Abstract. Ontology matching is the process of finding a set of correspondences between the entities of two or more ontologies representing a similar domain. POMap++ is an ontology matching system associating ontology partitioning to the matching learning in order to deliver a local matching learning. POMap++ deliver in automated local matching learning for the biomedical tracks. For the non-biomedical tracks we employ the last version of POMap 2017. In this paper, we report the results of POMap++ for the Ontology Alignment Evaluation Initiative of 2018.

Keywords: Semantic web, Ontology Matching, Ontology partitioning, Machine learning

1 Presentation of the system

Ontologies are the backbone of the semantic web. They enable sharing, reusing and accessing the knowledge resources [9]. Biomedical ontologies are domain-specific ontologies widely used in biology and medicine. These ontologies have been separately developed by different experts while using different terminologies and modeling techniques. The integration of these data sources requires ontology alignments tools. Ontology alignment is the identification process correspondences between the entities of different ontologies. The alignment process is quite challenging in terms of the complexity of the existing biomedical ontologies. POMap++ divide a biomedical ontology alignment to a set of sub-matching tasks called partitions. We align each sub-matching task using its local settings. We automatically determine the local matching settings using a specific machine learning model for each sub-matching task. Automatic tuning of local matching parameters aims to improve the overall matching quality of a large ontology matching task.

1.1 State, purpose, general statement

1.2 Specific techniques used

The workflow of POMap++ for our second participation on the OAEI comprises four main steps, as flagged by the figure 1: Input ontologies indexing and loading, input ontologies partitioning, local matching learning and output alignment
generation. The first and the last step are the same as in the last version of POMap [3].

Fig. 1. The architecture of POMap.

Step 1: Input ontologies indexing and loading

The first step of the ontology indexation and loading module is the pre-processing task. During this task, we pre-process the lexical annotations of the input ontologies. Thus, we apply the Porter stemming [8] as well as the stop word removal process over the extracted lexical annotations. The structural indexing is responsible for storing all the relationships between entities. The third step is responsible for loading the indexed data structures.

Step 2: Input ontologies partitioning

We employ the hierarchical agglomerative clustering [5] technique to divide an ontology into a set of partitions. This approach does not expect prior information regarding the number of required partitions. The hierarchical agglomerative clustering algorithm takes as input a list of pairwise structural similarity scores between all the entities of an input ontology. Based on the Definition 1, we compute the structural relatedness between the entities of one ontology. The Definition 1 is inspired by Wu and Palmer [10] similarity measure.

Definition 1 (Relatedness between entities). To compute the degree of relatedness between all the entities in one ontology, we measure their structural similarity. As depicted in Equation 1, for a given two entities $e_{i,x}$ and $e_{i,y}$, lca is their lowest common ancestor. $\text{Dist}(e_{i,x}, \text{lca})$ represents the shortest distance between $e_{i,x}$ and lca in terms of number of edges. $\text{Dist}(e_{i,y}, \text{lca})$ denote the distance between $e_{i,y}$ and lca. $\text{Dist}(r_i, \text{lca})$ is the distance between the root r_i and lca.
\[StrcSim(e_{i,x}, e_{i,y}) = \frac{Dist(r_i, lca) \times 2}{Dist(e_{i,x}, lca) + Dist(e_{i,y}, lca) + Dist(r_i, lca) \times 2} \]

(1)

Step 3: Local Matching learning

The high complexity of the large biomedical ontologies decreases the matching accuracy. No single similarity measure can effectively treat all the syntactic heterogeneity aspects of a matching task. Therefore, for each local matching task, we construct its specific machine learning model. The training set of every local learning model is not based on any reference alignments. We automatically construct a supervised training set for each local matching task of the set of local matchings. These training sets serve as the input for each local machine learning model. After identifying the partitions for each ontology, we find the set of similar partitions between the two input ontologies using a set of anchors. Since we are dealing with biomedical ontologies, anchors are extracted by cross-searching the input ontologies with the available external biomedical knowledge bases (KB) such as the Unified Medical Language System (UMLS) Metathesaurus [1], Medical Subject Headings (MeSH) [4], Uberon [6] and BioPortal [7]. For instance, UMLS integrates more than 160 biomedical ontologies. In our case, we cross-search the two input ontologies with the Uberon ontology to derive the set anchors. We employ the state-of-the-art syntactic similarity measures\(^3\) as features. Table 1 represents an example of a local matching training set for the input ontologies. The labeled data of the training set is usually hard to acquire. The existing works retrieve labeled data either from the reference alignment or by creating it manually. However, the reference alignment commonly does not exist. We derive each local training set by cross-searching the entities of a local matching with the existing biomedical knowledge bases like Uberon. We apply the wrapper feature selection [2] method over the resulted local training sets. This technique selects the subset of the most effective and suitable features for each local training set. Therefore, each local matching task has its specific similarity measures. Then, we build a local machine learning model for each local matching task. The entities of each local matching task are classified using their specific machine learning model. This local learning model aligns the input entities based on the adequate matching parameters.

Step 4: Output alignment generation

The generated correspondences for every local matching task \(b_{n_{ij,q}} \) are unified to generate the final alignment file for the whole ontology matching task. The alignment file is compared to the reference alignment to evaluate the overall result accuracy.

\(^3\) https://git.io/fNvqt
2 Results

2.1 Anatomy

The Anatomy track consists of finding the alignments between the Adult Mouse Anatomy and the NCI Thesaurus describing the human anatomy. The evaluation was run on a server coupled with 3.46 GHz (6 cores) and 8GB of RAM. Table 1 draws the performance of POMap++ compared to the five top matching systems. Our matching system achieved the third best result for this dataset with an F-measure of 89.7%, which is very close to the top results. The remaining challenge is to speed up the execution time by applying more optimizations. We also target the improvement of precision value for our next participation in the OAEI.

2.2 Disease and Phenotype

This track is based on a real use case in order to find alignments between disease and phenotype ontologies. Specifically, the selected ontologies are the Human Phenotype Ontology (HPO), the Mammalian Phenotype Ontology (MP), the Human Disease Ontology (DOID) and the Orphanet and Rare Diseases Ontology (ORDO). The evaluation was run on an Ubuntu Laptop with an Intel Core i9-8950UK CPU @ 2.90GHz x 12 coupled with 25Gb RAM. POMap++ succeeded to complete tow tasks HP-MP and DOID-ORDO. POMap produced 1502 mappings in the HP-MP task associated with 214 unique mappings. Among eight matching systems, POMap++ achieved the fifth highest F-measure with an F-Measure of 69.9%. In the DOID-ORDO task, POMap generated 2563 mappings with 174 unique ones. For this task, POMap++ obtained an F-Measure of 84.5% being the third best result for this track.

3 Conclusion

The obtained results of POMap++ are promising especially for disease and phenotype as well as the anatomy track in which we ranked as the third top performing matching system. However, we did not opt to match larger ontologies in the given runtime threshold. Consequently, we are planning to optimize our matching system for larger biomedical tasks.

References