
DOME Results for OAEI 2019

Sven Hertling[0000−0003−0333−5888] and Heiko Paulheim[0000−0003−4386−8195]

Data and Web Science Group, University of Mannheim, Germany
{sven,heiko}@informatik.uni-mannheim.de

Abstract. DOME (Deep Ontology MatchEr) is a scalable matcher for
instance and schema matching which relies on large texts describing the
ontological concepts. The doc2vec approach is used to generate a vector
representation of the concepts based on the textual information con-
tained in literals. The cosine distance between two concepts in the em-
bedding space is used as a confidence value. In comparison to the previous
version of DOME it uses an instance based class matching approach. Due
to its high scalability, it can also produce results in the largebio track of
OAEI and can be applied to very large knowledge graphs. The results
look promising if huge texts are available, but there is still a lot of room
for improvement.

Keywords: Ontology Matching · Knowledge Graph · Doc2Vec

1 Presentation of the system

Ontology matching is a key feature for the semantic web vision because it al-
lows to use and interpret datasets which are unknown at the time of writing
knowledge accessing software. [11] shows that there are many different elemen-
tary matching approaches on element, structure and instance levels. The Deep

Ontology MatchEr (DOME) focuses at element and instance level matching.
One of the reasons is that there are more and more instance matching tracks
at the OAEI (Ontology Alignment Evaluation Initiative) like SPIMBENCH, Link
Discovery, and Knowledge graph. These tracks need a scalable matching sys-
tem. Thus, the main signal for finding correspondences is string based. Many
other knowledge graphs in the Linked Open Data Cloud [2] also have a lot of
literals with long texts which can be optimally used by the matching framework
presented in this paper. Especially knowledge graphs extracted from Wikipedia
such as DBpedia [1] or YAGO [5] contains descriptions of resources (abstracts
of wiki pages).

1.1 State, purpose, general statement

The overall matching strategy of DOME is shown in figure 1. It starts with a
simple string matching followed by a confidence adjustment. This is applied for

0 Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Ontology 1

Ontology 2

String matching
Confidence
Adjustment

Instance based
class matching

Type FilterCardinality Filter
final

alignment

Fig. 1. Overview of the DOME matching strategy.

all classes, instances, and properties. The latter one includes owl:ObjectProperty,
owl:DatatypeProperty, and rdf:Property (as retrived by the jena1 method Ont-
Model.listAllOntProperties()). As a next step in the pipeline, an instance based
class matching is applied. It uses all matched individuals and based on those
types, tries to find meaningful class mappings.

The following type filter deletes all correspondences where the type of source
and target concept is different (like owl:DatatypeProperty - owl:ObjectProperty).
This might happen because all properties (also rdf:Property) can be matched
with each other. The final cardinality filter ensures a one to one mapping by
sorting the correspondences by confidence and iterates over them in descending
order. If the source or target entity is not already matched, it counts a valid
correspondence - otherwise it will be dropped and will not appear in the final
alignment.

In the following, the first three matching stages of DOME are discussed in
more detail.

String matching As shown in figure 2, DOME uses multiple properties for match-
ing all types of resources. If a rdfs:label from ontology A matches the rdfs:label
from a resources in ontology B after the preprocessing, DOME creates a map-
ping with a static confidence of 1.0. The same confidence is applied when a
skos:prefLabel matches. In case a URI fragment or skos:altLabel fits, a lower
confidence of 0.9 is used.

The string preprocessing consists of tokenizing the text (also takes care of
CamelCase2 formatting), stopword removal and lowercasing. Afterwards the text
is concatenated together to form a new textual representation. In case the initial
text contains mostly numbers, the whole text is discarded.

Confidence Adjustment The confidence adjustment stage of DOME iterates over
all correspondences and reassign a new confidence in case it is possible. The main
approach used here is doc2vec [7] which is based on word2vec [8]. It allows to
compare texts of different lengths and represent them as a fixed length vector.
A comparison of these vectors can be achieved with a cosine similarity.

1 https://jena.apache.org
2 https://en.wikipedia.org/wiki/Camel_case

https://jena.apache.org
https://en.wikipedia.org/wiki/Camel_case

Resource1

KG 1 KG 2

Resource2

String similarity (0.9)

Doc2Vec similarity

URI Fragment

RDFS:label

SKOS:prefLabel

SKOS:altLabel

URI Fragment

RDFS:label

SKOS:prefLabel

SKOS:altLabel

String similarity (1.0)

String similarity (1.0)

String similarity (0.9)

String Literal String Literal

Fig. 2. DOME literal comparisons.

In comparison to DOME submitted to OAEI 2018, the generation of the
text for a given resource has changed. In the current version, all statements
in the ontology are examined where a given resource has the subject position.
If the object is a literal and the datatype of it corresponds to xsd:string or
rdf:langString or contains a language tag, it will be selected. All those literals
are preprocessed in the same way as described in paragraph string matching and
concatenated together. This text forms a document which is used for training a
doc2vec model. DOME uses the DM sequence learning algorithm with a vector
size of 300 and window size of 5 as in the previous version of this matcher dla[3].
The minimal word frequency is set to one to allow all words contribute to the
concept vector. The adjusted confidence is later used in the cardinality filter to
create a 1:1 mapping.

Instance based class matching After the class, instance, and property matching
an additional class alignment step is performed. The basic idea is to inspect the
types (classes) of already matched instances. If two individuals are the same,
there is a high probability that some of the corresponding types should be also
matched.

We experimented with three different similarity metrics for two given classes
c1 and c2. The dice similarity metric [9] is defined as follows:

SimDICE(c1, c2) =
2 ∗ |Ic1 ∩ Ic2 |
|Ic1 |+ |Ic2 |

∈ [0...1]

Ic1 and Ic2 denotes the set of instances which have c1 (c2) as one of its type.
Ic1 ∩Ic2 corresponds to the matched instances which are typed with both c1 and
c2. SimDICE corresponds to the overlap of matched instances with both classes
and all instances of the two classes separately.

[6] also includes a more relaxed version of the previous similarity called
SimMIN which is defined as

SimMIN (c1, c2) =
|Ic1 ∩ Ic2 |

min(|Ic1 |, |Ic2 |)
∈ [0...1]

It interrelates the matched instances with both classes and the instances of
the smaller-sized class. As stated in [6] SimDICE is always smaller or equal to
SimMIN .

A third possibility is SimBASE [6] which matches the classes c1 and c2 in
case at least one instance with those classes is matched:

SimBASE(c1, c2) =

{
1 if |Ic1 ∩ Ic2 | > 0

0 if |Ic1 ∩ Ic2 | = 0
∈ [0...1]

After experimenting with those measures, it turned out that SimBASE intro-
duces a lot of wrong correspondences because each error in the instance matching
is directly forwarded to the class matches. SimMIN needed a very low threshold
and ranks the classes suboptimal. Thus some similarity between SimBASE and
SimMIN is needed. One possible way is to incorporate the quality of the matcher
at hand - especially how many instance correspondences it finds. Thus another
similarity called SimMATCH is used in DOME and defined as follows:

SimMATCH(c1, c2) =
|Ic1 ∩ Ic2 |
|CI |

∈ [0...1]

where CI represents all instance correspondences created by the matcher. The
threshold is set to 0.01 meaning that 1 % of the matches should have the
same class. If this is the case, the classes will be matched with a confidence
of SimMATCH(c1, c2). This value is rather low. All correspondences generated
by this step are therefore scaled to minimum of 0.1 and maximum of 1.0.

1.2 Specific techniques used

The two main techniques used in DOME are the doc2vec approach [7] for com-
paring the textual representation of the resources and the instance based class
matching component.

1.3 Adaptations made for the evaluation

As in the previous version of DOME for OAEI 2018 the DL4J3 (Deep Learning
for Java) library is used as an implementation of the doc2vec approach. Running
DOME with this dependency is not easy in SEALS. Therefore we use MELT[4] to
package our matcher. The framework generates an intermediate matcher which
executes an external process (which is again in Java). This process runs now
in its own Java virtual machine (JVM) and allows to load system dependent
library files (files with dll or so extension). [3] explains in more detail why this
is necessary.

1.4 Link to the system and parameters file

DOME can be downloaded from
https://www.dropbox.com/s/1bpektuvcsbk5ph/DOME.zip?dl=0.

3 https://deeplearning4j.org

https://www.dropbox.com/s/1bpektuvcsbk5ph/DOME.zip?dl=0
https://deeplearning4j.org

2 Results

This section discusses the results of DOME for each track of OAEI 2019 where
the matcher is able to produce results. The following tracks are included: anatomy,
conference, largebio, phenotype, and knowledge graph track.

Similar to the previous version of DOME, the current matcher is not able to
match multiple languages and thus fail on multifarm track. Specific interfaces
and matching strategies for the complex and interactive track are currently not
implemented.

2.1 Anatomy

For the anatomy track, DOME uses the string comparison method which re-
sults in similar precision and recall as the baseline. Properties like oboInOwl:
hasRelatedSynonym or oboInOwl:hasDefinition are used to generate a textual
representation of the concepts but this does not introduce better confidence
values.

DOME returns 948 correspondences. 932 matches with a confidence of 1.0
which are all correct. 12 correspondences scored with 0.9 are all false positives.
Therefore a confidence filter would make sense for this specific track.

The presented matcher has a very low runtime and scales to very huge on-
tologies. The runtime of 23 seconds is the second best value in this track.

Due to a slightly lower recall (0.007) and precision (0.001) DOME has a lower
F-Measure (0.006) than the baseline. The reason could be the different string
preprocessing techniques.

2.2 Conference

In the following analysis we refer to the rar24 reference alignment because it
contains more correspondences which are carefully resolved by an evaluator.

When matching classes DOME is same as the edna baseline. Most corre-
spondences have a confidence of 0.9 because the conference track has mostly
all textual information in URL fragments. Only one mapping is scored with 1.0
which is <edas:Country, iasted:Conference state, =, 1.0>. It is generated by the
instance based class matching because both contain Mexico as an individual.
This mapping is a false positive. The instance based class matching could not
help here, because in most of the test cases no instances are available. Properties
are matched with an F1-measure of 0.22 which is better than the edna baseline
but lower than 5 other matchers. In comparison to the old version of this matcher,
the F1-measure is increased by 0.01. Figure 3 shows the result of DOME divided
into test cases. It shows that in four test cases (where the source ontology is
confOf) the matcher is not able to return true positive correspondences.

4 http://oaei.ontologymatching.org/2019/results/conference/index.html

http://oaei.ontologymatching.org/2019/results/conference/index.html

Fig. 3. Analysis of results for conference track. The x axis represents the test cases
and y axis the amount of correspondences. Green bars indicates true positives, orange
bars false positives, and blue bars false negatives. The plot is generated by MELT
framework [4].

2.3 Largebio

As the name already suggests, the largebio track needs matchers which scale
well. Test case four is a large test case which matches the whole FMA ontology
with a large fragment of SNOMED. The source ontology has 78,989 classes and
the target ontology 122,464 classes. This would result in more than 9 billion
comparisons when doing it naively. The runtime of DOME for this test case is
38 seconds which is the second best runtime. Moreover DOME is able to complete
all tasks within the given timeout.

In task 3, 4, 5, and 6 DOME has the highest precision of all matchers but
misses a lot of correspondences in the gold standard and has therefore a lower
recall. In task one and two matcher Wiktionary have a higher precision. F-
measure wise DOME usually beats Wiktionary and AGM but AML and LogMap
variants are better.

2.4 Phenotype

In phenotype track, the matcher should find alignments between disease and
phenotype ontologies. The matcher has the highest precision of 0.997 together
with FCAMapKG for test case HP-MP and second best for task DOID-ORDO.
With the low recall of 0.303 and 0.426 the F-measure is around 0.465 and 0.596.

Fig. 4. Analysis of confidences in knowledge graph track. The x axis represents the
confidence value and the y axis shows the amount of correspondences. Green bars
indicates true positives and orange bars indicates false positives. False negatives are
left out because they don’t have any confidence assigned by the matching system. The
plot is generated by MELT framework [4].

2.5 Knowledge Graph

In the second version of the knowledge graph track, the systems should be able
to match classes, properties and instances. DOME was able to run 4 out of 5 test
cases. The remaining test case could not be finished because of memory issues.

In comparison to the previous version of the track, classes are more difficult
to match. DOME could achive an F-measure of 0.77 for classes (not counting the
unfinished test case) and 0.96 for properties. Only FCAMap-KG and Wiktionary
are better in matching the latter one. Instances are matched with a F-measure
of 0.88 (again not counting the unfinished test case). In average DOME returns
22 class, 75 property, and 4,895 instance mappings.

3 General comments

3.1 Comments on the results

The discussion of the results shows that DOME is in a development phase. Some
improvements are already incorporated and some further ideas are discussed in
the next section.

3.2 Discussions on the way to improve the proposed system

One further improvment is still the ability to match different languages. As
stated in [3] we could use cross lingual embeddings as shown in [10]. Another
possibility would be to use a translation step in between.

The confidence adjustment step can not only be done with doc2vec based
models but also with tf-idf or other document comparison methods. This should
be tried out in future version of this matcher.

The memory issue in the knowledge graph track can be solved by writing all
text representations of all resources on disk and train the doc2vec model on this
file.

4 Conclusions

In this paper, we have analyzed the results of DOME in OAEI 2019. It shows
that DOME is a highly scalable matcher which generates class, property and
instance alignments. With the new component DOME is able to match classes
based on instances and thus increase the recall of class alignments.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: The semantic web, pp. 722–735. Springer
(2007)

2. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web
(ldow2008). In: Proceedings of the 17th international conference on World Wide
Web. pp. 1265–1266. ACM (2008)

3. Hertling, S., Paulheim, H.: Dome results for oaei 2018. In: OM@ ISWC. pp. 144–
151 (2018)

4. Hertling, S., Portisch, J., Paulheim, H.: Melt - matching evaluation toolkit. In:
SEMANTICS. Karlsruhe. (2019)

5. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: A spatially and
temporally enhanced knowledge base from wikipedia. Artificial Intelligence 194,
28–61 (2013)

6. Kirsten, T., Thor, A., Rahm, E.: Instance-based matching of large life science
ontologies. In: International Conference on Data Integration in the Life Sciences.
pp. 172–187. Springer (2007)

7. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning. pp. 1188–1196 (2014)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

9. van Rijsbergen, C.: Information retrieval (1979)
10. Ruder, S., Vulić, I., Søgaard, A.: A survey of cross-lingual word embedding models.

arXiv preprint arXiv:1706.04902 (2017)
11. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-

capietra, S. (ed.) Journal on Data Semantics IV, Lecture Notes in Computer Sci-
ence, vol. 3730, pp. 146–171. Springer Berlin Heidelberg (2005)

	DOME Results for OAEI 2019

