
njuLink:
Results for Instance Matching at OAEI 2017

Xinze Lyu, Qingheng Zhang, Wei Hu(B), Zequn Sun, and Yuzhong Qu

1 State Key Laboratory for Novel Software Technology, Nanjing University, China
2 Department of Computer Science and Technology, Nanjing University, China
{xzlv.nju,qhzhang.nju,zqsun.nju}@gmail.com,{whu,yzqu}@nju.edu.cn

Abstract. njuLink is a tool designed for instance matching. It mainly
matches instances by finding discriminative property pairs. Also, to meet
1:1 equivalence relationship for the OAEI 2017 DORUMES task, we make
several improvements. In this report, we describe the design ideas and
show our evaluation results.

1 Presentation of the System

1.1 State, purpose, general statement

With the rapid development of the Semantic Web, the amount of RDF data on
the Semantic Web is growing in an unprecedented pace. This also brings great
challenges to instance matching. On the Semantic Web, an instance describes
a real-world object, it is composed of a subject and many 〈p, v〉 pairs, where p
denotes a “property” and v denotes a “value”. Subject serves as unique token
for a real-world object, and 〈p, v〉 pairs describe the features of this real-world
object. Instance matching aims to find the instances that describe the same
real-world object and establish links between them. If two instances describe the
same real-world object, we consider them as coreferent instances or a coreferent
instance pair. Thanks to a lot of existing work, e.g., the Linked Open Data
(LOD) Initiative, millions of links have been established. But, there are still a
huge number of instances that potentially refer to the same object but have not
been interlinked yet.

Our previous work tries to find coreferent instances by discriminative prop-
erties [2]. This approach is very effective but needs some improvements to meet
the requirements of the DOREMUS task, which is to find 1:1 equivalence rela-
tionship between two datasets. So, we design njuLink, where “nju” represents
“Nanjing University”. The key idea of njuLink lies in finding what is essential
to determine whether two instances are coreferent. Driven by this, first, njuLink
builds a small-scale training set via predicting coreferent and non-coreferent in-
stance pairs. Then, by analyzing the value similarity of every instance pair in
training set, njuLink finds some property pairs named discriminative property
pairs, which have the ability to identify whether two instances are coreferent.
Finally, for an instance pair, njuLink calculates the similarity of values based

on the discriminative property pairs, the similarity of values based on common
property pairs and the similarity of properties that they have to determine if the
instances in this pair is coreferent.

1.2 Specific techniques used

There are four steps in the workflow of njuLink, which is shown in Fig. 1. We
will describe the strategies to calculate the similarity of values and the similarity
of properties shortly.

Fig. 1. The work flow of njuLink

The task we participated in is to find coreferent instance pairs between two
datasets. To make our descriptions more clear, we give some notations as follows:
(1) Let Dx and Dy be two different datasets, respectively; (2) The elements
with superscript x are from Dx and those with superscript y are from Dy, e.g.,
instances, properties and values in Dx are ix, px and vx, respectively; and (3)
Every instance pair 〈ix, iy〉 mentioned in this article is composed of an instance
ix from Dx and an instance iy from Dy, and ix is written to the left and iy is
written to the right, this also applies to property pairs 〈px, py〉 and value pairs
〈vx, vy〉.

Preprocess Data. For an instance, njuLink preprocesses the values describing
it. There are three types of values: Blank node, URI and Literal (plain or typed).
If a value is blank node, njuLink ignores it. Literal is divided into two kinds: typed
literal, like boolean and integer, and plain literal, which is often accompanied
with a language tag.

First, njuLink records the type of each value. Then, if the value has a language
tag, njuLink also records it. Thirdly, for literals, njuLink replaces punctuations
and stop words like “at”, “in”, “for” with space by a NLP tool, and then njuLink
removes all space. For URIs, njuLink only records its local name. Finally, njuLink

transforms subjects, properties and values to lowercase letters and stores them
for the next step.

Strategies to Calculate Similarity. We describe our strategies to obtain the
similarity of a value pair and the similarity of a property pair next.

Calculate similarity of a value pair. Let vx and vy be two values owned
by properties px and py, respectively. First, njuLink judges whether vx and vy are
meaningful to be compared. There are three situations under which comparing
them are not meaningful: (1) They both have language tags and their language
tags are different; (2) The types of them are different; and (3) One of them is
blank node.

Second, let T (vx) be the type of vx. If vx and vy are meaningful to be com-
pared, the strategies to find their similarity, denoted by V alSim(vx, vy | px, py),
vary with their types:

V alSim(vx, vy | px, py) =

{
indicatorFunc(vx, vy), T (vx) = typed literal
I-Sub(vx, vy), otherwise

(1)

where for typed literal, njuLink uses indicator function (indicatorFunc(vx, vy))
to get their similarity, e.g., when two literals are both date time type, their
similarity is 1 if the two literals are equal, and 0 otherwise. For URI and plain
literal, njuLink uses I-Sub [3] to calculate the similarity. When the similarity of
vx and vy is higher than a threshold, they are considered as a similar value pair.
The threshold is set to 0.65, which is suggested by the authors of I-Sub [3].

Calculate similarity of a property pair. Let px and py be two properties
owned by instances ix and iy, respectively. A property may have more than
one value, we let the sets of values of px and py be V al(px, ix) and V al(py, iy),
respectively. First, we find value set that has a smaller size. Without loss of
generality, we assume that V al(px, ix) is the smaller one here. For a value vx

in V al(px, ix), the maximum similarity between it and the values in V al(py, iy)
is calculated by MaxV alSim(vx, V al(py, iy)). The maximum similarity between
values of V al(px, ix) and V al(py, iy), which is also considered as the maximum
similarity of property pair 〈px, py〉, is denoted by MaxPropSim(px, py | ix, iy):

MaxV alSim(vx, V al(py, iy)) = max
vy
n∈V al(py,iy)

V alSim(vx, vyn | px, py), (2)

MaxPropSim(px, py | ix, iy) = max
vx
m

∈V al(px,ix)

MaxV alSim(vxm, V al(py, iy)). (3)

If MaxV alSim(vx, V al(px, ix)) of vx is higher than a threshold (i.e. 0.65),
value vx is considered as a matched value, we define the sets of matched values
and unmatched values between px of ix and py of iy as follows:

MatV al(px, py | ix, iy) = {v | v ∈ V al(px, ix)

∩MaxV alSim(v, V al(py, iy))>0.65)},
(4)

UnmatV al(px, py | ix, iy) = {v | v ∈ V al(px, ix)

∩ v /∈MatV al(px, py | ix, iy)}.
(5)

If MaxPropSim(px, py | ix, iy) is higher than a threshold (0.65), the property
pair 〈px, py〉 is similar w.r.t. instance pair 〈ix, iy〉. Note that this property pair is
not guaranteed to be similar in another instance pair. For every matched value
vx of V al(px, ix), we sum up its similarity by MatV alSimSum(px, py | ix, iy):

MatV alSimSum(px, py | ix, iy) =
∑

vx
m∈MatV al(

px,py | ix,iy)

MaxV alSim(vxm, V al(py, iy)).

(6)

Construct Training Set. Let Dx and Dy be two different datasets and 〈ixm, iyn〉
be an instance pair, where ixm is from Dx and iyn is from Dy. The training set is
divided into two parts, Positives and Negatives. Positives consist of coreferent
instance pairs and Negatives are composed of non-coreferent instance pairs.

To construct Positives, njuLink picks up 20 instance pairs that have at least
one property pair whose maximum similarity is very high. The threshold of
similarity under this situation is 1.

When it comes to Negatives, njuLink chooses 20 instances from Dy randomly
to form an instance set, namely instSety. These 20 instances should be under
the same class of iyn in Positives, i.e., if instances in Positives are to describe
“student”, the instances selected should describe “student”, too.

Then, njuLink picks up instances ixm from every instance pair 〈ixm, iyn〉 in
Positives to form another instance set, namely instSetx. So, instSetx contains 20
instances because there are 20 instance pairs in Positives. After that, for every
one in instSetx, njuLink selects an instance from instSety and makes them an
instance pair. Note that every instance in instSetx and instSety is used only
once. Finally, 20 generated instance pairs constitute the Negatives.

These 20 generated instance pairs can be considered as non-conferent ones
approximately because the number of non-coreferent instances is much more
than that of coreferent instances and njuLink constitutes instSety by selecting
instances randomly.

Identify Discriminative Property Pairs. For every instance pair 〈ixm, iyn〉
from Positives, where ixm and iyn represent two different instances, njuLink makes
every property of ixm and every property of iyn a pair. Then, njuLink finds out
which property pair is similar and records it. So, njuLink can get the frequency
of every similar property pair recorded after checking all instance pairs. If the
frequency of a property pair is more than half of the size of Positives, which
equals 10 in this case, njuLink records it in candidate property pair set.

For every property pair 〈pxk, p
y
j 〉 in candidate property pair set, where pxk

and pyj represent properties, njuLink calculates the maximum similarity that an
instance pair 〈ix, iy〉 on it (MaxPropSim(pxk, p

y
j | ix, iy)). If the similarity is

higher than a threshold, which is 0.65, this instance pair is a coreferent instance
pair found by 〈pxk, p

y
j 〉, otherwise, this instance pair is not coreferent judged by

〈pxk, p
y
j 〉.

The percentage of the number of coreferent instances found can measure the
discriminability of a property pair, but we found a better approach in [1] to use
information gain, which is widely used in classification.

Every property pair 〈pxk, p
y
j 〉 of candidate property pair set can classify the

whole training set to four sets, TP, FP, TN and FN, which denote true positives,
false positives, true negatives and false negatives respectively. When an instance
pair is coreferent, if it is also a coreferent one found by 〈pxk, p

y
j 〉, it is put into

TP, otherwise, it is put into FP. When an instance pair is not coreferent, if it is
also a non-coreferent one judged by 〈pxk, p

y
j 〉, it is put into TN, otherwise, it is

put into FN.
Finally, let T be the training set, which is the union of Positives (T+) and

Negatives (T−). For every property pair 〈pxk, p
y
j 〉 in candidate property pair set,

njuLink uses four sets generated by it to obtain the information gain of it,
denoted by IG(pxk, p

y
j):

IG(pxk, p
y
j) = E(T)− E(T〈px

k,p
y
j 〉), (7)

E(T) =
|T+|
|T |

log
|T+|
|T |
− |T

−|
|T |

log
|T−|
|T |

, (8)

E(T〈px
k,p

y
j 〉) =

|P |
|T |

E(P)− |Q|
|T |

E(Q), (9)

E(P) =
|TP |
|P |

log
|TP |
|P |

− |FN |
|P |

log
|FN |
|P |

, (10)

E(Q) =
|FP |
|Q|

log
|FP |
|Q|

− |TN |
|Q|

log
|TN |
|Q|

, (11)

P = TP + FN, (12)

Q = FP + TN, (13)

where E(T) measures the information entropy of the original training set T ,
and E(T〈px

k,p
y
j 〉) measures the information entropy after using 〈pxk, p

y
j 〉 to classify

instance pairs in T . If IG(pxk, p
y
j) is higher than a threshold, 〈pxk, p

y
j 〉 is considered

as a discriminative property pair. We set the threshold 0.2 in our tool. njuLink
gets a set of discriminative property pairs after checking all property pairs in
candidate property pair set.

Find Coreferent Instances. The key ideas to find coreferent instances are
from two aspects: (1) Get detailed similarity w.r.t. an instance pair; and (2)
Find the most coreferent instance pair, e.g., for an instance i and an instance set
instSet, we assume that every instance in instSet seems to be coreferent with i.
To find the real coreferent instance pair, first, we use every instance in instSet to
form an instance pair with i, and then, we compare the detailed similarity of each
instance pair formed and only record the instance pair with highest similarity.
It guarantees 1:1 equivalence relationship between two datasets.

Let DiscrPropSet(Dx, Dy) denote the set of discriminative property pairs.
First, for every instance in Dx, njuLink combines it with every instance in Dy

to generate many instance pairs, and for every generated instance pair 〈ixm, iyn〉,
njuLink finds the set of similar discriminative property pair for it, which is
denoted by SimDiscrPropSet(ixm, iyn):

SimDiscrPropSet(ixm, iyn) ={〈px, py〉 | 〈px, py〉 ∈ DiscrPropSet(Dx, Dy)

& px ∈ Prop(ixm) & py ∈ Prop(iyn)

& MaxPropSim(px, py | ixm, iyn) > 0.65}.
(14)

where Prop(ixm) and Prop(ixn) are the sets of properties of ixm and iyn, respectively.
Secondly, njuLink calculates seven features below to represent the similarity of
the pair:

1) The size of SimDiscrPropSet(ixm, iyn).
2) The sum of information gain of each similar discriminative property pair

IGSum(ixm, iyn):

IGSum(ixm, iyn) =
∑

〈px
k,p

y
j 〉∈SimDiscrPropSet(ixm,iyn)

IG(pxk, p
y
j), (15)

3) The sum of detailed information gain of each similar discriminative property
pair DIGSum(ixm, iyn):

DIGSum(ixm, iyn) =
∑
〈px

k,p
y
j 〉

∈SimDiscrPropSet(ixm,iyn)

DIG(pxk, p
y
j | i

x
m, iyn), (16)

DIG(pxk, p
y
j | i

x
m, iyn) = (|MatV al(pxk, p

y
j | i

x
m, iyn)|

− |UnmatV al(pxk, p
y
j | i

x
m, iyn)|) ∗ IG(pxk, p

y
j),

(17)

where DIG(pxk, p
y
j | ixm, iyn) denotes the detailed information gain of a similar

discriminative property pair w.r.t. 〈ixm, iyn〉.
4) The sum of detailed similarity sum of each similar discriminative property

DSimSum(ixm, iyn):

DSimSum(ixm, iyn) =
∑
〈px

k,p
y
j 〉

∈SimDiscrPropSet(ixm,iyn)

DSim(pxk, p
y
j | i

x
m, iyn), (18)

DSim(pxk, p
y
j | i

x
m, iyn) = MatV alSimSum(pxk, p

y
j | i

x
m, iyn)

∗ IG(pxk, p
y
j),

(19)

where DSim(pxk, p
y
j | ixm, iyn) denotes the detailed similarity sum of a similar

discriminative property w.r.t. 〈ixm, iyn〉.
5) The number of similar common property pairs.
6) The sum of maximum similarity of each similar common property pair w.r.t.
〈ixm, iyn〉.

7) The number of property pairs that two properties of each one have the same
local names. We make every property in Prop(ixm) and every property in
Prop(iyn) a property pair and check them all.

Besides discriminative property pairs, we also use three features from common
property pairs because we find discriminative property pairs are not enough to
separate the most coreferent instance pairs from those that seem to be coreferent.
A common property pair should meet two requirements: this property pair is not
a discriminative property pair and two properties of it have the same local names.

Thirdly, njuLink sorts the instance pairs generated in descending order ac-
cording to these seven scores of each one. The importance of these seven features
is 1) > 2) > 3) > 4) > 5) > 6) > 7). Finally, njuLink selects instances in sorted
instance pairs set from top to bottom, meanwhile, when we pick up instance pairs
from top to bottom, if two instances of an instance pair are both the first time
to be checked, we record it, otherwise, drop it. It guarantees the 1:1 equivalence
relationship between two datasets Dx and Dy.

1.3 Link to the system and parameters file

You can find the source code and the jar tested by SEALS client successfully on
GitHub: https://github.com/nju-websoft/njuLink.

1.4 Link to the set of provided alignments (in align format)

The alignment files for DOREMUS task should be available at the official web-
site: http://islab.di.unimi.it/content/im_oaei/2017/.

2 Results for DOREMUS

There are two sub-tasks under DOREMUS, namely HT and FPT. HT aims to
obtain 1:1 equivalence relationship between instances whose data have different
types of heterogeneities, while FPT aims to get the same relationship as that of
HT between instances with high similarity.

njuLink succeeds in finding property pairs with high discriminability, which
are shown in Table 1. The results of evaluation are shown in Table 2 and Table 3.

3 Discussions about improvements

How to apply different approaches according to different datasets au-
tomatically? During the development of njuLink, we adjust the way to find
coreferent instances according to the requirements of DOREMUS. But the ad-
justed approach is not applicable for all tasks. So, finding a way to decide ap-
propriate approaches automatically is necessary.

Table 1. Discriminative property pairs on the DOREMUS task

Properties in dataset 1 Properties in dataset 2

HT

U70 has title U70 has title

U70 has title label

label label

label U70 has title

U16 has catalogue statement U16 has catalogue statement

FPT

U70 has title U70 has title

U70 has title label

label label

label U70 has title

Table 2. Results for HT

Precision Recall F1-score

AML 0.851 0.479 0.613
I-Match 0.680 0.071 0.129
Legato 0.930 0.920 0.930

LogMap 0.406 0.882 0.556
njuLink 0.966 0.945 0.955

Table 3. Results for FPT

Precision Recall F1-score

AML 0.914 0.427 0.582
I-Match 1.000 0.053 0.101
Legato 1.000 0.980 0.990

LogMap 0.119 0.880 0.210
njuLink 0.959 0.933 0.946

4 Conclusion

njuLink is dedicated to finding coreferent instances by utilizing discriminative
property pairs. The Instance Matching track of this year show many new things
to us. This helps us find the weaknesses of njuLink and makes our original ideas
better. Technical problems happened during the development also forced us to
pay more attention to the way of realizing our tool. In the future, we will continue
following the trends of instance matching with interests and try to solve issues
on which we have not achieved good performance.

Acknowledgements

This work is supported by the National Natural Science Foundation of China
(No. 61370019). During our development, we received much support from orga-
nizers and volunteers of OAEI, we would like to thank them for their help.

References

1. Hu, W., Jia, C.: A bootstrapping approach to entity linkage on the semantic web.
Journal of Web Semantics 34, 1–12 (2015)

2. Hu, W., Yang, R., Qu, Y.: Automatically generating data linkages using class-based
discriminative properties. Data & Knowledge Engineering 91, 34–51 (2014)

3. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In:
ISWC 2005. pp. 624–637. Springer (2005)

