
RiMOM Results for OAEI 2015

Yan Zhang, Juanzi Li

Tsinghua University, Beijing, China.
z-y14@mails.tsinghua.edu.cn ljz@ keg.tsinghua.edu.cn

Abstract. This paper presents the results of RiMOM in the Ontology Align-
ment Evaluation Initiative (OAEI) 2015. We only participated in Instance Match-
ing@OAEI2015. We first describe the overall framework of our matching Sys-
tem (RiMOM); then we detail the techniques used in the framework for instance
matching. Last, we give a thorough analysis on our results and discuss some fu-
ture work on RiMOM.

1 Presentation of the system

As the infrastructure of the Semantic Web, knowledge base has become a dominant
mechanism to represent the data semantics on the Web. In this circumstance, a large
number of ontological knowledge bases have been built and published, such as DB-
pedia[1]. , YAGO [2], Xlore [3], etc. In real environment of the Semantic Web, data
is always distributed on heterogeneous data sources (ontology). It is inevitable that the
knowledge about the same real-world entity may be stored in different knowledge bases.
Therefore, there is a growing need to align different knowledge bases so that we can
easily get complete information that we are interested in.

Some good results have been achieved in the field of ontology matching [4]. Previ-
ous researches always focus on aligning the schema elements (i.e. concepts and proper-
ties) in knowledge bases. Most recently, with the rapid development of semantic web,
there have been many large-scale ontologies which contain millions of entities. It is
obviously that the number of instances is much larger than other elements (e.g. con-
cepts and properties) in these ontologies. For example, the DBpedia contains 882,000
instances of 6 main concepts. Thus, the large-scale instance matching has become the
key point in the ontology matching system.

Different from the schema matching, the instance matching always has the follow-
ing characteristics:

1. The number of instances may be enormous.
2. The schema is straightforward.
3. In practice, the knowledge base is always updated dynamically.

In consideration of these differences, we proposed a large-scale instance matching
system, RiMOM.

There are two major techniques in our system, inverted index and multi-strategy:

1. We index the instances based on their objects in two knowledge bases respectively,
and then select the instances which contain the same keys as candidate instance

pairs. We limit the number of pairs to be compared by this step, which significantly
improve the efficiency of the system.

2. We implement several matchers in our instance matching system, we can execute
these matchers in parallel and then aggregate the result according to the character-
istics of the source ontologies.

In order to solve the challenges in large-scale instance matching, we propose an
instance matching framework RiMOM-2015 (RiMOM-Instance Matching), which is
based on our former ontology matching system RiMOM [5]. The RiMOM-2015 frame-
work is designed for large-scale instance matching task specially. It presents a novel
multi-strategy method to be fit for different kind of ontology and employs inverted in-
dex to imporve the efficiency.

1.1 State, purpose, general statement

This section describes the overall framework of RiMOM. The overview of the instance
matching system is shown in Fig. 1. The system includes seven modules, i.e., Prepro-
cess, Predicate Alignment, Mathcher Choosing, Candidate Pair Generation, Matching
Score Calculation, Instance Alignment and Validation. The sequences of the process
are shown in the Fig. 1. We illustrate the process as follows.

Fig. 1. Framework of RiMOM 2015

1. Preprocess: The system begins with Preprocess, which loads the ontologies and
parameters into system. In the meantime, preprocessor can get some meta data
about the two ontologies, which will be used in the later processes, Predicate align-
ment and Matcher choosing

2. Predicate Alignment: In this process, we will get the alignments of the predi-
cates between the two ontologies. Currently, in our system, this process is semi-
automatic.

3. Matcher choosing: The system will choose the most suitable one or more match-
ers according to the meta data of the ontologies.

4. Candidate Pairs Generation: In this step, we get the candidate pair when the
instances have the same literal objects on some discriminatory predicate.

5. Matching Score Calculation: After the candidate set generation, we calculate
more accurate similarity using the algorithm chosen by step 3. In this task, the
vector distance similarity was calculated between each candidate pair.

6. Instance Alignment: According to the similarity calculated in step 5, we get the
final instance alignment.

7. Validation: We will evaluate the alignment result on Precision, Recall and F1-
Measure if there is validation data set.

1.2 Specific techniques used

This year we only participate in the Instance Matching track. We will describe spe-
cific techniques used in this track.

Data Preprocessing: First, we remove some stop words like ”a, of, the”, etc. Af-
terwards, we calculate the TF-IDF values of words in each knowledge base. We also
calculate some information of each predicate, in order to find the important predicates.

Predicate Alignment: It is apparent that we should get the alignment of the pred-
icates before we calculate the similarity of instances. The predicates can express rich
semantics, and there exists one-to-one, one-to-many, or many-to-many relationships
among these predicates. We can find some of one-to-one relationships through calcu-
lating the Jaccard Similarity of the two predicates. i.e.

sim(pi, pj) =
|Opi

∩Opj
|

|Opi
∪Opj

|

where pi and pj are predicates in two ontologies respectively. Opj
is the range of

the predicate pj .
There are also some one-to-many relationships. We get the alignments of them by

manual regulations, e.g.

object(pi) =

n∑
j=1

object(pj)

object(pi) = max
j=1..n

object(pj)

object(pi) = min
j=1..n

object(pj)

Candidate Pairs Generation: This step aims to pick a relatively small set of can-
didate pairs from all pairs. Due to the large scale of knowledge bases, it is impossible
to calculate matching scores of all instance pairs. In our method, we firstly generate the
inverted index on the objects. instance pairs are selected into the candidate set when
they have common objects. This method may reduce the recall, but it also reduce the
scale of computation significantly.

Multi-Strategy: We implement several matchers in our system, e.g. label-based
approach and structure-based approach. In the preprocess step, we will compare the
schema of the two ontologies. If the range of predicates is similar, the label-based ap-
proach will play a key role in the matching process. Otherwise, the literal properties are
not similar (e.g. the two ontologies are defined in different languages), label-based ap-
proach will not be effective. In this case, we will get some supplementary information
(e.g. machine translation, WordNet), or use structure-based appraoch.

Similarity Calculation: In OAEI 2015 instance matching track, the ontologies are
all defined in the same language, English. In the tasks which we took part in, author−
dis and author − rec, the schema of the ontologies tend to be similar. So label-based
vector distance matcher is chosen to calculate the similarity of the instances, it is defined
as follows:

La = Objects(Ia)

where Ia is an instance, La is a list which contains all of the objects of the instance
Ia.

Sim(Ia, Ib) = Sim(La, Lb) =
1

|La|
∑

Oa∈La

max(Sim(Oa, Ob)|Ob ∈ Lb)

where Oa is one of the objects in the list La. We define the similarity of the two
instances equals to the similarity of their objects list. For each Oa in La, we find a
most similar object Ob in Lb. The algorithm varies with the data type of the object.
For example, for date, we use the indicator function. The indicator function will be 1
when the dates are the same, otherwise, 0. For some literal properties, such as ”title”,
we compute cosine similarity based on the tf-idf vectors.

Instance Alignment After we get the accurate similarity, for each instance in source
ontology, we choose the instance which has the best score in target ontology. Then we
filter the result on a certain threshold and get the final Instance Alignment.

1.3 Link to the system and parameters file

The RiMOM system (2015 version) can be found at https://www.dropbox.
com/s/6bx4pb46ytvddvy/RiMOM.zip?oref=e.

2 Results

The Instance Matching track contains five subtasks. we present the results and relat-
ed analysis for the two subtasks (author-disambiguation and author-recognition) in the
following subsections.

2.1 Author Disambiguation sub-task

The goal of the author-dis task is to link OWL instances referring to the same person
(i.e., author) based on their publications. We can use the Sandbox (small scale data set)
to tune our parameters. The class ’author’ have only one literal properties, ’name’. So
we must get alignments on the class ’publication’. Finally, we get 854 pairs for Sandbox
task, and 8428 pairs for Mainbox task.

Expected mappings Retrieved mappings Precision Recall F-measure
EXONA 854 854 0.941 0.941 0.941
InsMT+ 854 722 0.834 0.705 0.764

Lily 854 854 0.981 0.981 0.981
LogMap 854 779 0.994 0.906 0.948
RiMOM 854 854 0.929 0.929 0.929

Table 1. The result for Author-dis sandbox

Expected mappings Retrieved mappings Precision Recall F-measure
EXONA 8428 144827 0 0 NaN
InsMT+ 8428 7372 0.76 0.665 0.709

Lily 8428 8428 0.964 0.964 0.964
LogMap 8428 7030 0.996 0.831 0.906
RiMOM 8428 8428 0.911 0.911 0.911

Table 2. The result for Author-dis mainbox

The reference alignments of sandbox are provided by sponsor, so we only pay at-
tention to mainbox. As shown in table 2, the results for the author-dis mainbox task are:
Precision 0.911, Recall 0.911, F-measure 0.911, which is slightly lower than sandbox.
Afterwards, we find that the property ’title’ plays a key role in publication. So we think
that we can get a better result if we do some deeper work on it.

2.2 Author Recognition sub-task

The goal of the Author-rec task is to associate a person (i.e., author) with the corre-
sponding publication report containing aggregated information about the publication
activity of the person, such as number of publications, h-index, years of activity, num-
ber of citations. The final goal is similar with the Author-dis task, but there are some
changes on schema of the ontology. The most remarkable is that there exists one-to-
many relationships between the properties. So we add some manual regulation to solve
the problem.

As show in table 4, RiMOM get a excellent result on author-rec task. The results for
the author-dis mainbox task are: Precision 0.999, Recall 0.999, Fmeasure 0.999, which
expresses that the algorithm we implement is very suitable for this task.

Expected mappings Retrieved mappings Precision Recall F-measure
EXONA 854 854 0.518 0.518 0.518
InsMT+ 854 90 0.556 0.059 0.106

Lily 854 854 1.0 1.0 1.0
LogMap 854 854 1.0 1.0 1.0
RiMOM 854 854 1.0 1.0 1.0

Table 3. The result for Author-rec sandbox

Expected mappings Retrieved mappings Precision Recall F-measure
EXONA 8428 8428 0.409 0.409 0.409
InsMT+ 8428 961 0.246 0.028 0.05

Lily 8428 8424 0.999 0.998 0.999
LogMap 8428 8436 0.999 1.0 0.999
RiMOM 8428 8428 0.999 0.999 0.999

Table 4. The result for Author-rec mainbox

2.3 Discussions on the way to improve the proposed system

Our system need align the predicates before instance matching, and in this process, the
system is required to scan all of the instances in the ontology, which may cause a waste
of time. In addition, the process of PredicateAlignment is semi-automatic, we have
to add some manual regulations to deal with the one-to-many relationships.

In conclusion, we hope to develop our system through inventing an algorithm to
align the predicates automatically and iteratively. Firstly we can use the values of pred-
icates to align the instances, and in turn, the aligned instances will help us to update the
similarity for predicates. In this way, we will gradually get the final alignment result.

2.4 Comments on the OAEI 2015 measures

These two tasks are instance matching task on publication data set. We use the reference
of the sandbox to tune the parameters,and it turns out that our approach is effective. We
also find that the inverted index not only improve efficiency, but reduce the mistake and
increase the Precision. There are also some aspects we are not satisfied with. For time’s
sake, we don’t take part in other three tasks. Finally, we are looking forward to making
some progress in the next OAEI campaign.

3 Conclusion and future work

In this paper, we present the system of RiMOM in OAEI 2015 Campaign. We partic-
ipate in intance matching track this year. We described specific techniques we used in
the task. In our project, we design a new framework to deal with the instance matching
task. The result turns out that our method is effective and efficient.

In the future, we will develop an iterative algorithm to align the predicates automat-
ically.

References

1. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Db-
pedia - A crystallization point for the web of data. J. Web Sem. 7(3) (2009) 154–165

2. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and temporally
enhanced knowledge base from wikipedia. Artif. Intell. 194 (2013) 28–61

3. Wang, Z., Li, J., Wang, Z., Li, S., Li, M., Zhang, D., Shi, Y., Liu, Y., Zhang, P., Tang, J.: Xlore:
A large-scale english-chinese bilingual knowledge graph. In: Proceedings of the ISWC 2013
Posters & Demonstrations Track, Sydney, Australia, October 23, 2013. (2013) 121–124

4. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE
Trans. Knowl. Data Eng. 25(1) (2013) 158–176

5. Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: A dynamic multistrategy ontology alignment frame-
work. IEEE Trans. Knowl. Data Eng. 21(8) (2009) 1218–1232

