) = 0.48;   P(Human|Animal) = 0.1; 
 P(Man|Human) = 0.49;    P(Woman|Human) = 0.51.  
 

We obtained the BN by first constructing the DAG (as 
described in Section 3), then the CPT for control nodes in 
XC (as described in Subsection 4.1), and finally approxi-
mating the CPTs of regular nodes in RX  by running D-
IPFP. Fig. 5 below shows the BN we obtained. It can be 
seen that, when all control nodes are set to “True”, the 
conditional probability of “Male”, “Female”, and “Hu-
man”, given “Animal”, are 0.5, 0.48, and 0.1, respectively, 
the same as the given probability constraints. All other 
constraints, which are not shown in the figure due to space 
limitation, are also satisfied.  

 
 

Figure 3. A Translation Example 

Reasoning within Single Ontology 
The BayesOWL framework can support common ontology 
reasoning tasks as probabilistic inferencesg in the trans-
lated BN, for example, given a concept description e, it can 
answer queries about concept satisfiability (whether 
P(e|CT) = 0), about concept overlapping (how close e is to 
a concept C as P(e|C,CT)), and about concept subsumption 
(find the concept which is most similar to e) by defining 
some similarity measures such as Jaccard Coefficient 
(Rijsbergen 1979). 

Prototype Implementation 
A prototype system named OWL2BN (Figure 4) is cur-
rently under active construction. It takes a valid OWL on-



tology and some consistent probabilistic constraints as 
input and outputs a translated BN, with reasoning services 
provided based on BN inference methods. 
 

 
Figure 4. OWL2BN: Implementation of BayesOWL 

Comparison to Related Works 
Many of the suggested approaches to quantify the degree 
of overlap or inclusion between two concepts are based on 
ad hoc heuristics, others combine heuristics with different 
formalisms such as fuzzy logic, rough set theory, and 
Bayesian probability (see (Stuckenschmidt and Visser 
2000) for a brief survey). Among them, works that inte-
grate probabilities with description logic (DL) based sys-
tems are most relevant to BayesOWL. This includes prob-
abilistic extensions to ALC based on probabilistic logics 
(Heinsohn 1994, Jaeger 1994); P-SHOQ(D) (Giugno and 
Lukasiewicz 2002), a probabilistic extension of  SHOQ(D) 
based on the notion of probabilistic lexicographic entail-
ment; and several works on extending DL with Bayesian 
networks (P-CLASSIC (Koller et al. 1997) that extends 
CLASSIC, PTDL (Yelland 1999) that extends TDL (Tiny 
Description Logic with only “Conjunction” and “Role 
Quantification” operators), and the work of Holi and Hy-
vönen (2004) which uses BN to model the degree of sub-
sumption for ontologies encoded in RDF(S)). 
 The works closest to ours in this field are P-CLASSIC 
and PTDL. In contrast to these works, one of BayesOWL’s 
major contribution is its D-IPFP mechanism to construct 
CPTs from given piece-wised probability constraints. 
Moreover, in BayesOWL, by using control nodes, the 
“rdfs:subclassOf” relations (or the subsumption hierarchy) 

are separated from other logical relations, so the in-arcs to 
a regular concept node C will only come from its parent 
superclass nodes, which makes C’s CPT smaller and easier 
to construct than P-CLASSIC or PTDL, especially in a 
domain with rich logical relations.  
 Also, BayesOWL is not to extend or incorporate into 
OWL or any other ontology language or logics with prob-
ability theory, but to translate a given ontology to a BN in 
a systematic and practical way, and then treats ontological 
reasoning as probabilistic inferences in the translated BNs. 
Several benefits can be seen with this approach. It is non-
intrusive in the sense that neither OWL nor ontologies de-
fined in OWL need to be modified. Also, it is flexible, one 
can translate either the entire ontology or part of it into BN 
depending on the needs. Moreover, it does not require 
availability of complete conditional probability distribu-
tions, pieces of probability information can be incorporated 
into the translated BN in a consistent fashion. With these 
and other features, the cost of our approach is low and the 
burden to the user is minimal. We also want to emphasis 
that BayesOWL can be easily extended to handle other on-
tology representation formalisms (syntax is not important, 
semantic matters), if not using OWL.   

Concept Mapping between Ontologies as an 
Application of BN Mapping 

It is often the case when attempting to map concept A de-
fined in Ontology 1 to Ontology 2 there is no concept in 
Ontology 2 which is semantically identical to A. Instead, A 
is similar to several concepts in Ontology 2 with different 
degree of similarity. A solution to this so-called one-to-
many problem, as suggested by (Prasad, Peng, and Finin 
2002) and (Doan et al. 2003), is to map A to the target con-
cept B which is most similar to A by some measure. This 
simple approach would not work well because 1) the de-
gree of similarity between A and B is not reflected in B and 
thus will not be considered in reasoning after the mapping; 
2) it cannot handle the situation where A itself is uncertain; 
and 3) potential information loss because other similar 
concepts are ignored in the mapping. 
 With BayesOWL, concept mapping can be processed as 
some form of probabilistic evidential reasoning between 
the BN1 and BN2, translated from the Ontologies 1 and 2. 
This may allow us to address some of the aforementioned 
difficulties by utilizing BN techniques for integrating 
probabilistic knowledge and information from various 
sources. This section will first present a framework of vari-
able mapping between BNs, before illustrating how ontol-
ogy mapping can be conducted using this framework.  

BN Mapping Framework 
In applications on large, complex domains, often separate 
BNs describing related subdomains or different aspects of 
the same domain are created, but it is difficult to combine 
them for problem solving –– even if the interdependency 
relations are available. This issue has been investigated in 



several works, including most notably Multiply Sectioned 
Bayesian Network (MSBN) by Xiang (2002) and Agent 
Encapsulated Bayesian Network (AEBN) by Valtorta et al. 
(2002). However, their results are still restricted in scal-
ability, consistency and expressiveness. MSBN’s pair-wise 
variable linkages are between identical variables with the 
same distributions, and, to ensure consistency, only one 
side of the linkage has a complete CPT for that variable. 
AEBN also requires a connection between identical vari-
ables, but allows these variables to have different distribu-
tions. Here, identical variables are the same variables re-
side in different BNs. 

What we need in supporting mapping concepts is a 
framework that allows two BNs (translated from two on-
tologies) to exchange beliefs via variables that are similar 
but not identical. We illustrate our ideas by first describing 
how mapping shall be done for a pair of similar concepts 
(A from ontology 1 to B in ontology 2), and then discuss-
ing how such pair-wise mappings can be generalized to 
network to network mapping. We assume the similarity 
information between A and B is captured by the joint dis-
tribution P(A, B). 

Now we are dealing with three probability spaces:  SA 
and SB for BN1 and BN2, and SAB for P(A, B). The map-
ping from A to B amounts to determine the distribution of 
B in SB, given the distribution P(A) in SA under the con-
straint P(A, B) in SAB.  

To propagate probabilistic influence across these spaces, 
we can apply Jeffrey’s rule and treat the probability from 
the source space as soft evidence to the target space (Pearl, 
1990, Valtorta et al., 2002).  The rule is given in (1), where 
Q denotes probabilities associated with soft evidence 

(1)     ∑= i ii XQXYPYQ )()|()( .                                               
As depicted in Figure 5, mapping A to B is accomplished 

by applying Jeffrey’s rule twice, first from SA to SAB,, then 
SAB to SB. Since A in SA is identical to A in SAB,, P(A) in SA 
becomes soft evidence Q(A) to SAB and by (1), the distribu-
tion of B in SAB  is updated to  

(2)     ∑= i ii AQABPBQ )()|()( .  
Q(B) is then applied as soft evidence from SAB to node B in 
SB, updating beliefs for every variable V in SB by 

(3)     ∑= j jj BQBVPVQ )()|()(   

          )()|()|( iii jj j APABPBVP ∑∑=         

 
 
 
 
 
 
 
 

 
Figure 5. Mapping concept A to B 

 
 Back to the example in Figure 3, where the posterior 
distribution )|( AnimalMaleHumanP ∩¬  is (0.102, 0.898). 
Suppose we have another BN with a variable “Adult” with 

marginal distribution (0.8, 0.2). Suppose we also know that 
“Adult” is similar to “Human” with conditional distribu-
tion  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
3.07.0

)|( HumanAdultP .  

Mapping “Human” to “Adult” leads to a change of latter’s 
distribution from (0.8, 0.2) to (0.0714, 0.9286). This 
change can then be propagated to further update believes 
of all other variables in the target BN by (3).  

Mapping Reduction 
A pair-wise linkage as described above provides a channel 
to propagate belief from A in one BN to influence the be-
lief of B in another BN. When the propagation is com-
pleted, (2) must hold between the distributions of A and B.  
If there are multiple such linkages, (2) must hold simulta-
neously for all pairs. In theory, any pair of variables be-
tween two BNs can be linked, albeit with different degree 
of similarities. Therefore we may potentially have 21 nn ⋅  
linkages ( 1n  and 2n are the number of variables in BN1 
and BN2, respectively). Although we can update the distri-
bution of BN2 to satisfy all linkages by IPFP using (2) as 
constraints, it would be a computational formidable task. 
 Fortunately, satisfying a given probabilistic relation be-
tween P(A, B) does not require the utilization, or even the 
existence, of a linkage from A to B. Several probabilistic 
relations may be satisfied by one linkage. As shown in 
Figure 6, we have variables A and B in BN1, C and D in 
BN2, and probability relations between every pair as below:  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

6.01.0
03.0

),( ACP , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

42.007.0
18.033.0

),( ADP ,

⎟
⎠
⎞⎜

⎝
⎛= 378.0112.0

162.0348.0),( BDP , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

54.016.0
03.0

),( BCP . 

 
 

 
 

Figure 6. Mapping Reduction Example 
 
However, we do not need to set up linkages for all these 
relations. As Figure 6 depicts, when we have a linkage 
from A to C, all these relations are satisfied (the other three 
linkages are thus redundant). This is because not only be-
liefs on C, but also beliefs on D are properly updated by 
the mapping A to C. 

Several experiments with large BNs have shown that 
only a very small portion so fall 21 nn ⋅  linkages are needed 
in satisfying all probability constraints. This, we suspect, is 

SAB: P(A, B) 
 
Q(A)             Q(B) 

 
Jeffrey’s rule 

A 
 
 

P(A) 
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Q(B) 

 
BN2: SB 

soft 
evidence

soft 
evidence 



due to the fact that some of these constraints can be de-
rived from others based on the probabilistic interdependen-
cies among variables in the two BN. We are currently ac-
tively working on developing a set of rules that examine 
the BN structures and CPTs so that redundant linkages can 
be identified and removed.  

Discussion and Future Work 
This paper describes our ongoing research on developing a 
probabilistic framework for automatic ontology mapping. 
In this framework, ontologies (or parts of them) are first 
translated into Bayesian networks, then the concept map-
ping is realized as evidential reasoning between the two 
BNs by Jeffrey’s rule. The probabilities needed in both 
translation and mapping can be obtained by using text clas-
sification programs, supported by associating to individual 
relevant text exemplars retrieved from the web.  
 We are currently actively working on each of these 
components. In searching for relevant exemplar, we are 
attempting to develop a measure of relevancy so that less 
relevant documents can be removed. We are expanding the 
ontology to BN translation from taxonomies to include 
properties, and develop algorithms to support common 
ontology-related reasoning tasks. As for a general BN 
mapping framework,  our current focus is on linkage re-
duction. We are also working on the semantics of BN 
mapping and examine its scalability and applicability. 
 Future work also includes developing methods in han-
dling inconsistent probability constraints. The study of 
IPFP also motivated us to develop a new algorithm named 
E-IPFP (Peng and Ding 2005). This algorithm is more gen-
eral than the D-IPFP algorithm we used for constructing 
CPTs in ontology to BN translation in that it can accom-
modate any types of probability constraint, not only priors 
and pair-wise conditionals. We are working on a new algo-
rithm that combines both E-IPFP and D-IPFP for a compu-
tationally efficient construction of CPTs for general BN. 
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