Abstract. DOME (Deep Ontology MatchEr) is a scalable matcher which relies on large texts describing the ontological concepts. Using the doc2vec approach, these texts are used to train a fixed-length vector representation of the concepts. Mappings are generated if two concepts are close to each other in the resulting vector space. If no large texts are available, DOME falls back to a string based matching technique. Due to its high scalability, it can also produce results in the largebio track of OAEI and can be applied to very large ontologies. The results look promising if huge texts are available, but there is still a lot of room for improvement.

1 Presentation of the system

Ontology matching is a key feature for the semantic web vision because it allows to use and interpret datasets which are unknown at the time of writing knowledge accessing software. [13] shows that there are many different elementary matching approaches on element, structure and instance levels. The Deep Ontology MatchEr (DOME) focus at element and instance level. One of the reasons is that there are more and more instance matching tracks at the OAEI (Ontology Alignment Evaluation Initiative) like SPIMBENCH, Link Discovery, and Knowledge graph. These tracks need a scalable matching system. Thus the main signal for finding correspondences is string based. Many other knowledge graphs in the Linked Open Data Cloud [1] also have a lot of literals with long texts which can be optimally used by the matching framework presented in this paper. Especially DBpedia or YAGO contains such texts because extracting Wikipedia abstracts is easily achievable.

1.1 State, purpose, general statement

The overall matching strategy of DOME is shown in figure[1]. It starts with a simple string matching followed by a confidence adjustment. This is applied for all classes, instances, and properties. The latter one includes owl:ObjectProperty, owl:DatatypeProperty, and rdf:Property (as retrieved by the jena[1] method OntModel.listAllOntProperties()). As a next step in the pipeline an instance based class matching is applied. It uses all matched individual and based on those types, tries to find meaningful class mappings.

[1] https://jena.apache.org
The following type filter has a look at the correspondence type like class-class or datatypeProperty-objectProperty. It deletes all correspondences where the type is different (like in the latter case). This could happen because all properties can be matched with each other. The final cardinality filter ensures a one to one mapping by sorting the correspondences by confidence and iterates over them in descending order. If the source or target entity is not already matched, it counts a valid correspondence - otherwise it will be dropped and will not appear in the final alignment.

In the following the first three matching stages of DOME are discussed in more detail.

String matching As shown in figure[2] DOME uses multiple properties for matching all types of resources. If a `rdfs:label` from ontology A matches after the preprocessing with the `rdfs:label` from a resources in ontology B, DOME creates a mapping with a static confidence of 1.0. The same confidence is applied when a `skos:prefLabel` matches. In case a URI fragment or `skos:altLabel` fits, then a lower confidence of 0.9 is used.

The string preprocessing consists of tokenizing the text (also takes care of CamelCase formatting), stopword removal and lowercasing. Afterwards the text is concatenated together to form a new textual representation. In case the initial text contains mostly numbers, the whole text is discarded.

Confidence Adjustment The confidence adjustment stages of DOME iterates over all correspondences and reassign a new confidence in case it is possible. The main approach used here is doc2vec (also paragraph vector [9]) which is based on word2vec [10]. It allows to compare texts of different lengths and represent them as a fixed length vector. A comparison of these vectors can be achieved with a cosine similarity.

In comparison to DOME submitted to OAEI 2018, the generation of the text for a given resource has changed. In the current version, all statements in the ontology are examined where a given resource has the subject position. If the object is a literal and the datatype of it corresponds to \texttt{xsd:string} or \texttt{rdf:langString} or contains a language tag, it will be selected. All selected literal are preprocessed in the same way as described in paragraph 1.1 and concatenated together. This text forms a document which represents the resource in a textual way. It is used for training a doc2vec model.

Two approaches for learning this model are possible: Distributed Memory (DM) and Distributed Bag of Words (DBOW). DM tries to predict a target word based on the context and a document vector. DBOW wants to predict the context words solely based on the document vector. DOME uses the DM sequence learning algorithm with a vector size of 300 and window size of 5 as in the previous version of this matcher[5]. The minimal word frequency is set to the minimum to allow all words contribute to the concept vector.

The adjusted confidence is later on used in the cardinality filter to select only one to one mappings.

Instance based class matching After the class, instance, and property matching an additional class alignment step is performed (instance based class matching). The idea behind is to inspect the types (classes) of already matched instances. If two individuals are the same, there is a high probability that some of the corresponding types should be also matched.

We experimented with three different similarity metrics for two given classes \(c_1\) and \(c_2\). The dice similarity metric is defined as follows:

\[
\text{Sim}_{DICE}(c_1, c_2) = \frac{2 \cdot |I_{c_1} \cap I_{c_2}|}{|I_{c_1}| + |I_{c_2}|} \in [0...1]
\]

\(I_{c_1}\) and \(I_{c_2}\) denotes the set of instances which have \(c_1\) (\(c_2\)) as one of its type. \(I_{c_1} \cap I_{c_2}\) corresponds to the matched instances which are typed with both \(c_1\) and \(c_2\). \(\text{Sim}_{DICE}\) corresponds to the overlap of matched instances with both classes and all instances of the two classes separately.

[8] also includes a more relaxed version of the previous similarity called \(\text{Sim}_{MIN}\) which is defined as

\[
\text{Sim}_{MIN}(c_1, c_2) = \frac{|I_{c_1} \cap I_{c_2}|}{\min(|I_{c_1}|, |I_{c_2}|)} \in [0...1]
\]

It interrelates the matched instances with both classes and the instances of the smaller-sized class. As stated in [8] \(\text{Sim}_{DICE}\) is always smaller or equal to \(\text{Sim}_{MIN}\).
After experimenting with those two measures, we need an even more relaxed version of the similarity. [8] also defines a Sim_{BASE} which matches the classes c_1 and c_2 in case at least one instance with those classes is matched:

$$\text{Sim}_{\text{BASE}}(c_1, c_2) = \begin{cases} 1 & \text{if } |I_{c_1} \cap I_{c_2}| > 0 \\ 0 & \text{if } |I_{c_1} \cap I_{c_2}| = 0 \end{cases} \in [0...1]$$

This introduces a lot of wrong correspondences because each error in the instance matching is directly forwarded to the class matches. Thus some similarity between Sim_{BASE} and Sim_{MIN} is needed. One possible way is to incorporate the quality of the matcher at hand - especially how many instance correspondences it finds. Thus another similarity called $\text{Sim}_{\text{MATCH}}$ is used in DOME and defined as follows:

$$\text{Sim}_{\text{MATCH}}(c_1, c_2) = \frac{|I_{c_1} \cap I_{c_2}|}{|C_I|} \in [0...1]$$

where C_I represents all instance correspondences created by the matcher. The threshold is set to 0.01 meaning that 1 % of the matches should have the same class. If this is the case, the classes will be matched with a confidence of $\text{Sim}_{\text{MATCH}}(c_1, c_2)$. This value is rather low. All correspondences generated by this step are therefore scaled to minimum of 0.1 and maximum of 1.0.

1.2 Specific techniques used

The two main techniques used in DOME are the doc2vec approach [9] for comparing the textual representation of the resources and the instance based class matching component.

1.3 Adaptations made for the evaluation

As in the previous version of DOME for OAEI 2018 the DL4J [3] (Deep Learning for Java) is used as an implementation of the doc2vec approach. Running DOME with this dependency is not easy in SEALS. Therefore we use MELT [6] to package our matcher. The framework generates an intermediate matcher which execute an external process (which is again in Java). This process runs now in its own Java virtual machine (JVM) and allows to load system dependent library files (files with .dll or .so extension). [5] explains in more detail why this is necessary.

1.4 Link to the system and parameters file

DOME can be downloaded from

https://www.dropbox.com/s/1bpektuvcsbk5ph/DOME.zip?dl=0

2 Results

This section discusses the results of DOME for each track of OAEI 2019 where the matcher is able to produce results. The following tracks are included: anatomy, conference, largebio, phenotype, and knowledge graph track.

Similar to the previous version of DOME, the current matcher is not able to match multiple languages and thus fail on multifarm track. For complex and interactive track the system should behave differently. Those interfaces and matching strategies are currently not implemented.

2.1 Anatomy

For the anatomy track DOME uses the string comparison method which results in similar precision and recall as the baseline. Properties like oboInOwl:hasRelatedSynonym or oboInOwl:hasDefinition are used to generate a textual representation of the concepts but this does not introduce better confidence values.

DOME returns 948 correspondences. 932 matches with a confidence of 1.0 which are all correct. 12 correspondences scored with 0.9 are all false positives. Therefore a confidence filter would make sense for this specific track.

The presented matcher has a very low runtime and scales to very huge ontologies. The runtime of 23 seconds is the second best value in this track. Due to a slightly lower recall (0.007) and precision (0.001) DOME has a lower F-Measure (0.006) than the baseline. The reason could be the different string preprocessing techniques.

2.2 Conference

In the following analysis we refer to the rar reference alignment because it contains more correspondences which are carefully resolved by an evaluator.

When matching classes DOME is same as the edna baseline. Most correspondences have a confidence of 0.9 because the conference track has mostly all textual information in URL fragments. Only one mapping is scored with 1.0 which is <edas:Country, iasted:Conference_state, =, 1.0>. It is generated by the instance based class matching because both contain Mexico as an individual. This mapping is a false positive. Properties are matched with an F1-measure of 0.22 which is better than the edna baseline but lower than 5 other matchers. In comparison to the old version of this matcher, the F1-measure is increased by 0.01.

2.3 Largebio

As the name already suggests the largebio track needs matchers which scales well. Test case four is a large test case which matches the whole FMA ontology with a large fragment of SNOMED. The source ontology has 78,989 classes and

4 http://oaei.ontologymatching.org/2019/results/conference/index.html
Fig. 3. Analysis of confidences in knowledge graph track. The x axis represents the confidence value and the y axis shows the amount of correspondences. Green bars indicate true positives and orange bars indicate false positives. False negatives are left out because they don’t have any confidence assigned by the matching system. The plot is generated by MELT framework [6].

the target ontology 122,464 classes. This would result in more than 9 billion comparisons when doing it naively. The runtime of DOME for this test case is 38 seconds which is the second best runtime. Moreover DOME is able to complete all tasks within the given timeout.

In task 3, 4, 5, and 6 DOME has the highest precision of all matchers but misses a lot of correspondences in the gold standard and has therefore a lower recall. In task one and two matcher Wiktionary have a higher precision. F-measure wise DOME usually beats Wiktionary and AGM but AML and LogMap variants are better.

2.4 Phenotype

In phenotype track the matcher should find alignments between disease and phenotype ontologies. The matcher has the highest precision of 0.997 together with FCAMap-KG for test case HP-MP and second best for task DOID-ORDO. With the low recall of 0.303 and 0.426 the F-measure is around 0.465 and 0.596.

2.5 Knowledge Graph

In the second version of the knowledge graph track the systems should be able to match classes, properties and instances. DOME was able to run 4 out of 5 test cases. The remaining test case could not be finished because of memory issues.

In comparison to the previous version of the track, classes are more difficult to match. DOME could achieve an F-measure of 0.77 for classes (not counting the unfinished test case) and 0.96 for properties. Only FCAMap-KG and Wiktionary are better in matching the latter one. Instances are matched with a F-measure
of 0.88 (again not counting the unfinished test case). In average DOME returns 22 class, 75 property, and 4,895 instance mappings.

3 General comments

3.1 Comments on the results

The discussion of the results shows that DOME is in a development phase. Some improvements are already incorporated and some further ideas are discussed in the next section.

3.2 Discussions on the way to improve the proposed system

One further improvement is still the ability to match different languages. As stated in [5] we could use cross lingual embeddings as shown in [12]. Another possibility would be to use a translation step in between.

The confidence adjustment step can not only be done with doc2vec based models but also with tf-idf or other document comparison methods. This should be tried out in future version of this matcher.

The memory issue in the knowledge graph track can be solved by writing all text representations of all resources on disk and train the doc2vec model on this file.

4 Conclusions

In this paper, we have analyzed the results of DOME in OAEI 2019. It shows that DOME is a highly scalable matcher which generates class, property and instance alignments. With the new component DOME is able to match classes based on instances and thus increase the recall of class alignments.

References