Modeling Security Requirements
Through Ownership, Permission and Delegation

Fabio Massacci
University of Trento

Paolo Giorgini
University of Trento
paolo.giorgini @unitn.it

Abstract

Security Requirements Engineering is emerging as a
branch of Software Engineering, spurred by the realization
that security must be dealt with early on during the require-
ments phase. Methodologies in this field are challenging as
they must take into account subtle notions such as trust (or
lack thereof), delegation, and permission; they must also
model entire organizations and not only systems-to-be.

In our previous work we introduced Secure Tropos, a
formal framework for modeling and analyzing security re-
quirements. Secure Tropos is founded on three main no-
tions: ownership, trust, and delegation. In this paper we
refine Secure Tropos introducing the notions of delegation
and trust of execution (at-least delegation and trust) and
delegation and trust of permission (at-most delegation and
trust). We also propose the use of monitoring as security
pattern that can be a design solution to overcome the prob-
lem of lack of trust between actors. The paper presents a
semantics for these notions, and describes an implemented
formal reasoning tool based on Datalog.

1 Introduction

The last years have seen many proposals that incorporate
security in the software engineering process. At one end of
the spectrum, such proposals ensure good coding practices
[26]. At the other extreme, the emphasis is on securing the
organization within which a software system functions [2].
A consequence of this is that, modeling and analysis of se-
curity requirements has become a key challenge for Soft-
ware Engineering (8} 6], and is the subject of this paper.

Proposals for Security Requirements Engineering can
be roughly classified into two main streams, approaches
such as [3} 18, 24]] use an off-the-shelve framework, such
as UML, KAOS, or i*/Tropos, and model in that frame-
work security requirements. The features of the frame-
work are then used to formally analyze the model or

fabio.massacci @unitn.it

Nicola Zannone
University of Trento

John Mylopoulos
University of Toronto

jm@cs.toronto.edu zannone @dit.unitn.it

guide the implementation. The second class of approaches
[9, 1231150119, 121} [25]] takes an RE framework and enhances
it with novel constructs specific to security. For such ap-
proaches, formal analysis techniques and implementation
guidelines need to be revised and/or extended to accommo-
date the new concepts.

Most proposals focus on protection aspects of security
and explicitly deal with a series of security services (in-
tegrity, availability etc.) and related protection mechanisms
(such as passwords, or crypto). A shift from this perspec-
tive towards early requirements was proposed by Giorgini
et al. [14,|13] who extended the i*/Tropos modeling frame-
work [3]] to define Secure Tropos. The proposal introduces
concepts such as ownership, trust, and delegation within a
normal functional requirements model and shows as secu-
rity and trust requirements be derived from that.

The baseline for the contributions of this paper is the
work of Giorgini et al [14]. After a large case study on the
compliance with the Italian privacy legislation of an ISO-
19977-like security policy [20], it emerged that the con-
cepts offered in SecureTropos are the right ones but are too
coarse-grained to capture important security facets. Specifi-
cally, unlike what the framework provides for, found that we
are often forced for pragmatic reasons to delegate services
and permissions to people we do not trust. Still we consider
the overall system secure if we have a way to hold such dele-
gations as accountable, by monitoring their (wrong)doings.

The second observation is that (mis)trust in people may
be due to different factors: we may (not) trust them to ac-
tually deliver the services we required, or to not abuse the
permissions we gave them. In trust management and autho-
rization settings (e.g. [4} 16, [7]) one only finds delegations
of permission only (through authorization). Requirements
of availability are equally important and can only be cap-
tured by modeling delegation of execution (where one actor
delegates to another the responsibility to execute a service.)

Thus, the key contributions of this paper is a refined
framework for modeling and analyzing security require-
ments over what has been proposed in [14} [13]. The re-
finement includes a distinction of the notions of delegation

of execution (at-least delegation) and delegation of permis-
sion (at-most delegation), the distinction of the notions of
trust of execution (at-least trust) and trust of permission (at-
most trust), and the use of monitoring as a security pattern,
a design solution to overcome the problem of lack of trust
between actors. These constructs have been formalized and
can be formally analyzed through a tool-supported process.
In the remainder of the paper, we introduce a running
example (§2)) discuss the overall framework (§3] 4] and §5),
its formal semantics (§6) and some formal properties for
verification (§7). We conclude with a brief discussion of
related work and a summary of our contributions (§8).

2 A Running Example

The running example will be a view of a substantial case
study: the compliance to the Italian security and privacy
legislation of public administrations such as universities, lo-
cal governments and health care authorities.

In summary, the law requires administrations to set up
a sophisticated security and privacy policies that, for what
security is concerned, is fairly close to the complexity of
the ISO-17999 standard for security management. Deal-
ing with privacy introduces additional complications such
as data ownership, trust and consent. More details on the
requirements analysis for an university can be found in [20].

For readability we introduce here a dramatis personad' |

Alice is an administrative officer, for example of the teach-
ing evaluation office.

Bob, Bert, and Bill are students;
Sam is (the manager of) the student IT systems,

Paul and Peter are professors

3 Tropos and Secure Tropos

Secure Tropos has been proposed in [14} [13] as a formal
framework for modeling and analyzing security has been
proposed. It enhances the agent-oriented software develop-
ment methodology Tropos [5]. Tropos uses the concepts of
actor, goal, task, resource and social dependency for defin-
ing the obligations of actors (dependees) to other actors (de-
penders). A goal represents the strategic interests of an ac-
tor. A task specifies a particular course of action that pro-
duces a desired effect, and can be executed in order to sat-
isfy a goal. A resource represents a physical or an infor-
mational entity. Finally, a dependency between two actors
indicates that one actor depends on another to accomplish
a goal, execute a task, or deliver a resource. Tropos is well

IThis impersonation is closer to reality than one may think: the law re-
quires to assign the responsibility of each IT sub-system to human beings.

suited to to describe both an organization and an IT system.
However, in [12] we have argued that it lacks the ability to
capture at the same time the functional and security features
of the organization, and hence the new proposal.

For sake of simplicity, in this new framework, the notion
of service is used to refer to a goal, task, or resource, and
three new relationships have been introduced.

e Ownership (between an actor and a service) if an agent
is the legitimate owner of a service.

e Trust (among two actors and a service), so that an actor
A trust another actor B on a certain goal G.

e Delegation (among two actors and a service), if an ac-
tor A explicitly delegates to an actor B a goal, or the
execution of a task or the access to a resource.

Example 1 By law, Bob is the owner of his personal data.
Yet, the data is stored on servers that are managed by Sam
who give access to Alice and Paul. So, Sam should seek the
consent of Bob for data processing.

Another feature is the distinction between trust and delega-
tion. Delegation marks a formal passage in the domain that
is currently modeled by the requirements engineers.

Example 2 The letter of the CEO of the University that as-
sign to the CIO the responsibility for enacting privacy pro-
tection measures is an example of delegation.

In digital trust management systems, this would be matched
by the issuance of a delegation certificate. In contrast, trust
marks simply a social relationship that is not formalized by
a “contract” (such as digital credential or a letter). There
might be cases (e.g. because it is impractical or too costly),
where we might be happy with a “social” protection, and
cases in which formal delegation is essential. Such deci-
sions are taken by the designer and the formal model just of-
fers support to spot inconsistencies. The basic consequence
of delegation is having more permission holders.

4 Refining Delegation and Trust

Now we introduce a conceptual refinement of the dele-
gation and trust relationships, that will allow us to capture
and model important security facets

Example 3 Alice is interested in gathering data on stu-
dents’ performance, for which she depends on Sam. Bob
owns his sensitive personal information, such as his student
careers. Bob delegates permission to provide information
about his career to Sam on condition that his privacy is pro-
tected (i.e., his identity is not revealed).

In this scenario (Fig. [I(a)), there is a difference of rela-
tionship between Alice-Sam and Bob—Sam. This difference
is due to a difference in the type of delegation.

Example 4 Bob delegates permission to Sam to provide
only the relevant information and nothing else. On the other
hand, Alice, who wants student data, delegates the execu-
tion of her goal to Sam. According to Alice, Sam should at
least fulfill the goal she requires. She is not interested in
what Sam does with Bob’s trust, apart from getting her in-
formation. The major worry of Alice is availability whereas
Bob cares about authorization. In other words, Alice’s ma-
jor concerns would be that tasks are delegated to people
that can actually do them, whereas Bob would be concerned
that subtasks are given to trusted people who will not mis-
use the permissions they have acquired.

If we want to check that requirements are consistent and
that security requirements of each actor are met, it is essen-
tial to distinguish between these two notions of delegation.
We use at-most delegation when the delegater wants the
delegatee to fulfill at most a service. This is delegation of
permission, where the delegatee thinks “I have the permis-
sion to fulfill the service (but I do not need to)”, whereas
at-least delegation means that the delegater wants the del-
egatee to perform at least the service. This is the delegation
of execution. The delegatee thinks, “Now, I have to get the
service fulfilled (let’s start working)”. In the pictorial repre-
sentation of Fig. [I] we represent these relationship as edges
respectively labeled P and E.

Further, we want to separate the concepts of trust and
delegation, as we might need to model systems where some
actors must delegate permission or execution to other actors
they don’t trust. Also in this case it is convenient to have
a suitable distinction for trust in managing permission and
trust in managing execution. The meaning of at-most trust
is that an actor (truster) trusts that another actor (trustee) at
most fulfills the goal but will not overstep it. The meaning
of at-least trust is that an actor (truster) trusts that another
actor (trustee) at least fulfills the goal.

Example 5 Azr-most trust is good for permissions: Bob
trusts Sam to remain within certain bounds. He may del-
egate Sam more permissions than actually needed because
Sam will not abuse them. At-least trust fits execution. Alice
believe Sam can accomplish her tasks and possibly more.

Tropos original dependency is just at-least delegation
plus implicit at-least trust. The delegation proposed by
Giorgini et al. [14] blurs the distinction between at-least
and at-most delegation and at-least and at-most trust.

In the development of a system, a designer should be
able to guarantee and implement the trust and delegation re-
lationships captured in the social setting during the require-
ments analysis phase. This analysis can be done with the
methodology advocated in [14].

However, specific situations may impose that some ser-
vices have to be delegated to some actors even when there

is no trust relationship with those actors. In our exam-
ple [20], this is the outsourcing of services to outside
providers for which a trust relationship must still be built.
These providers might range from cleaning ladies to secu-
rity guards, from ERP clock cycles to network backbones.
In these cases we can adopt a monitor as a design pattern
able to provide a solution to the problem of lack of trust be-
tween actors. In the following section we present the idea
of monitoring.

S Monitoring

When work needs to be delegated even when there is no
trust, then monitoring can offer a surrogate for trust. Ac-
cordingly to Gans’s et al. [L1], the existence of distrust can
be tolerated with an additional overhead of monitoring the
untrustworthy delegatee. Here we refine Gans’s et al. intu-
ition integrating it in our framework.

The goal of an actor playing the role of monitor is to
check for the violation of trusﬂ The act of monitoring can
be done by the delegater himselﬂ or he can delegate it to
some other actors to get it done. Depending on the type
of delegation, we have two different kinds of monitors: at-
most monitor and at-least monitor. Consider the situation

presented in Fig.

Example 6 Suppose that there is no trust between Bob and
Sam for the goal “maintain privacy”, but the student must
delegate permission nonetheless. In this case, he depends
(D) on the ombudsman (O) for monitoring if Sam trans-
gresses her permissions. This is shown in Fig. with an
at-most monitor (monitor for permission — Mp) relationship
between the ombudsman and Sam.

Example 7 If Alice is not confident that Sam will provide
updated information, she may delegate to her secretary
Carol the task of confirming with, or nagging Sam to insert
new data as soon as it becomes available. This is shown in
Fig. with an at-least monitor (monitor for execution —
Me) relationship between Carol and Sam.

Another important distinction that emerges when we use
a monitor is related to type of service (goal, task or re-
source) for which the monitoring is required for.

Let us assume that the service S in Fig.[I]is a task (i.e., a
specific sequence of actions). So, the Monitor has to check
if Sam executes the actions of the task. What happens if
Sam delegates the task or some of its subtasks to other ac-
tors?

2Indeed, monitoring could also be used for the evaluation of the fulfill-
ment of a service assigned to a trusted actor.

3Intuitively, this is like saying that fellow is unreliable, I’ll give him the
job but keep an eye on him myself”.

rovide
ersonal
Information

rovide
>ersonal
Information

(a) Delegation

Example 8 To achieve the goal delegated to him in Exam-
ple [/} Sam will issue a letter to the head of each student
secretariat office so that student marks are entered into the
system within 30 days from the date that exams have taken
place.

A solution to this problem is to extend the monitoring to
all sublevels of delegation until the level where the actual
execution takes place. So, there will be a monitor relation-
ship between the Monitor and all the actor involved in the
execution of at least a part of the task.

Example 9 To reach the objective of 30 days requires that
professors return to the office assigned marks. This is a fur-
ther step of delegation of execution. Then, the actor respon-
sible at the office, beside actually monitoring his employees,
may also assign the task of reminding professors that they
must return on time their mark sheets.

Notice that monitoring as such is not a primitive con-
struct. It can be captured by other constructs within our
modeling framework. Specifically, every service will either
be delegated during the design process to a trusted actor, or
it will be delegated to an untrusted one, in which case the
delegatee will be monitored by a trusted actor.

On the formal model this corresponds to a design pattern
formalized in terms of additional axioms that allow us to
conclude that an actor is confident that a service will be
executed or a permission will not be abused even if existing
trust relations suggest otherwise.

Once we see monitoring as a simple design solution (es-
sentially a security pattern) we can treat monitoring goals
just as any other goal. So they can be further subject to re-
finement, delegation of execution and delegation of permis-
sion. Trust relationships linked to monitoring can then be
captured with standard constructs. For example, monitoring
often requires having permission to access monitored data
or personnel. This itself may create problems of permission
and authorization that can be model in the framework.

rovide
ersonal
Information

rovide

}Fer:onal
Information

(b) At-most Monitor
Figure 1. Delegation and Monitoring

Bob

rovide
ersonal
Information

rovide
ersonal
Information

rovide
ersonal
Information

Frovidc
Information

(c) At-least Monitor

General predicates

delegate(Type : t, Actor : a, Actor : b, Service : s)
delegateChain(Type : ¢, Actor : a,Actor : b, Service : s)
trust(Type : t, Actor : a, Actor : b, Service : s)
trustChain(Type : ¢, Actor : a, Actor : b, Service : s)
monitoring(Type : t, Actor : a, Actor : b, Service : s)
confident(Type : ¢, Actor : a, Service : s)

Specific for execution

requests(Actor : a, Service :)

provides(Actor : a,Service : s)

should_do(Actor : a, Service : s)

can_satisfy(Actor : a, Service : s)

Specific for Permission

owns(Actor : a,Service : s)

has_per(Actor : a, Service : s)

Goal refinement

goal(Service : s)

subgoal(Service : s1,Service : s2)
OR_subgoal(Service : s1,Service : s2)

AND _subgoal(Service : s1,Service : s2)
AND_decomp(Service : s1,Service : s2,Service : s3)

Table 1. Predicates

6 Formalization

As done in [14}[13]], we to use Datalog [1]] as the under-
lying semantic framework, also to be close to the semantics
of other frameworks for trust or security (e.g. [7, 17, 22]).

A Datalog program is a set of rules of the form L:- L; A
... N L, where L, called head, is a positive literal and
L, ..., L, are literals and they are called body. Intuitively,
if Ly, ..., L, are true in the model then L must be true in the
model. In Datalog, negation is treated as negation as failure:
if there is no evidence that an atom is true, it is considered
to be false. Hence if an atom is not true in some model, then
its negation should be considered to be true in that model.

We start by presenting the predicates for our frame-
work. Table [I] extends the predicates already presented
in [14} [13] introducing specific predicates for execution,

permission and monitorinﬂ For compactness’ sake we use
the first argument of the predicates to indicate the type of
actions. Thus, delegate, delegateChain, and monitoring
have a type t € {exec,perm}; trust, trustChain have a
type t € {ezxec, perm, mon}; and confident has a type
t € {satisfy, exec, owner}. Once again, we specify pred-
icates for generic “services” because differentiating them
into goals, tasks and resources is immediateﬂ

6.1 Formal Model for Execution

The predicates that we introduced corresponds to the
relations that the requirements engineer can actually draw
during her analysis. The predicate requests(a, s) holds if
actor a wants service s fulfilled, while provides(a, s) holds
if actor a has the capability to fulfill service s. The pred-
icate delegate(ezec, a, b, s) holds if actor a delegateﬁ the
execution of service s to actor b. The actor a is called the
delegater; the actor b is called the delegatee. The predicate
trust(ezec, a, b, s) holds is actor a trusts that actor b at least
fulfills service s. The actor a is called the truster; the actor b
is called the trustee. The predicate trust(mon, a, b, s) holds
if actor a trusts that actor b monitors whether service s will
be satisfied. The predicate monitoring(ezec, a, b, s) holds if
actor a monitors if actor b at least can satisfy service s.

Other predicates are used to define properties that
will be used during formal analysis. The predicates
delegateChain(exec, a,b,s) and trustChain(exec,a,b, s)
hold if there is a delegation and a trust chain respectively,
between actor a and actor b. The predicate should_do(a, s)
identify actors who should directly fulfill the service. The
basic idea of the predicate can_satisfy is that “for every goal
I have assigned responsibilities so that it can be fulfilled”. In
other words, if an actor has the objective of fulfilling a ser-
vice, he can satisfy it. Thus it locates the common leaves of
the delegation trees of execution and permission. Thus, the
predicate can_satisfy(a, s) holds if actor a can satisfy ser-
vice s. The predicate confident(satisfy, a, s) holds if actor
a is confident that service s can be satisfied. Finally, we
have the predicates for goal refinement. Their semantics
and axiomatization are straight-forward.

The axiomatization is more complex for delegation of
execution as shown in Table 2l The first batch of axioms
deals with actors and trust diagrams: E1 and E2 build a del-
egation chain of execution; E3 and E4 (M1 and M2) build

4Monitoring is not a primitive predicate and is rather a defined predi-
cate. However, for sake of readability, it is convenient to use the pattern’s
name rather than expanding the pattern’s definition.

SFor resources we must replace the subgoal relation with the part-of
relation.

SFor the sake of simplicity we do not deal with the question of depth
here. See Li et al. [16] for an account of delegation with depth. What
has emerged from several case studies is that depth is less important than
qualifications such as “only to members of the same office”.

a trust chain for execution (monitoring); ES builds chains
over monitoring steps.

E6 and M4 have chains propagate to subgoals. Accord-
ing to E6 execution-trust flows top-down with respect to
goal refinements. The axiom for monitoring M4 states that
trustChain flows top-down with respect to goal refinements.
MS states that if an actor under monitoring delegates a ser-
vice to another, then the monitor have to watch for the del-
egatee, that is, the monitor follows the delegation.

The remaining axioms describe how global properties of
the model are defined. E7 and E8 state that an actor has
to execute the service if he provides a service and if either
some actor delegates the service to him, or he himself aims
for the service. E9 and E10 state an actor, who requests
for a service, can satisfy the service if either he provides it
or he has delegated it to someone who can satisfy it. Goal
refinements are taken care of by using the axioms E11 and
E12. If an actor can satisfy at least one of the or-subgoals
of a service, then he can satisfy the main service. Also, if
he can satisfy all and-subgoals, then he can satisfy the main
service.

The notion of confidence is captured by axioms E13-
E16. A, the aimer, is confident that S will be fulfilled, if
he knows that all delegations have been done to trusted or
monitored agents and that the agents who will ultimately
execute the service, have the permission to do so. Goal re-
finements are taken care of by using axioms E15 and E16:
if an actor is confident that at least one of the or-subgoals of
a service will be fulfilled, then he can be confident that the
service will be fulfilled. And-subgoals are analogous.

6.2 Formal Model for Permission

In Table [T we also have predicates for modeling delega-
tion of permission. The first set of predicates corresponds
to the relations drawn by the requirements engineer. The
predicate owns(a, s) holds if actor a owns service s: the
owner of a service has full authority concerning access and
usage of his services, and he can also delegate this authority
to other actors. The intuition is that delegate(perm, a, b, s)
holds if actor a at most delegates the permission to fulfill
service s to actor b. As for execution, the actor ¢ is called
the delegater; the actor b is called the delegatee. The pred-
icate trust(perm, a, b, s) holds is actor a trusts that actor b
at most has the permission to fulfill service s. The predi-
cate monitoring(perm, a, b, s) is the dual of the execution
counterpart.

Also in this case other predicates are used to define inter-
esting properties for the formal analysis by the requirement
engineer. The predicates delegateChain(perm, a, b, s) and
trustChain(perm, a, b, s) hold if there is a delegation, resp.
a trust chain of permission among actor a and actor b. The
basic idea of has_per sums up the possible ways in which an

Delegation

El delegateChain(ezec, A,
E2 delegateChain(ezec, A

,S) «— delegate(ezec, A, B, S)
A, B,S

B
,C, S) «— delegate(ezec, A, B, S) A delegateChain(ezec, B, C, S)

Trust

E3 trustChain(ezec, A, B,
E4 trustChain(ezec, A, C
E5 trustChain(ezec, A, C,
E6 trustChain(exec, A, B

— trust(ezec, A, B, S)

«— trustChain(mon, A, B, S) A monitoring(exec, M, C, S)

5)
S) « trust(ezec, A, B, S) A trustChain(ezec, B, C, S)
S)
S1) < subgoal(S, S1) A trustChain(ezec, A, B, S)

, B, S) « trust(mon, A, B, S)

A
M2 trustChain(mon, A
M3 trustChain(mon, A,
M4 trustChain(mon, A

n
n)

(
(
(
(
M1 trustChain(mon,
(
(
(

)

«— trustChain(ezec, A, B, S) A trustChain(mon, B, C, S)

B, S)
,C,S) « trust(mon, A, B, S) A trustChain(mon, B, C, S)
C,S)
B, S1) < subgoal(S, S1) A trustChain(mon, A, B, S)

Monitoring

M5 monitoring(ezec, M, B, S1) < delegateChain(ezec, A, B, S) A monitoring(ezec, M, A, S) A subgoal(S1, S)

Should do

E7 should_do(A, S) < delegateChain(ezec, B, A, S) A provides(A, S)
E8 should_do(A, S) < requests(A,.S) A provides(A4, S)

Can satisfy

E9 can_satisfy «— should_do(A4, S)

)

Ell can_satisfy

)

(4,5)
E10 cansatisfy(A, S) < delegate(ezec, A, B, S) A can_satisfy(B, S)
(A, S) < OR_subgoal(S1, S) A can_satisfy(A, S1)
El12 can_satisfy(A, S) < AND_decomp(S, S1, S2) A can_satisfy(A, S1) A can_satisfy(A, S2)

Confident to can satisfy

E13 confident(satisfy, A, S) < should_do(A, S)
El4 confident

()

(satisfy, A, S) < delegateChain(ezec, A, B, S) A trustChain(ezec, A, B, S) A confident(satisfy, B, S)
El15 confident(satisfy, A, S) < OR_subgoal(S1,.S) A confident(satisfy, A, S1)
El16 confident(satisfy, A, S) < AND_decomp(S, S1, S2) A confident(satisfy, A, S1) A confident(satisfy, A, S2)

Table 2. Axioms for execution

actor can grab the permission on a service: either directly or
by delegation. From the point of view of the owner, confi-
dence means that the owner is confident that the permission
that he has delegated will not be misused. Alternatively, the
owner is confident that he has delegated permission only to
trusted or monitored agents. This means that even if there
is one untrusted or unmonitored delegation, then the owner
could be uneasy about the likely misuse of his permissions.
So, an owner is confident, if there is no likely misuse of his
permission. It can be seen that there is an intrinsic double
negation in the statement. So we try to model it using a
predicate diffident(a, s). At any point of delegation of per-
mission, the delegating agent is diffident, if the delegation is
being done to an agent who is neither trusted not monitored
or if the delegatee could be diffident himself. In this way,
confident(owner, a, s) holds if the owner « is confident to
give the permission on service s only to trusted actors.
Table[3|presents the axioms for delegation of permission.
The first batch deals with actors and trust diagrams: P1 and
P2 build a delegation chain of permission; P3 and P4 build a
trust chain for permission; P5 builds chains over monitoring
steps. P6 has the chain propagate through subgoals. If an
actor trusts that another will not overstep the set of actions
required to fulfill a subgoal of a service, then the first can
trust the last not to overstep the set of actions required to
fulfill S. The permission trust, with respect to goal refine-

ments, flows bottom-up. M6 is used to build a trust chain
for monitor. M7 states that if an actor under monitoring del-
egates a service to another, then the monitor have to watch
for the delegatee, that is, the monitor follows the delegation.
The owner of a service has full authority concerning access
and disposition of it. Thus, P7 states that if an actor owns
a service, he has it. P8 states that the delegatee has the ser-
vice. The notion of confidence and diffidence that we have
sketched above is captured by the axioms P10-P12.

6.3 Combining Execution and Permission

More sophisticated properties require reasoning with
both execution and permission. To this end, we introduce
some notions that put together these two notions. In Table
we present the notions from both the point of view of the
requester and the point of view of the owner. The predicate
can_execute(a, s) holds if actor a can see service s fulfilled.
The predicate confident(ezec, a, s) holds if actor a is confi-
dent to see service s fulfilled. Actor a, who aims for service
s, is confident that s will be fulfilled, if he knows that all
delegations have been done to trusted or monitored agents
and that the agents who will ultimately execute the service,
have the permission to do so. This is done using the axioms
Ax5-Ax6. Goal refinements are taken care of by using the
axioms Ax7-Ax8. If a is confident that at least one of the

Delegation
Pl delegateChain(perm, A,
P2 delegateChain(perm, A
Trust
P3 trustChain(perm, A, B, S) « trust(perm, A, B, S)
P4 trustChain(perm, A, C, S) < trust(perm, A, B, S) A trustChain(perm, B, C, S)
P5 trustChain(perm, A, C, S) < trustChain(mon, A, B, S) A monitoring(perm, B, C, S)
(B, S)
(C

B, S) < delegate(perm, A, B, S)
C, S) « delegate(perm, A, B, S) A delegateChain(perm, B, C, S)

)

P6 trustChain(perm, A, B, S) < subgoal(S, S1) A trustChain(perm, A, B, S1)

M6 trustChain(mon, A, C, S) « trustChain(perm, A, B, S) A trustChain(mon, B, C, S)
Monitoring

M7 monitoring(perm, M, B, S1) < delegateChain(perm, A, B, S) A monitoring(perm, M, A, S) A subgoal(S1, S)
Has permission

P7 has_per(4,S) < owns(4, S)

P8 has_per(A, S) < delegateChain(perm, B, A, S) A has_per(B, S)

P9 has_per(A, Si) « subgoal(S1,S) A has_per(A, S)

Owner is confident to give the service to trusted actors

P10 confident(owner, A, S) < owns(A, S) A not diffident(A, S)

P11 diffident(A, S) < delegateChain(perm, A, B, S) A diffident(B, S)

P12 diffident(A, S) < delegateChain(perm, A, B, S) A not trustChain(perm, A, B, S)
P13 diffident(A, S) < subgoal(S1, S) A diffident(A, S1)

Table 3. Axioms for permission

Can see the service fulfilled (can execute)

Axl can_execute(A4, S) < should_do(A, S) A has_per(A4, S)

Ax2 can_execute(A4, S) «— delegateChain(ezec, A, B, S) A can_execute(B, S)

Ax3 can_execute(A4, S) «— OR_subgoal(S1, S) A can_execute(A, S1)

Ax4 can_execute(A4, S) < AND_decomp(S, S1,S2) A can_execute(A, S1) A can_execute(A, S2)

Confident to see the service fulfilled (confident to execute)

Ax5 confident(ezec, A, S) < should_do(A, S) A has_per(A, S)

Ax6 confident(ezec, A, S) < delegateChain(ezec, A, B, S) A trustChain(ezec, A, B, S) A confident(ezec, B, S)
Ax7 confident(ezec, A, S) < OR_subgoal(S1, S) A confident(ezec, A, S1)

Ax8 confident(ezec, A, S) « AND_decomp(S, S1, S2) A confident(ezec, A, S1) A confident(exec, A, S2)

Need to know

Ax9 need_to_have_perm(A, S) « should_do(A4, S)

Ax10 need_to_have_perm(A, S) < delegate(perm, A, B, S)Anot other_delegater(A, B, S) A need_to_have_perm(B, S)
Ax11 other_delegater(A, B, S) < delegate(perm, C, B, S) A need_to_have_perm(C,S) AN A # C

Table 4. Axioms Involving both permission and execution

or-subgoals of s will be fulfilled, then a can be confident
that s will be fulfilled. Also, if a is confident that all and-
subgoals of s will be fulfilled, then a can be confident that
s will be fulfilled.

Owners may wish to delegate permissions to providers
only if the latter actually do need the permission. The last
part of Table [] defines the predicates that are necessary to
analyze need-to-know properties. As a result of absence of
diffidence, the owner can be confident that his permission
will not be misused. But has this permission reached the
agents who actually need it? The owner might also want
to ensure that there has been not unwanted delegation of
permission. This can be achieved by identifying the agents
who actually need-to-know (or rather need-to-have) the per-
mission. This set of axioms captures also the possibility
of having alternate paths of permission delegations. In this

case the formal analysis will not yield one model but multi-
ple models in which only one path of delegation is labeled
by the need-to-have property and the others are not.

Example 10 (Figure2) Alice and Carol (7 and 8) have
both received the consent (permission) by Bob (1) for us-
ing his personal data, and both delegate it to the faculty
secretariat (3), which must have the permission to provide
the data to Paul (6), the university tutor who should provide
personal counseling to Bob. In this case only one of either
Alice or Carol needs to have the permission.

7 Analysis and Verification

Design properties are not enforced with axioms for two
reasons. At first the actual system drawn by the requirement

OWNER @ @

£ Py
N / A\
PROVIDER ©) @ ©)
\\ ’
REQUESTER @

—e =—Delegation of permission ==-===—Trust of permission

...... =—Trust of execution

- - --*=—Delegation of execution

Figure 2. Need-to-Know and Multiple Permis-
sions Paths

Execution
Prol delegateChain(ezec, A, B, S)
=7 trustChain(ezec, A, B, S)
Pro2 requests(A, S) =?can_satisfy(A, S)
Pro3 requests(A, S) =7confident(satisfy, A, S)
Pro4 should_do(A4,S)
=7not delegateChain(ezec, A, B, S)
Permission
Pro5 delegateChain(perm, A, B, S)
=7 trustChain(perm, A, B, S)
Pro6 owns(A,S) =7 confident(owner, A, S)
Pro7 owns(A, S) =7 not delegateChain(perm, B, A, S)
NA # B
Execution & Permission
Pro8 requests(A, S) =7?can_execute(4, S)
Pro9 requests(A4,.S) =?confident(ezec, A, S)
Prol0 owns(A, S) =7need_to_have_perm(A4, S)

need_to_have_perm(A, S) A
confident(owner, A, S)

Proll owns(A4,S) :>?{

Table 5. Desirable Properties of a Design

engineer may not satisfy them, and therefore the missing
link may be actually a bug. Second, there might be many
ways in which a requirement engineer may wish to fulfill
desired properties. We use the DLV systerrﬂ to verify secu-
rity properties with respect to a Secure Tropos model.

In Table [3] we use the A =? B to mean that one must
check that each time A holds it is desirable that B also
holds. In Datalog this can be represented as the constraint
- A, not B. If the set of features is not consistent, i.e., they
cannot all be simultaneously satisfied, the system is incon-
sistent, and hence it is not secure. This also guarantee us
that our proposed axioms are consistent if we check for con-
sistency of the model without trying to enforce any property.

Prol states that if there is a delegation chain either the
delegater trusts the delegatee or there is the monitor and

http://www.dbai.tuwien.ac.at/proj/dlv

PROVIDER % ,, /Q)\\

REQUESTER @ @ : @

(a) From requesters’ viewpoint

OWNER

(b) From owners’ viewpoint

Figure 3. Design for delegation of execution
and permission

the delegater trust the monitor. Pro2 states that a requester
wants to can satisfy his goals, and Pro3 states that a re-
quester wants to be confident to satisfy the service.

Example 11 (Figure[3(a)) Bob and Bert (1 and 2) need
counseling. They can receive it (formal relation can sat-
isfy) because they delegate the execution to Paul and Peter
(4 and 5), while Bill (3) cannot receives all necessary ad-
vices because he requested some of them only to Alice (6)
which is not able to provide counseling on faculty matters.

Bob is also confident to receive all counseling he needs
since he delegates the execution to Paul and Peter (4 and 5)
whom he trusts, while Bert is not confident since he dele-
gates to Paul (4) that he does not trust.

Pro4 states that if an actor provides a service, then, if ei-
ther some actor delegates the service to him, or if he himself
requests the service, then he has to execute the service with-
out further delegation. Pro5 states that if there is a delega-
tion chain, either the delegater trusts the delegatee or there
is the monitor. Pro6 states that the owner of the service has
to be confident to give the service to trusted actors, and Pro7
states that a service cannot come back to the owner.

Example 12 (Figure3(b)) Bob and Bert (1 and 2) need to
provide their personal data for receiving accurate counsel-
ing. Bob is confident on his personal data since he delegates
the permission on it to two Paul and Peter (4 and 5) who he
trusts to use the data at most for counseling. On the other
hand, Bert is not confident on her data since she delegates it
to Paul (4) whom she does not trust to keep her information
confidential.

This example is very close to the example that we have pre-
viously seen on misplaced delegation (Example [IT). What
changes is what can be obtained by poor Bert. In the for-
mer case he is afraid to receive a bad advice (delegation of

OWNER ©) ®

PROVIDER @)\

REOUESTER @

Figure 4. Owner vs Requester

execution), in the latter that her information can be used for
other things than providing counseling.

The last part of Table [5] shows properties to verify at-
most model and at-least model at the same time. Pro§8 states
that the requester has to can see the service fulfilled. Pro9
states that the requester has to be confident to see the service
fulfilled.

Example 13 (Figure[d) Bob and Bert (1 and 2) delegate
the permission to use their personal information to Sam (4).
Further, Bob delegates the permission on his personal in-
formation to his parents (5). Paul (7), needs to get student’
information to provide accurate counseling, but he cannot
directly ask them. Thus, he delegates the execution to get
this sensitive data to Sam. Paul could delegate the execu-
tion to provide Bob’s data to his parents. So Paul can sup-
pose that someone provides the personal information of his
students. On the other hand, Peter (6), delegates the exe-
cution to provide the personal information of his students
to Carol (3), but the latter does not have the permission to
manage it. Thus, Carol cannot forward the information to
Peter. Further, Paul delegates the execution to provide the
personal information of his students to the student informa-
tion system, he does not trust it for this goal, and so he is
not confident to get the personal information of his students.

8 Related Work and Conclusions

The work by Liu et al. [18]] uses the goal-oriented
i*/Tropos RE methodology to introduce goals such as “Se-
curity” or “Privacy”, and proposes dependency analysis to
check if the system is secure. In [3]], general taxonomies for
privacy are proposed for a standard goal oriented analysis.
Another early RE example is [24]], which presents a require-
ments process model, based upon reuse and templates, for
security policies in a organization.

On the side of approaches explicitly intended for secu-
rity, we find the Jiirjens proposal for UMLsec [15]], an ex-
tension of the UML modeling low-level security mecha-
nisms, and the CORAS methodology for modeling risk and
vulnerability [9)]. Lodderstedt et al. [19] present a UML-
based modeling language (SecureUML). Their approach is

2 57-Tool - new goal”
File Tools Help

ECCOIEIC -5 - oElen)
B [[olololo] [O[e[ofo] [2[a[=[e[e[el=[[s[s
® e = | [u[v[(o] o |- (2] o[a[s

Relation 2116801779
TrustPermission

Truses
[Actor 1

Tusies

[Actor 2

Trustum:

[Goal 14

Depth:

|

Connector type

Figure 5. ST-Tool

focused on modeling access control policies and integrat-
ing them into a model-driven software development pro-
cess. McDermott and Fox adapt use cases [21] to capture
and analyze security requirements, and they call the adap-
tion an abuse case model. An abuse case is an interaction
between a system and one or more actors, where the results
of the interaction are harmful to the system, or one of the
stakeholders of the system. Guttorm and Opdahl [23]] define
misuse cases, the inverse of UML use cases, which describe
functions that the system should not allow. Moving to-
wards early requirements, the role of abuse-cases is played
by Anti-Goals proposed by van Lamsweerde et al. [25].

In this paper we have extended our previous work [14}
13]] providing a comprehensive modeling framework for se-
curity requirements. In particular, the framework offers

o the notions of delegation and trust of execution and
delegation and trust of permission, respectively in the
form of at-least and at-most delegation and trust;

o the use of monitoring as design solution (pattern) to
overcome the problem of lack of trust between actors;

e a comprehensive semantic model based on Datalog to
ease translations from requirements into security poli-
cies and trust management systems using the same se-
mantics (as already stated in [13]]).

Our framework with all new features presented in this
paper is supported by ST—Tooﬂ (Figure . ST-Tool is a
graphical tool (implemented in java) to support the design
of (Secure) Tropos models. ST-Tool allows system design-
ers to draw (Secure) Tropos diagrams by selecting from
the menu the desired (Secure) Tropos elements and to ver-
ify the correctness of the specification of the correspond-
ing element. The tool allows an automatic transformation
from Secure Tropos graphical models into formal specifi-
cations, especially into both Datalog specification and For-
mal Tropos specification [[10]. For every Tropos elements
it is possible to specify properties (i.e. creation-properties,

80n the web at http://sesa.dit.unitn.it/sttool/,

http://sesa.dit.unitn.it/sttool/

invar-properties, fulfill-properties) with respect to the syn-
tax of Formal Tropos by selecting the corresponding panel
in the menu. The resulting specification in Formal Tropos
is automatically displayed by selecting the corresponding
panel. Similarly, a Datalog specification is generated and
displayed. This tool provides also a user friendly inter-
face within the DLV system and permits a designer to select
properties of each model and to specify additional security
policies. The resulting Datalog specification is automati-
cally verified by the DLV system with respect to the prop-
erties that the system designer want to check.

Future work aims at adding late refinement steps until we
can automatically derive security services and mechanisms
4 1a ISO-7498-2 and ISO-17799.

References

[1] S. Abiteboul, R. Hull, and V. Vianu.
Databases. Addison-Wesley, 1995.

R. Anderson. Security Engineering: A Guide to Building
Dependable Distributed Systems. Wiley Computer Publish-
ing, 2001.

A. L. Anton, J. B. Earp, and A. Reese. Analyzing Web-
site privacy requirements using a privacy goal taxonomy. In
Proc. of RE’02, pages 23— 31. IEEE Press, 2002.

T. Aura. On the Structure of Delegation Networks. In Proc.
of the 1998 CSFW, pages 14-26. IEEE Press, 1998.

P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini. TROPOS: An Agent-Oriented Software Develop-
ment Methodology. JAAMAS, 8(3):203-236, 2004.

R. Crook, D. Ince, L. Lin, and B. Nuseibeh. Security Re-
quirements Engineering: When Anti-requirements Hit the
Fan. In Proc. of RE’02, pages 203-205. IEEE Press, 2002.
J. DeTreville. Binder, a logic-based security language. In
Proc. of 2002 IEEE Symp. on Sec. and Privacy, pages 95—
103. IEEE Press, 2002.

P. T. Devanbu and S. G. Stubblebine. Software engineering
for security: a roadmap. In Proc. of ICSE’00 - Future of
Software Eng. Track, pages 227-239, 2000.

R. Fredriksen, M. Kristiansenand, B. A. G. K. Stglen, T. A.
Opperud, and T. Dimitrakos. The CORAS framework for a
model-based risk management process. In Proc. of SAFE-
COMP’02, LNCS 2434, pages 94-105, 2002.

A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso.
Model checking early requirements specifications in tropos.
In Proc. of RE’01, pages 174-181. IEEE Press, 2001.

G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Modeling
the Impact of Trust and Distrust in Agent Networks. In Proc.
of AOIS’01, pages 45-58, 2001.

P. Giorgini, F. Massacci, and J. Mylopoulous. Requirement
Engineering meets Security: A Case Study on Modelling
Secure Electronic Transactions by VISA and Mastercard.
In Proc. of ER’03, LNCS 2813, pages 263-276. Springer-
Verlag, 2003.

P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zan-
none. Filling the gap between Requirements Engineering
and Public Key/Trust Management Infrastructures. In Proc.

Foundations of

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

10

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

(25]

[26]

of EuroPKI’04, LNCS 3093, pages 98—111. Springer-Verlag,
2004.

P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zan-
none. Requirements Engineering meets Trust Management:
Model, Methodology, and Reasoning. In Proc. of iTrust’04,
LNCS 2995, pages 176-190. Springer-Verlag, 2004.

J. Jiijens. Towards Secure Systems Development with
UMLsec. In Proc. of FASE’01, pages 187-200. Springer-
Verlag, 2001.

N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A
logic-based approach to distributed authorization. TISSEC,
6(1):128-171, 2003.

N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of A Role-based Trust-management Framework. In Proc.
of 2002 IEEE Symp. on Sec. and Privacy, pages 114-130.
IEEE Press, 2002.

L. Liu, E. S. K. Yu, and J. Mylopoulos. Security and Privacy
Requirements Analysis within a Social Setting. In Proc. of
RE’03, pages 151-161. IEEE Press, 2003.

T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Secu-
rity. In J.-M. Jezequel, H. Hussmann, and S. Cook, editors,
Proc. of UML’02, LNCS 2460, pages 426—441. Springer-
Verlag, 2002.

F. Massacci, M. Prest, and N. Zannone. Using a Secu-
rity Requirements Engineering Methodology in Practice:
The compliance with the Italian Data Protection Legislation.
Comp. Standards & Interfaces, 2005. To Appear. An ex-
tended version is available as Technical report DIT-04-103
ateprints.biblio.unitn.it.

J. McDermott and C. Fox. Using Abuse Case Models for Se-
curity Requirements Analysis. In Proc. of ACSAC’99, pages
55-66. IEEE Press, 1999.

P. Samarati and S. D. C. di Vimercati. Access Control: Poli-
cies, Models, and Mechanisms. In Proc. of the 2nd FOSAD,
LNCS, pages 137-196. Springer-Verlag, 2001.

G. Sindre and A. L. Opdahl. Eliciting Security Require-
ments by Misuse Cases. In Proc. of TOOLS Pacific 2000,
pages 120-131. IEEE Press, 2000.

A. Toval, A. Olmos, and M. Piattini. Legal requirements
reuse: a critical success factor for requirements quality and
personal data protection. In Proc. of RE’02, pages 95 —103.
IEEE Press, 2002.

A. van Lamsweerde, S. Brohez, R. De Landtsheer, and
D. Janssens. From System Goals to Intruder Anti-Goals: At-
tack Generation and Resolution for Security Requirements
Engineering. In Proc. of RHAS’ 03, pages 49-56, 2003.

J. Viega and G. McGraw. Building Secure Software.
Addison-Wesley, 2001.

	Introduction
	A Running Example
	Tropos and Secure Tropos
	Refining Delegation and Trust
	Monitoring
	Formalization
	Formal Model for Execution
	Formal Model for Permission
	Combining Execution and Permission

	Analysis and Verification
	Related Work and Conclusions

