
DOME results for OAEI 2018

Sven Hertling and Heiko Paulheim

Data and Web Science Group, University of Mannheim, Germany
{sven,heiko}@informatik.uni-mannheim.de

Abstract. DOME (Deep Ontology MatchEr) is a scalable matcher which
relies on large texts describing the ontological concepts. Using the doc2vec
approach, these texts are used to train a fixed-length vector representa-
tion of the concepts. Mappings are generated if two concepts are close to
each other in the resulting vector space. If no large texts are available,
DOME falls back to a string based matching technique. Due to its high
scalability, it can also produce results in the largebio track of OAEI and
can be applied to very large ontologies. The results look promising if
huge texts are available, but there is still a lot of room for improvement.

1 Presentation of the system

1.1 State, purpose, general statement

Ontology matching is often based on string comparisons because each resource is
described by URI fragments (last part of an URI after the # sign), rdfs:labels,
and rdfs:comments. The DOME matcher specifically relies on large texts which
describes the resources, and thereby allows to make a better distinction in case
of a similar labels. Especially in knowledge graphs like DBpedia or YAGO, such
texts are easily extracted from the corresponding Wikipedia abstract.

The usual problem with such large texts is the matching with other similar
and long texts. One possible way is to use topic modeling like latent semantic
analysis(LSA [2]) or latent dirichlet allocation (LDA [1]). The extracted topics
can then be used to find overlaps and in the end similar concepts.

DOME uses another approach called doc2vec (also paragraph vector [5])
which is based on word2vec [6]. The idea is to represent a variable-length texts,
like sentences, paragraphs, and documents, as a fixed-length feature vector. This
vector is trained to predict the words appearing in the document. Thus this
vector represents the semantics of the concept when training on texts which
defines the meaning of the concept.

Two approaches for training this vector are established: Distributed Memory
(DM) and Distributed Bag of Words (DBOW). Applied to an example concept
like Harry Potter1 the framework of DM is shown in figure 1. During training,
the algorithm iterates over the given text in a sliding window of a specified and
fixed length. The goal is to predict the last word given the first n words. One

1 http://harrypotter.wikia.com/wiki/Harry_Potter

http://harrypotter.wikia.com/wiki/Harry_Potter


http://

example.com/

Harry_Potter

Resource URL

a half blood

Word Word Word

wizard

Fig. 1. Training of Distributed Memory given the concept Harry Potter and a small
excerpt of the corresponding wiki abstract.

http://

example.com/

Harry_Potter

Resource URL

a half blood

WordWord Word

wizard

Word

Fig. 2. Training of Distributed Bag of Words. The example is the same as in figure 1
but now the concept URI together with a small subset of text is usbed to predict the
following word.

special vector is the first one which represents the paragraph vector. In our case
this is the URI of the concept. All large texts which define this resource can be
used to train this vector.

Another approach for generating the concept vector is Distributed Bag of
Words (DBOW), shown in figure 2. Instead of using concept vectors for each
word, it tries to predict words from the text as an output.

DOME uses the DM sequence learning algorithm with a vector size of 300
and window size of 5. The training is repeated in 10 epochs. The minimal word
frequency is set to the minimum to allow all words contribute to the concept
vector. We compute a predefined set of properties which contains definitional
texts by two simple rules: 1) directly choose rdfs:comment 2 ) use every property
where the URI ends in “abstract”. This can be further improved in the next
version of DOME.



Fragment

Label

Comment

Resource1

KG 1 KG 2

Resource2

Abstract

Fragment

Label

Comment

Abstract

String similarity

Doc2Vec similarity

Fig. 3. Matching strategy of DOME

The doc2vec model is trained on all texts available in both ontologies. For
each concept in the second ontology, the corresponding concept vector is com-
puted, and the concepts which have the most similar vectors to those from
the first ontology are retrieved. A mapping between two resource is established
when the cosine similarity is above 0.85 (the threshold has been chosen based
on a manual inspection of the results).

The whole matching approach is shown in figure 3. The labels and fragments
of each resource are compared using string based similarity. Specifically, the
texts are tokenized and all punctuation (especially underscores and the like)
are removed. After lowercasing, these values are stored in a hash structure.
A mapping is created when each fragment or label have an exact match. The
confidence value of these alignments are set to 1.0. After this step, the doc2vec
approach is applied to find further matching concepts. We ensured that the
mapping is OWL compliant because we only match instances to instances, classes
to classes, and properties to properties. In the latter case we further distinguish
datatype properties and object properties but also match properties declared as
rdf:properties. With such a setup, the matcher is very scalable and can match
all types of resources.

1.2 Specific techniques used

The main technique used in DOME is the doc2vec approach [5] for comments and
abstracts of concepts. It is only activated when there is enough text to process.
All other matching techniques rely on fast string similarity. Further filtering of
the alignment is not executed but during the matching only one to one mappings
are allowed.

1.3 Adaptations made for the evaluation

DOME is implemented in java and uses the DL4J2 (Deep Learning for Java)
as an implementation of the doc2vec approach. DL4J heavily relies on platform
specific implementations which are stored in multiple JAR files. This allows it
to make use of GPUs to further speed up the computation. DOME relies on the

2 https://deeplearning4j.org

https://deeplearning4j.org


CPU implementation of DL4J because upfront it is not clear if all evaluation
machines used for OAEI contain a DL4J compatible GPU.

Although the DL4J framework allows for searching for related concepts, it
does not provide the similarity values out of the box. Thus the framework is
modified to also retrieve these value which can be used in the alignment file to
represent the confidence of a mapping. Since the values are already normalized
no further post processing step of the similarity values is needed.

Unfortunately, the packaged SEALS matcher was not able to run under the
SEALS evaluation routine. The SEALS client loads all JAR files in its own
classpath. This is a very secure way of running third-party code, but at the same
time one of the most frequent cauess of matchers not working at OAEI, as in the
case of DOME. The root cause is the custom classloader of SEALS which uses the
JCL library3. The SEALS classloader is a subclass of the AbstractClassLoader
in the JCL library. Both classloaders do not implement all methods (especially
the getPackage method) of the standard classloader. Many other libraries use
such functions to further load operating specific code. This applies to the DL4J
library as well as the sqlite-jdbc library.

We fixed the error by creating an intermediate matcher which calls another
java process. Within that process the classloader is the standard one and the
DL4J library could be loaded without any errors. We released a matching frame-
work which does the SEALS and Hobbit packaging, uploading and creating the
intermediate matcher.4

1.4 Link to the system and parameters file

DOME can be downloaded from
https://www.dropbox.com/s/1bpektuvcsbk5ph/DOME.zip?dl=0.

2 Results

The following section discusses the results for each track of the OAEI 2018
where DOME is able to produce meaningful results. This includes the anatomy,
conference, largebio, phenotype, and knowledge graph track.

DOME was not able to complete the multifarm track because currently no
translation component is included. This would be possible with cross lingual em-
bedding approaches shown in [8]. For complex and interactive track the matching
system has to produce different type of output mapping or matching strategy
which is not implemented. The tracks biodiv and iimb don’t contain enough free
texts in the selected properties.

3 https://github.com/kamranzafar/JCL
4 https://github.com/sven-h/ontMatchingHobbit

https://www.dropbox.com/s/1bpektuvcsbk5ph/DOME.zip?dl=0
https://github.com/kamranzafar/JCL
https://github.com/sven-h/ontMatchingHobbit


2.1 Anatomy

In the anatomy track, there are only labels given, thus the doc2vec approach is
not used here. There are some properties like oboInOwl:hasRelatedSynonym or
oboInOwl:hasDefinition which point to resources with more describing text,
but these resources is not recognized by DOME, since we do not implement a
larger list of properties used to point to texts.

Therefore, DOME only utilizes string based matching for this track. The text
is lowercased, tokenized and then matched based on a hashing algorithm. This
results in a high precision of 0.997 (similar to the string equivalence baseline)
and a very low runtime of 22 seconds. Only LogMapLt was 4 seconds faster.

Due to a slightly lower recall of 0.615 (0.07 lower than the baseline) DOME
has a lower F-Measure than the baseline.

In improvement in this track would be to use the additional texts from
oboInOwl:hasRelatedSynonym and oboInOwl:hasDefinition to further increase
the recall. In order not to have to manually maintain such a list, it would also
be possible to incorporate all literals that consist of text of at least a certain
number of words.

2.2 Conference

Within the conference track, DOME is as bit better than the baseline and often
similar to edna (which is a string editing distance matcher adopted from the
benchmark track). Evaluating DOME against the original reference alignment it
performs exactly like edna in the class mappings and a bit better in the property
mappings - both in terms of recall and precision. This results in 0.07 better F-
Measure. But there is room for a lot improvement, because in this year, the best
matcher reached 0.58 F-Measure in this track.

When comparing to the entailed reference alignment DOME has same eval-
uation measures like edna and a bit better when comparing properties. If both
classes and properties are taken into account DOME is only 0.01 better than
edna and 0.15 behind the current best matcher.

In most of the conference ontologies, there are no long natural language
texts. Only in rare cases, some classes are described by a comment. Those were
processed by the doc2vec model but does not yield any new mappings.

2.3 Largebio

In the largebio track, the number of classes is very high. In the case of FMA-
SNOMED this results in matching 78,989 classes to 122,464 classes. Matchers
which compare a string from one ontology to all concepts of the other ontology
have a quadratic runtime and usually can not finish in time. DOME is one of five
matchers (DOME, FCAMapX, LogMap, LogMapBio, XMap) which were able
to return results within the given time limit. It is the fastest one and terminates
within 30 seconds on the largest track. The second fastest is XMap with 7 min-
utes and the slowest one is LogMapBio with 49 minutes. The reason here is the



same as in the anatomy track. Most resources are only described by a label and
fragment without further textual content. Thus, DOME relies on string compar-
ison with a high precision but low recall. In case of “SNOMED-NCI whole”, this
results in a precision of 0.907 and a recall of 0.485 (F-Measure of 0.632). The
best matcher on this subtrack in terms of F-Measure is FCAMapX with a value
of 0.733.

2.4 Phenotype

The phenotype track is based on a real use case, and the matcher should find
alignments between disease and phenotype ontologies. DOME is also able to
complete this track but with a low F-Measure of 0.483 (HP-MP) and 0.633
(DOID-ORDO). The precision is again the highest among all matchers, but the
recall is below 0.5.

However, some ontologies in this track, like the DOID ontology, have fur-
ther properties containing describing texts like obo:IAO 0000115 (label of the
property is definition). DOME in its current version does not make use of this
property, but, as discussed for the anatomy track above, those could be utilized
by extending the system.

2.5 Knowledge Graph

The knowledge graph track is a new track where classes, properties and instances
should be matched. As already pointed out in [3,4], matching the classes and
properties is easier than the instances. This is also the case for the DOME
matcher.

It returns all three types of mappings and complete on all nine sub tasks. In
average it returns 16 class, 207 property, and 15,912 instance mappings.

DOME achieved an F-Measure of 0.73 in the class correspondences. It is
balanced between recall and precision, but even the baseline has a higher recall.
So there should some room for improvement.

When analyzing the property alignments, only DOME and the baseline can
produce any results. Most likely, the reason is that all properties are typed as
rdf:Property and not subdivided into owl:DatatypeProperty and owl:Object-

Property. As discussed above, DOME is configured to match also rdf:Property.
This results in a F-Measure of 0.84.

Instance matches are generated by AML, DOME, LogMap, LogMapLt and
the baseline. Especially in the instance mapping the doc2vec approach can help
because long comments and abstracts of the resources are available. DOME was
the second best matcher with an F-Measure of 0.61 (the baseline is the best
“matcher” with an F-Measure of 0.69).

Overall, looking at the results for classes, properties, and instances together,
DOME has an F-Measure of 0.68, which is better than all matchers except the
baseline.



3 General comments

3.1 Comments on the results

The overall results shows that DOME is in a development phase. Sometimes
it can beat at least the baselines in terms of F-measure and sometimes not.
Currently there are not many tracks which provide a large amount of describing
text for each resource, but many ontologies and knowledges graphs exists out
there where this is the case.

3.2 Discussions on the way to improve the proposed system

Based on the evaluation on all kinds of different tracks, we noticed a lot of
further improvements. First of all, some ontologies use properties which connect
a resource to its describing text which are not recognized by DOME. One possible
approach to fix this would be the use all properties which contain long texts by
some heuristic, e.g., strings exceeding a certain number of characters on average.
This would include more text to help the doc2vec model to better differentiate
the concepts.

Another possible improvement is to use pretrained word vectors. Those might
contain more semantics for each word than training it directly on describing texts
for the two ontologies. However, for some very domain-specific ontologies with
large amounts of texts, the generic pre-trained embeddings might even perform
worse, thus, it is an open research question which of the two yields better results.

A third possible approach is to combine the approach of RDF2Vec [7] (i.e.,
computing the word2vec embedding of random walks within knowledge graphs)
and various cross lingual embeddings shown in [8]. One simple approach would
be to learn a linear transformation between the two generated embeddings of
the ontologies.

4 Conclusions

In this paper, we have introduced the DOME matcher, which relies on document
embeddings for texts describing the concepts defined in an ontology. The results
for DOME are analyzed on the different tracks of OAEI. DOME is a highly scale
matching system capable of generating class, property and instance alignments.
On some tracks where a lot of text describing each resource exists, it shows
promising results. However, the matcher is currently in an early state and offers
a lot of room for improvement.



References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993–1022 (2003)

2. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: In-
dexing by latent semantic analysis. Journal of the American society for information
science 41(6), 391–407 (1990)

3. Hertling, S., Paulheim, H.: Dbkwik: A consolidated knowledge graph from thou-
sands of wikis. In: IEEE International Conference on Big Knowledge, ICBK 2018,
Singapore (2018)

4. Hofmann, A., Perchani, S., Portisch, J., Hertling, S., Paulheim, H.: Dbkwik: To-
wards knowledge graph creation from thousands of wikis. In: Proceedings of the
International Semantic Web Conference (Posters and Demos), Vienna, Austria. pp.
21–25 (2017)

5. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning. pp. 1188–1196 (2014)

6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

7. Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for data mining. In:
International Semantic Web Conference. pp. 498–514. Springer (2016)

8. Ruder, S., Vulić, I., Søgaard, A.: A survey of cross-lingual word embedding models.
arXiv preprint arXiv:1706.04902 (2017)


	DOME results for OAEI 2018

