
Requirements Engineering manuscript No.
(will be inserted by the editor)

Designing Socio-Technical Systems:
From Stakeholder Goals to Social Networks

Volha Bryl1, Paolo Giorgini1, John Mylopoulos1,2

1 University of Trento, Italy
2 University of Toronto, Canada

The date of receipt and acceptance will be inserted by the editor

Abstract Software systems are becoming an integral
part of everyday life influencing organizational and social
activities. This aggravates the need for a socio-technical
perspective for requirements engineering, which allows
for modelling and analyzing the composition and inter-
action of hardware and software components with hu-
man and organizational actors. In this setting, alter-
native requirements models have to be evaluated and
selected finding a right trade-off between the technical
and social dimensions. To address this problem, we pro-
pose a tool-supported process of requirements analysis
for socio-technical systems, which adopts planning tech-
niques for exploring the space of requirements alterna-
tives and a number of social criteria for their evaluation.
We illustrate the proposed approach with the help of
a case study, conducted within the context of an EU
project.1

Key words socio-technical systems, exploring re-
quirements alternatives, planning, evaluation metrics

1 Introduction

Unlike their traditional computer-based cousins, socio-
technical systems include in their architecture and oper-
ation organizational and human actors along with soft-
ware ones, and are normally regulated and constrained
by internal organizational rules, business processes, ex-
ternal laws and regulations [47]. Among the challenging
problems related to the analysis and design of a socio-
technical system is the problem of understanding the
requirements of its software component, the ways tech-
nology can support human and organizational activities,
and the way in which the structure of these activities is
influenced by introducing technology. In particular, in a

1 The original publication will be available at
www.springerlink.com in 2009.

socio-technical system, human, organizational and soft-
ware actors rely heavily on each other in order to fulfill
their respective objectives. Not surprisingly, an impor-
tant element in the design of a socio-technical system is
the identification of a set of dependencies among actors
which, if respected by all parties, will fulfill all stake-
holder goals, the requirements of the socio-technical sys-
tem.

Let us make the problem more concrete. KAOS [15] is
a state-of-the-art requirements elicitation technique that
starts with stakeholder goals and through a systematic,
tool-supported process derives functional requirements
for the system-to-be and a set of assignments of leaf-level
goals (constraints, in KAOS terminology) to external ac-
tors so that if the system-to-be can deliver the function-
ality it has been assigned and external actors deliver
on their respective obligations, stakeholder goals are ful-
filled. However, there are (combinatorially) many alter-
native assignments to external actors and the system-
to-be. How does the designer choose among these? How
can we select an optimal, or “good enough” assignment?
What is an optimal assignment? The KAOS framework
remains silent on such questions.

Alternatively, consider Tropos [7], an agent-oriented
software engineering methodology, which uses the i*
modelling framework [53] to guide and support the sys-
tem development process starting from requirements
analysis down to implementation. In Tropos and i*, goals
are explicitly associated with external stakeholders and
can be delegated to other actors or the system-to-be.
Or, they can be decomposed into subgoals that are del-
egated to other actors. Thus, requirements in Tropos
and i* are conceived as goals associated to social actors
within a network of social dependencies. In this setting,
selecting a set of assignments is more complex than in
KAOS because delegations can be transitive and iter-
ative. “Transitive” means that actor A1 may delegate
goal G to actor A2 who in turn delegates it to actor A3.
“Iterative” means that an actor A1 who has been dele-
gated goal G, may choose to decompose it (in terms of

2 Volha Bryl et al.

(a) Sample problem

(b) 1st alternative

(c) 2nd alternative

Fig. 1 Sample problem: two alternative models

an AND/OR decomposition) and delegate its subgoals
to other actors.

To illustrate the problem, consider the design task in
Figure 1 where actor A1 has to achieve goal G, which
can be refined into two subgoals G1 and G2. The actor
can decide to achieve the goal by itself or delegate it to
actor A2. In both cases, there are a number of alternative
ways that can be adopted. For instance, A1 can decide to
delegate to A2 all of G (Figure 1b), or a part of it (Fig-
ure 1c). The diagrams follow Tropos modelling notation
with circles representing actors, big dashed circles repre-
senting actors’ perspective, and ovals representing goals
(interconnected by AND/OR-decomposition links). So-
cial dependencies among actors for goals are represented
by ”De”-labelled directed links. Even for such a simple
example, the total number of alternative requirements
models is large, and a systemized approach and tool sup-
port for constructing and evaluating such networks of
delegations would be beneficial.

We are interested in supporting the design of socio-
technical systems, specifically the design of a network of
inter-actor dependencies intended to fulfill a set of ini-
tial goals. The support comes in the form of a tool that
is founded on an off-the-shelf AI (Artificial Intelligence)
planner which generates and evaluates alternative as-
signments of actor dependencies to identify an optimal
design. We are exploring a range of measures for eval-

uating optimality, inspired by AI planning, multi-agent
systems, as well as Economics. We are also experiment-
ing with our prototype tool to evaluate its scalability to
realistic design problems.

Specifically, our approach solves the following prob-
lem: given a set of actors, goals, capabilities, and social
dependencies, the tool generates alternative actor depen-
dency networks on the basis of the following steps, which
may be interleaved or used inside one another:

– Check problem-at-hand : (a) Analyze actor capabil-
ities: check whether existing actors possess enough
capabilities to collectively satisfy their goals; (b) An-
alyze actor inter-dependencies: check whether exist-
ing dependencies between actors allow them to fulfill
all given goals.

– Explore alternative dependency networks: (a) Gener-
ate alternatives using a planning approach to con-
struct an assignment of goals to actors that leads
to the satisfaction of the actors’ goals; (b) Evaluate
alternatives by assessing and comparing them with
respect to a number of criteria, provided by the de-
signer.

We have presented the idea of adopting the AI plan-
ning approach for the problem of constructing design
alternatives in [10,12]. In addition, in [10] we have dis-
cussed a preliminary approach to the evaluation of alter-
native system configurations. In [11], we place an empha-
sis on the systematic process of requirements analysis to
support the design of socio-technical systems. In this pa-
per, we integrate and extend earlier published work, and
present a complete tool-supported process. The process
combines formalization and analysis of an organizational
setting, the use of planning techniques, and a set of cri-
teria to evaluate the produced requirements models. Dif-
ferently from our previous publications, we formalize the
properties of the target requirements delegation network,
and show how planning domain is defined so that these
properties are satisfied by construction. Also, we present
an extended set of evaluation criteria related to the cost
and criticality of the obtained solution, as well as its
relation to the degree of satisfaction of non-functional
system requirements. We illustrate the approach with
the help of an e-business case study. We also report on
preliminary experimental results aimed to evaluate the
scalability of the prototype tool.

The rest of the paper is structured as follows. In Sec-
tion 2 we introduce the case study we use in this paper
for illustrative purposes, elaborate on the problem defin-
ition, and present the general schema of the requirements
engineering process which supports the designer in ex-
ploring and evaluating alternative options. In Sections 3
and 4 we explain in detail the two main components of
the proposed approach, namely, the use of planning to
construct alternative dependency networks, and a con-
crete set of evaluation criteria to evaluate and compare
the constructed alternatives. Section 5 presents the re-

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 3

sults of application of the approach to the case study, and
reports on scalability experiments. We conclude with a
short overview of related work in Section 6, and summa-
rizing remarks and future work directions in Section 7.

2 Requirements Analysis and Design in Tropos:
Problems and Proposed Solution

In the following we present an e-business case study, and,
with the help of it, discuss the problem of exploring
and evaluating the space of design alternatives in the
context of Tropos. Then, we present an overall schema
of the requirements engineering process which addresses
the above problem.

2.1 Case study

We further illustrate the problem on the basis of an e-
business case study, adapted from the SERENITY EU
project2. The case study focuses on the banking domain,
namely, on the loan provision process. A detailed de-
scription of the case study is given in [45], while here for
the sake of clarity and ease of understanding, we present
only those details which are relevant to the paper.

The main actors of the e-banking scenario are the
customer, the BBB Bank (hereafter the bank) and the
credit bureau. The customer has an intention to buy a
a house, and to do this, she needs to get a loan from
a bank. When looking for a suitable proposal, the cus-
tomer not only checks whether or not she is granted a
loan (which might depend, e.g., on her employment sta-
tus), but also on the conditions upon which the loan is
given (e.g. the loan costs).

The diagram in Figure 2 presents the actors of the
banking scenario along with their high-level goals and
inter-dependencies. In the diagram, an arrow from get
a loan to find money represents a means-end relation
between two goals, meaning that whenever the source
goal (means) is satisfied, the target goal (end) becomes
satisfied.

Although the bank has a complex organizational
structure and contains various departments, manage-
ment hierarchy, and hundreds of employees, we consider
only three roles (a role is a specification of an actor)
within the bank played by its employees. In particular,
we model and analyze strategic interests and function-
alities of the bank in terms of those of the bank man-
ager, the junior clerk and the senior clerk, which are
represented as roles in Figure 2 and are connected to
BBB bank actor with is-part-of relation. The manager’s
duty is leading the (local agency) of the bank. He can
be involved in all steps of the loan approval process, but
usually he is only involved when a final decision or su-
pervision is needed. The junior clerk is a bank employee

2 http://www.serenity-project.org/

with just a couple of years of working experience, there-
fore he can deal only with those activities which require
less skill and responsibility. The senior clerk is an experi-
enced bank employee, who is responsible for performing
all banking transactions for the customer.

The credit bureau is “a third-party business part-
ner of a financial institution that processes, stores and
safeguards credit information of physical and industrial
agents” [45]. The bank, through the senior clerk or the
bank manager, can contact the bureau in order to obtain
the information about credit worthiness of the customer.

2.2 The problem: selecting a good enough alternative

According to Tropos methodology, the process of mod-
elling and analyzing requirements for a socio-technical
system is the following. Starting with the initial organi-
zational setting presented in the diagram in Figure 2, the
designer refines the goals and relations between the ac-
tors/goals in order to provide the details on how the loan
approval is organized and how work is divided among
existing and/or new actors. In particular, goal models
are constructed for all top-level goals (get a loan in our
case). A goal model [29] is a decomposition tree of a root
goal into AND- or OR-subgoals. AND-decomposition of
a goal refines the goals into subgoals which are to be
satisfied in order to satisfy the parent goal, while OR-
decomposition of a goal consists of a list of alternative
subgoals any of which can satisfy the parent goal.

Given a goal model, the question is the following:
what is an optimal or, at least, good enough assignment
of leaf goals to actors so that the root goal is satisfied
when all actors deliver on the goals assigned to them?
The number of possible assignments is limited by the
fact that different actors have different capabilities, and
not all actors can delegate to all others. That is, an actor
can delegate a goal only to actors he can depend on, e.g.
those he knows, or manages, or pays money to. Still, the
number of alternative delegation networks grows expo-
nentially with the number of actors and/or goals that
need to be dealt with. This calls for a way to automati-
cally construct and evaluate possible alternatives to fa-
cilitate the design process.

To give an example, the corresponding problem to
be addressed in the case study consists of finding the
most effective way for bank employees to collaborate in
order to satisfy customer requests and bank strategic
interests. There could be several alternatives with re-
spect to goal decomposition and assignment, depending
on, for example, the involvement of the bank manager,
or the division of labour between the junior and senior
clerks. Another source of alternatives is the possible au-
tomation of (part of the) banking procedures. For this
purpose, another system actor is introduced, the bank
internal computer system (hereafter the system), which
is capable of storing data, performing different calcula-
tions (e.g. of loan costs), etc. Different decisions on what

4 Volha Bryl et al.

Fig. 2 E-business case study: initial settings

procedures to automate produce alternative social net-
works, which are all intended to satisfy customer needs
but differ in terms of cost, risk, workload, etc.

The problem of exploring the space of alternative del-
egation networks is central to this paper. To address it,
we complement the Tropos requirements analysis and
design process as described in the following section.

2.3 The proposed requirements engineering approach

Our proposal is to structure the requirements analysis
process to support a designer in constructing and eval-
uating requirements models. The general schema of the
process, which we have already presented in [11], is pre-
sented in Figure 3. The description of an initial organi-
zational setting is provided by a designer, and includes
actors, their goals and capabilities, dependencies among
actors, possible ways of goal refinements (decomposi-
tions of a goal into AND/OR-subgoals), and other goal
and actor properties (see Section 3.1 for details). This in-
put is analyzed and iteratively improved so as to output
a model that guarantees the fulfillment of stakeholder
goals and is good enough with respect to a number of
user-defined criteria. Most of the process steps can be
automated. However, the presence of a human designer
(referred to as an analyst in the schema) is inevitable:

the design of socio-technical systems can be supported
by tools but cannot be automated.

As a first step, the process checks whether there ex-
ists at least one assignment of goals to actors that leads
to the satisfaction of top-level goals. Input checker
analyzes the organizational setting description, detects
inconsistencies, and proposes possible improvements,
which then are approved, or rejected, or modified by the
designer. In particular, it is checked whether available
actors possess enough capabilities to collectively satisfy
their goals, and whether the relationships between ac-
tors permit this to happen. To analyze actor capabilities
means to check that for each goal it is possible to find
an actor who is capable of achieving each of its AND-
subgoals or at least one of its OR-subgoals. To analyze
actor interdependencies means to check whether a goal
can be delegated from an actor who wants to achieve
it to an actor who is capable of achieving it, namely,
whether there exists a path between two actors. In [11],
we give details on analyzing and dealing with missing ca-
pabilities, which is based on label propagation algorithm
similar to the one presented in [29]. After a missing ca-
pability is detected, there are two ways to deal with it:

– Add a new capability to an existing actor. Such a
decision could be based on the actual capabilities of
this actor. Namely, if this actor is already capable of

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 5

Fig. 3 Requirements analysis process: a general schema.

achieving one or several goals of the same type, it is
likely that it could manage the new goal as well.

– If there is no way to add the missing capability to
one of the existing actors, a new actor might be in-
troduced.

After the input is checked, the first possible alter-
native is generated by the Planner, which exploits AI
planning algorithms [52] to construct a social network
that is capable of achieving the specified high-level sys-
tem goals and, at the same time, satisfies a number of
(optimality) criteria (see Sections 3-4 for the details).

An alternative generated by the planner is then as-
sessed by the Evaluator with respect to a number of
criteria. Some optimality criteria can be incorporated
into the planning domain formalization (see Section 3.3),
while the others are used a posteriori to evaluate an
already obtained solution in terms of costs, risks, etc.
These criteria are defined by the designer and refer to the
optimality of the solution either from a global perspec-
tive (e.g. assessing the system security or efficiency), or
from the local perspectives of stakeholders (e.g. assessing
the workload distribution). Evaluation criteria and pro-
cedures are discussed in Section 4. If evaluation reveals
that an alternative is not acceptable, then the Evaluator
provides feedback to the Planner in order to formulate
constraints for the generation of the next alternative.
If no further alternative can be generated, the current
description of an organizational setting is changed ac-
cording to the constraints identified by the Evaluator,
and then is analyzed by the Input checker, and so on,
iteratively.

Note that the output of the evaluation process needs
to be approved by a human designer. User evaluation
interface presents the selected alternative to the de-
signer together with the summarized evaluation results.
Also, it provides the designer with the interface for giv-
ing his feedback on why the selected alternative does not
satisfy him. On the basis of this feedback the constraints

for the generation of the next alternative are formulated
and forwarded to the Planner.

The result of this process is a new requirements
model, which is, ideally, optimal or, in practice, good
enough with respect to all the local and global criteria,
and is approved by the designer. Note that after obtain-
ing one satisficable alternative it is possible to repeat
the process to generate others, reusing already identi-
fied constraints.

3 Generating Social Networks

In this section we give the details on how planning is used
to support the designer in constructing networks of goal
delegations among actors. We explain how the initial
organizational setting and the desired plan properties
are formalized, and how planning is conducted with the
help of an off-the-shelf planning tool.

This section extends the framework initially pre-
sented in [10] in the following respects: the planning do-
main formalization is extended to include means-end,
conflict and order relations among goals; the desired
plan properties are formally defined and incorporated
into the planning domain definition; the issue of domain
preprocessing is addressed, which allows simplifying the
domain for the better performance of the planning algo-
rithm.

3.1 Formalizing the organizational setting

To model an initial organizational settings a designer
needs to identify actors and goals, as well as social de-
pendencies among actors. For this purpose, a set of first-
order predicates is used, as presented in Table 1. The
predicates take variables of three types: actor, goal and
gtype (goal type) and are classified under the following
categories:

6 Volha Bryl et al.

Goal properties. To assign types to goals, type
predicate is used. Goal types are used to group goals into
domain specific types in order to allow for specifying the
properties of an entire group of goals instead of speci-
fying the same property for each goal separately. Goal
refinements are represented using and/or subgoaln pred-
icates. The temporal order in which goals are achieved is
constrained by the order predicate. To represent a goal
conflict, i.e. the situation in which only one of several
goals can be achieved, the conflict predicate is used. This
predicate is symmetric, that is

∀g1, g2 : goal conflict(g1, g2) → conflict(g2, g1)

The means-end relation between goals is represented
by the means end predicate, which reflects the possi-
bility that the satisfaction of an end goal is accom-
plished through the satisfaction of the corresponding
means goal. When a goal is satisfied, the satisfied predi-
cate becomes true.

Actor properties. Actor capabilities are described
with can satisfy and can satisfy gt predicates meaning
that an actor has enough capabilities to satisfy either
a specific goal, or any goal of a specific type. We define
the following axiom for can satisfy gt predicate.

∀a : actor, gt : gtype, g : goal
can satisfy gt(a, gt) ∧ type(g, gt) → can satisfy(a, g)

Initial actor desires are represented with wants predicate.
Actor relations. Dependencies among actors

are reflected by can depend on, can depend on gt, and
can depend on g predicates, which mean that one
actor can delegate to another actor the fulfilment
of any goal, or any goal of a specific type, or a
specific goal, respectively. We define the following ax-
ioms for can depend on and can depend on gt predicates.

∀a1, a2 : actor, gt : gtype
can depend on(a1, a2) → can depend on gt(a1, a2, gt),

∀a1, a2 : actor, gt : gtype, g : goal
can depend on gt(a1, a2, gt) ∧ type(g, gt) →

can depend on g(a1, a2, g).

Figure 4 presents an example of a formalized organi-
zational setting corresponding to the scenario shown in
Figure 2 (excluding information on roles and is-part-of
relations).

3.2 Planning approach

As indicated earlier, we adopt the view of i* [53] and
Tropos [7], where the requirements to socio-technical
systems are conceived as networks of delegations among
actors. Every delegation involves two actors, where one
actor delegates to the other the fulfillment of a goal.
The delegatee can either fulfill the delegated goal, or
further delegate it, thus creating another delegation re-
lation in the network. Intuitively, these can be seen as

Goal Properties

type(g : goal, gt : gtype)
and subgoaln(g : goal, g1 : goal, . . . , gn : goal)
or subgoaln(g : goal, g1 : goal, . . . , gn : goal)
order(g1 : goal, g2 : goal)
conflict(g1 : goal, g2 : goal)
means end(g1 : goal, g2 : goal)
satisfied(g : goal)

Actor Properties

can satisfy(a : actor, g : goal)
can satisfy gt(a : actor, gt : gtype)
wants(a : actor, g : goal)

Actor Relations

can depend on(a1 : actor, a2 : actor)
can depend on gt(a1 : actor, a2 : actor, gt : gtype)
can depend on g(a1 : actor, a2 : actor, g : goal)

Table 1 Formalizing an organizational setting: predicates

TBanking − gtype
Customer Bureau Bank Manager

JuniorClerk SeniorClerk− actor
BuyHouse FindHouse FindMoney CloseSale GetLoan

FindLoanPlan ApplyForLoan GetLoanApproved
GetLoanPlanInfo SelectLoanPlan SendApplication
GetApplAccepted CheckExtR− goal

(type GetLoanPlanInfo TBanking)
(type GetApplAccepted TBanking)
(type GetLoanApproved TBanking)
(can depend on gt Customer Bank TBanking)
(can depend on Bank Manager)
(can depend on Bank Bureau)
(can satisfy Customer FindHouse)
(can satisfy Customer SelectLoanPlan)
(can satisfy Customer SendApplication)
(can satisfy Customer CloseSale)
(can satisfy Bureau CheckExtR)
(and subgoal3 BuyHouse FindHouse FindMoney CloseSale)
(and subgoal3 GetLoan

FindLoanPlan ApplyForLoan GetLoanApproved)
(and subgoal2 FindLoanPlan

GetLoanPlanInfo SelectLoanPlan)
(and subgoal2

ApplyForLoan SendApplication GetApplAccepted)
(means end GetLoan FindMoney)
(wants Customer BuyHouse)

Fig. 4 An extract of formalization of the diagram in Figure 2

actions that the designer ascribes to the members of the
organization and the system-to-be. Further, the task of
constructing such networks can be framed as a planning
problem where selecting a suitable socio-technical system
structure corresponds to selecting a plan that satisfies
the goals of human, organizational and software actors.

Thus, we have chosen an AI planning approach to
support the designer in the process of selecting the best
alternative socio-technical structure. Planning is about
automatically determining a course of actions (i.e., a

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 7

plan) needed to achieve a certain goal where an action
is a transition rule from one state of the world to an-
other. A specification language is required to represent
the planning domain, i.e. to specify

– the initial state of the world,
– the desired state of the world,
– the actions that can be performed.

Once the domain is defined, the solution to the plan-
ning problem is a (not necessarily optimal) sequence of
actions that makes it possible to reach a desired state
starting from the initial state.

The set of predicates introduced in Table 1 is used
to represent the initial state of an organizational setting.
The desired state (or goal of the planning problem) is
described through the conjunction of satisfied predicates:
for each wants(a,g), satisfied(g) is added to the goal of
the planning problem.

A plan, which is constructed to fulfill the goals of
system actors, comprises the following actions:

– Goal satisfaction. Satisfaction of a goal is an es-
sential action, which can be performed only by an
actor who is capable of achieving the goal. The re-
sult of this action is the fulfillment of the goal. Action
SATISFIES(a : actor, g : goal) represents the fact that
goal g is achieved by actor a.

– Goal delegation. An actor may choose to dele-
gate one of his goals to another actor. We repre-
sent this transfer of responsibilities through action
DELEGATES(a1, a2 : actor, g : goal). It is performed
only if the delegator wants the goal to be fulfilled and
trusts that the delegatee will achieve it (i.e. he can
actually depend on the delegatee). After having dele-
gated the goal, the delegator is no longer responsible
for its fulfillment, and does not care how the delega-
tee satisfies the goal (e.g. by his own capabilities or
by further delegation).

– Goal decomposition. Two types of goal refinement
are supported by the framework: AND- and OR-
decomposition. A way/ways in which a goal can be
decomposed is predefined and known to all the sys-
tem actors. Actions AND DECOMPOSES(a : actor,
g, g1, ..., gn : goal) and OR DECOMPOSES(a : actor,
g, g1, ..., gn : goal) represent the fact that goal g is
decomposed into n AND/OR-subgoals by actor a.

Actions are described in terms of preconditions and ef-
fects, both being conjunctions of formulas containing the
predicates we have introduced, their negations, disjunc-
tions, and universal and existential quantifiers. If a pre-
condition of an action is true in the current state of the
world, then the action can be performed; as a conse-
quence of an action, a new state is reached where the
effect of the action is true. Figure 5 presents a sample
sequence of plan actions corresponding to the diagram
in Figure 2.

AND DECOMPOSES Customer BuyHouse
FindHouse FindMoney CloseSale

AND DECOMPOSES Customer GetLoan
FindLoanPlan ApplyForLoan GetLoanApproved

AND DECOMPOSES Customer FindLoanPlan
GetLoanPlanInfo SelectLoanPlan

DELEGATES Customer Bank GetLoanPlanInfo
SATISFIES Customer SelectLoanPlan
AND DECOMPOSES Customer ApplyForLoan

SendApplication GetApplAccepted
SATISFIES Customer SendApplication
DELEGATES Customer Bank GetApplAccepted
DELEGATES Customer Bank GetLoanApproved

Fig. 5 A fragment of a plan corresponding to Figure 2

3.3 Desired properties of a solution

In this section, we discuss the properties a solution to
a planning problem should satisfy. Later, we will define
formally the four plan actions introduced above, so that
these properties are satisfied by construction.

Let I = (D,F) be the initial state of an organiza-
tional setting, where D is the domain, i.e. a set of objects
(actors, goals and goal types), and F is a set of fluents,
i.e. positive or negative grounded literals (predicates in-
troduced in Table 1). We refer to the domain and fluent
components of a state I as ID and IF , respectively. We
also assume that

predicate(arg1, .., argn) ∈ IF → ∀i argi ∈ ID,

that is, if some predicate is in IF then all the objects it
takes as arguments are in ID.

Let P be a plan, i.e. a (partially) ordered sequence
of actions, G be a set of predicates which characterize
the goal of a planning problem. Then, the execution of
plan P in state I will result in a new state R of a socio-
technical system,

R = result(P, I).

In this setting, a planning problem consists in con-
structing such a P that

G ⊂ RF .

This property, referred to as basic plan property from
now on, in our setting means that all goals of all actors
are satisfied after a plan is executed. The property is for-
malized as shown in line 1 in Table 2. In this and further
properties, the names of actions of a plan P are capi-
talized, while the names of predicates contain lowercase
letters only.

A set of important plan properties, referred to as
plan compliance with the initial organizational
setting, consists in ensuring that a plan can actu-
ally be executed starting from the initial state of a
socio-technical system. Namely, the following properties
should hold.

8 Volha Bryl et al.

1. Only an actor who has a capability to satisfy a goal
is assigned the obligation to satisfy it.

2. A goal can be delegated from one actor to the other,
only if the former can actually depend on the latter.

3. A goal can be AND/OR-decomposed only in a pre-
defined way, that is, according to an AND/OR de-
composition tree that is given as part of the problem
statement.

For the formal representation of these properties see lines
2.1− 2.3 in Table 2.

Another related set of plan properties, referred to
as plan compliance with goal relations, represent
the fact that executing a plan cannot result in violating
temporal, conflict, or means-end relations between goals.

To formalize these properties, let us define a partial
order of plan actions3. Let a time step number T (p) ∈
{0, N − 1} be associated with each action p ∈ P where
N ≤ |P |. Namely, p is performed at T (p), which means
that p’s preconditions are true at T (p), while the effects
become true at T (p) + 1. Also let S(t), t ∈ {0, N − 1}
be the state of an organizational setting after all the
preceding actions p, T (p) < t are performed.

For a plan to be compliant with goal relations, the
following properties should hold.

1. Goals should be satisfied in the correct order.
2. Only one of the conflicting goals can be satisfied in

a plan.
3. If a means goal is satisfied and there are no satisfied

goals which are in conflict with the end goal, then
the end goal should become satisfied.

For the formal representation of these properties see lines
3.1− 3.3 in Table 2.

The last group of properties is concerned with the
optimality of a plan, meaning that a plan should be
such that the goals of system actors are satisfied in a
minimal number of steps. In this respect, the following
two properties, referred to as non-redundancy prop-
erties, should hold.

1. A goal cannot be satisfied more than once.
2. Plans are assumed to be minimal in the sense that

any subset of the actions of a plan does not satisfy
the goal for which the plan was intended.

For the formal representation of these properties see lines
4.1− 4.2 in Table 2. Note that the axiom 4.1 in Table 2
states that the same goal cannot be satisfied by different
actors, while the fact that the same goal cannot be satis-
fied twice by the same actor is implicit in that P is a set,
and thus, cannot contain duplicates. Also note that the
second property implies the absence of delegation loops
and unnecessary actions, meaning that no action over
the same goal is performed twice by two different actors.
Even though the first property can be inferred from the

3 Most of the planning algorithms return a (partially) or-
dered sequence of actions as a resulting plan.

second one, we state both explicitly for the sake of clar-
ity.

Now our aim is to define the plan actions in terms
of their preconditions and effects in the way that the
resulting plan satisfies all of the above four groups of
properties.

3.4 Planning formalization

As we mentioned already, planning actions are described
in terms of preconditions and effects, which in turn, are
expressed in terms of predicates presented in Table 1. Af-
ter the application of each subsequent plan action, the
state of the world changes, namely, some of the fluents
which describe the state of the target socio-technical sys-
tem become true, while the others become false.

A plan which satisfies all actor goals, should step by
step change the initial state into the final state where sat-
isfied(g) is true if initially wants(a,g) was true for some
actor a. Thus, the key idea is to propagate wants(..,g)
along the delegation links from the actor who wants g
initially, towards the actor(s) who are responsible for sat-
isfying either g or its subgoals. With this idea in mind,
we define the actions as presented in Table 3 and ex-
plained in the following.

– SATISFIES(a : actor, g : goal). The preconditions of
the satisfaction action are the following: a wants g
to be satisfied, a is capable of achieving g (or any
goal of the same type), all the goals that should be
satisfied before g are satisfied, no goals which are in
conflict with g are satisfied. The two effects are: g is
satisfied, a no longer wants g to be satisfied. Thus,
each satisfaction action removes (makes false) one
wants predicate from the current state of the world.

– AND DECOMPOSES(a : actor, g, g1, ..., gn : goal)
and OR DECOMPOSES(a : actor, g, g1, ..., gn : goal).
The preconditions of a decomposition action are: a
wants g to be satisfied, it is possible to AND/OR-
decompose g into subgoals g1, ..., gn. As an effect,
a no longer wants g to be satisfied, while g1, ..., gn

are added to the list of a’s desires, i.e. a now wants
g1, ..., gn to be satisfied. Thus, a decomposition action
removes wants predicate for the parent goal from the
state of the world, but adds (makes true) n wants
predicates, one for each of the subgoals.

– DELEGATES(a1, a2 : actor, g : goal). The precondi-
tions of a delegation action are: a1 wants g to be
satisfied, a can depend on a2 either for any goal or
for the goal of the type which g belongs to. The ef-
fects are the following two: a1 no longer wants g to be
satisfied, while g is added to the list of a2’s desires,
i.e. a2 now wants g to be satisfied. Thus, a delegation
action removes one wants predicate from the current
state of the world, and at the same time adds one: in
a sense, it “passes” wants for g from the delegator to
the delegatee.

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 9

Basic plan property

1.∀a : actor, g : goal.wants(a, g) ∈ IF →
satisfied(g) ∈ RF

Compliance with initial organizational setting

2.1∀a : actor, g : goal.SATISFIES(a, g) ∈ P →
can satisfy(a, g) ∈ IF

2.2∀a1, a2 : actor, g : goal.DELEGATES(a1, a2, g) ∈ P →
can depend on g(a1, a2, g) ∈ IF

2.3.1∀a : actor, g, g1, . . . , gn : goal.AND DECOMPOSES(a, g, g1, . . . , gn) ∈ P →
and subgoaln(g, g1, . . . , gn) ∈ IF

2.3.2∀a : actor, g, g1, . . . , gn : goal.OR DECOMPOSES(a, g, g1, . . . , gn) ∈ P →
or subgoaln(g, g1, . . . , gn) ∈ IF

Compliance with goal relations

3.1∀a : actor, g1, g2 : goal.order(g1, g2) ∈ IF →
satisfied(g1) ∈ SF(T(SATISFIES(a, g2)))

3.2∀g1, g2 : goal.conflict(g1, g2) ∈ IF →
¬(satisfied(g1) ∈ RF ∧ satisfied(g2) ∈ RF)

3.3∀p ∈ P, g1, g2 : goal.means end(g1, g2) ∈ IF ∧ satisfied(g1) ∈ T(p)∧
¬(∃g′ : goal.satisfied(g′) ∈ T(p) ∧ conflict(g2, g

′) ∈ IF) →
satisfied(g2) ∈ T(p)

Non-redundancy properties

4.1∀a : actor, g : goal.SATISFIES(a, g) ∈ P →
¬∃a′ 6= a : actor.SATISFIES(a′, g) ∈ P

4.2¬∃p.((R′ = result({P \ p}, I)) ∧ (G ⊂ R′
F))

Table 2 Desired plan properties

SATISFIES(a : actor, g : goal)

precondition:
wants(a, g) ∧ can satisfy(a, g)∧
∀gprev : goal ¬(order(gprev, g) ∧ satisfied(gprev))∧
∀g′ : goal ¬(conflict(g, g′) ∧ satisfied(g′))

effect:
satisfied(g) ∧ ¬wants(a, g)

AND/OR DECOMPOSES(a : actor, g, g1, ..., gn : goal)

precondition:
wants(a, g) ∧ and/or subgoaln(g, g1, ..., gn)

effect:
¬wants(a, g) ∧ wants(a, g1) ∧ ... ∧ wants(a, gn)

DELEGATES(a1, a2 : actor, g : goal)

precondition:
wants(a1, g) ∧ can depend on g(a1, a2, g)

effect:
¬wants(a1, g) ∧ wants(a2, g)

Table 3 Actions: preconditions and effects

In addition to the above, the following rules should
apply:

– When all AND-subgoals or at least one of the OR-
subgoals of a goal are satisfied, then satisfied should
become true for this goal.

– When a means goal of a means end relation is sat-
isfied and there are no satisfied goals which are in
conflict with the end goal, then the end goal should
become satisfied.

To address these one can define axioms, or derived predi-
cates that hold in every state of the system and are used

to complete the description of the current state [18].
However, due to performance problems introduced by
derived predicates in practice, we postpone the discus-
sion of this issue until Section 3.5.

Now, after the planning domain is fully defined, we
need to show that the desired plan properties (see
Table 2) are guaranteed by our approach.

Basic plan property. Following AI planning algo-
rithms, a plan is constructed in such a way that the
formula which represents the goal of the planning prob-
lem becomes true after the plan is applied to the initial
setting. Thus, all satisfied(g) predicates which comprise

10 Volha Bryl et al.

the goal of the planning problem are true after all the
plan actions are executed.

Plan compliance with the initial organiza-
tional setting. According to the definitions of the plan
actions (see Table 3):

– satisfaction action cannot be performed by an actor
who has no capability to satisfy a goal;

– delegation action cannot be performed if the delega-
tor cannot depend on the delegatee;

– decomposition of a goal can only be done in accor-
dance with the AND/OR goal tree given for the goal.

Plan compliance with the goal relations. Ac-
cording to the definition of the plan actions (see Table 3)
and domain axioms:

– a goal cannot be satisfied earlier than any goal it is
in order with;

– a goal cannot be satisfied if another goal with which
the former is in conflict is satisfied;

– satisfaction of a means goal implies the satisfaction
of the corresponding end goal.

Regarding the satisfaction of non-redundancy
properties there are two following observations. Firstly,
for the absence of redundancy we rely not on the way
our domain is defined, but on the planning approach it-
self. Basically, as most planning algorithms search for
a (locally) optimal plan [52], a plan containing redun-
dant actions can be immediately replaced by a better one
(which is shorter and still satisfies the planning problem
goal) just by removing a number of actions. Secondly,
the property stating that each goal should be satisfied
only once, is supported by the fact that once a goal is
satisfied, satisfied predicate becomes true for it and it
cannot be made false by any other action.

3.5 Implementing the planning domain

An important problem we have faced during the imple-
mentation of our approach, is the problem of choosing
the “right planner” among off-the-shelf tools available.
In the last years many planners have been proposed [40],
which are based on different (classes of) algorithms, use
different domain representation languages, adopt differ-
ent heuristics for making the plan search efficient, etc.
We have compared a number of planners (see [12] for the
details) with respect to following requirements:

– As discussed earlier in this section, we do not want
the planner to produce redundant plans. A plan is
non-redundant if after deleting an arbitrary action,
the resulting plan is no more valid (i.e. it does not
allow reaching the desired state of the world from
the initial state). Some planners we have tested (e.g.
DLV K [41]), do not satisfy this requirement.

– The planner should use PDDL (Planning Domain
Definition Language) since it has become a “stan-
dard” planning language and many research groups

work on its implementation. Moreover, the language
should support a number of advanced features that
are essential for implementing our planning domain
(e.g. negation in a planning problem goal, which is
not allowed in IPP [32]). Ideally, the planner should
support the last stable version of PDDL, so PDDL3
[26] or at least PDDL 2.2 [18] should be supported.

– It is desirable that the planner is available on both
Linux and Windows platforms as a set of the Tropos-
based reasoning tools we have developed [44] work
on both. However, we understand that most of the
available planners are research tools, and so they are
often released for the one specific platform only (with
Linux being a more frequent choice).

Based on the above requirements, we have chosen
LPG-td [36], a fully automated system for solving plan-
ning problems, supporting PDDL 2.2 specification lan-
guage for implementing our planning domain. We do not
claim that this is the best or the final choice of a plan-
ning tool, as the field of AI planning keeps developing.
The use of PDDL as a domain representation language
facilitates a lot any future transition from LPG-td to
another PDDL-based planner.

Now let us discuss two implementation specific ques-
tions, namely, the implementation of decomposition ac-
tions, and the implementation of domain axioms.

AND/OR-decomposition actions should take n + 2
parameters, where n is the number of subgoals of the
decomposed goal. As the number of action parameters
in PDDL should be fixed, we have to fix an upper bound
for n and introduce an and/or subgoal n predicate and
a decomposition action for each i ≤ n. According to
our experience, large values of n is hardly the case in
practice. E.g., for all the (medium-size industrial) case
studies considered in [45] and [54], n is less or equal
than 6. In Figure 6(b) an example of PDDL code of the
AND-decomposition action for the case of two subgoals
is presented.

As discussed in the previous section, axioms in our
planning domain should be defined for the following
cases:

– to infer the satisfaction of a goal from the satisfaction
of all its AND-subgoals, or one of its OR-subgoals;

– to infer the satisfaction of an end goal from the sat-
isfaction of its means.

Also, as explained in Section 3.1, the following rules
should hold for the planning domain predicates:

– if goal g1 is in conflict with goal g2, then g2 is in
conflict g1, that is, conflict relations between goals is
symmetric;

– predicates defining actors capabilities and possible
dependencies either for all goals or for the goals of a
specific goal type (can depend on, can depend on gt,
can satisfy gt), should be “instantiated” so that only

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 11

(: actionSatisfies
: parameters(?a− actor ?g − goal)
: precondition(and

(can satisfy ?a ?g)
(forall(?g1− goal)(and

(or (not(conflict ?g1 ?g)) (not(satisfied ?g1)))
(or (not(order ?g1?g)) (satisfied ?g1))
(or (not(means end ?g1 ?g)) (not(satisfied ?g1))))

)
(wants ?a ?g)

)
: effect(and

(satisfied ?g)
(not(wants ?a ?g))
(pr satisfies ?a ?g)

)
)

(a) Satisfaction action

(: actionAND Decomposes2
: parameters(?a− actor ?g ?g1 ?g2− goal)
: precondition(and

(and subgoal2 ?g ?g1 ?g2)
(wants ?a ?g)

)
: effect(and

(wants ?a ?g1)
(wants ?a ?g2)
(not(wants ?a ?g))
(pr and decomposes2 ?a ?g ?g1 ?g2)

)
)

(b) Decomposition action

Fig. 6 Samples of PDDL code.

capabilities and possible dependencies for the con-
crete goals (can depend on g and can satisfy) can be
used in action formalization.

However, defining axioms in terms of derived predi-
cates [18] increases the complexity of the planning prob-
lem to the point where the planner is not efficient any-
more. This problem is neither new, nor specific to the
planner we have adopted, as there is always a trade-
off between the expressiveness and manageability of a
formal domain definition language [25]. In a number of
works [25,17,23] different approaches to the preprocess-
ing of complicated planning domains are proposed. The
key idea is to define a mapping that transforms a com-
plicated domain to the equivalent one, in which axioms,
quantifies, conditional effects and the like, are repre-
sented using a restricted (and less expressive) subset of
PDDL language. For the domain axioms, the approach
consists in introducing new domain actions and modify-
ing the preconditions and effects of the existing actions.

None of the above cited approaches is suitable for
dealing with the axioms in our planning domain. The
algorithm presented in [25] was proven to be incorrect
in [23]. The alternative algorithms presented in [23] and

[17] consider only those axioms that cannot affect predi-
cates which are changed in effects of any domain action.
However, this is not the case in our domain, as satis-
fied predicate has to be changed both by actions and
axioms. Inspired by the above approaches, we propose
the following transformation of our planning domain to
its equivalent version that does not represent axioms ex-
plicitly.

Firstly, we define a number of new planning actions,
presented in Table 4. Combines actions appear in a plan
each time the satisfaction of a goal should be inferred
from the satisfaction of its subgoals. Infers actions sup-
port means-end relationship between goals. Note that in
the preconditions of this action we have to check whether
the end goal is in conflict with any of the goals satis-
fied so far. If so, the satisfaction of the end goal cannot
be inferred as, in our framework, the conflict relation is
stronger than the means-end relation.

In order to enforce the use of means-end relation and
to avoid redundancy, an additional constraint should be
added to the precondition of the satisfaction action. As
presented in Figure 6(a), a goal cannot be satisfied if
its satisfaction can be inferred using means-end relation.
Note that the meaning of predicate pr satisfies used in
Figure 6(a), as well as of the other “trace” predicates,
will be discussed in Section 4.4.

The last step concerns preprocessing the planning
problem specification. Namely,

– for each conflict(g1, g2) predicate in the prob-
lem definition, we add (avoiding the duplicates)
conflict(g2, g1);

– each can depend on is replaced by can depend on g
predicates for all goals g;

– each can depend on gt is replaced by can depend on g
predicates for all goals g of the corresponding goal
type;

– each can satisfy gt is replaced by can satisfy predi-
cates for all goals g of the corresponding goal type.

As a result, with LPG-td, producing a plan for the
planning domain with derived predicates takes more
than 100 times longer than producing the same plan with
the preprocessed domain. This, basically, means that
planning with the derived predicates does not scale, and
cannot be used in the real-life domains. During the eval-
uation of a plan, which is discussed in the next section,
Combine and Infers actions are not taken into considera-
tions, as only those actions which represent a temporal
act, rather than just an immediate inference, matter for
the evaluation process.

The proposed requirements analysis approach is sup-
ported by S&D (Security and Dependability) Tropos
Tool [44]. The tool has the interface for the input of
actors, goals and their properties. LPG-td is built in the
tool, and is used to generate alternative requirements
structures, which are then represented graphically using
Tropos notation. Further work on the tool (mainly, the

12 Volha Bryl et al.

COMBINES AND(g, g1, .., gn : goal)

precondition:
and subgoaln(g, g1, .., gn) ∧ satisfied(g1) ∧ .. ∧ satisfied(gn)

effect:
satisfied(g)

COMBINES OR(g, g1, .., gn : goal)

precondition:
or subgoaln(g, g1, .., gn) ∧ (satisfied(g1) ∨ .. ∨ satisfied(gn))

effect:
satisfied(g)

INFERS(g means, g end : goal)

precondition:
means end(g means, g end) ∧ satisfied(g means)∧
∀g : goal¬(conflict(g, g end) ∧ satisfied(g))

effect:
satisfied(g end)

Table 4 Additional actions: preconditions and effects

implementation of evaluation criteria discussed in the
next section, the work on which has just been started)
is among our primary future research directions.

4 Evaluating Social Networks

The alternative social networks generated by the planner
need to be evaluated and approved by the designer. How-
ever, such an evaluation can be complex enough even
for designers with considerable domain expertise, and
thus a supporting tool would be beneficial. Alternative
networks can be evaluated both from global and local
perspectives, i.e. from the designer’s point of view and
from the point of view of an individual actor who is part
of the network. In this section we discuss a number of
evaluation criteria of both perspectives, as well as their
application to the requirements networks.

4.1 Global evaluation criteria

The optimality of a solution in the global sense could be
assessed with respect to the following criteria.

– Length of proposed plan.

– Overall plan cost.

– Degree of satisfaction of non-functional require-
ments.

Length of proposed plan. The number of actions
in the proposed plan is most often the criterium for the
planner itself to prefer one solution over another. For
those planners which produce partially ordered plans
(e.g. IPP [32]), the corresponding measure is the number
of time steps in which a plan can be executed. Thus, it
can be assumed that a plan produced by a planning tool

is already optimal (or, in many cases, locally optimal,
e.g. in case of LPG-td) in terms of length minimization.

Overall plan cost. In AI planning, criteria which
take costs into consideration, are related to the idea of
plan metrics introduced in PDDL 2.1 [20]4. Plan metrics
specify the basis on which a plan is evaluated for a par-
ticular problem, and are usually numerical expressions
to be minimized or maximized. E.g. a cost or duration
can be associated to a domain action, and then a plan
is constructed so that the sum of costs/durations of all
the plan actions is minimal. However, the complexity of
the problem of optimizing a solution with respect to the
defined metrics is high, in fact, “the introduction of nu-
meric expressions, even in the constrained way that we
have adopted in PDDL 2.1, makes the planning problem
undecidable” [20]. Thus, effective use of plan metrics is
still a research issue, and, as a consequence, the feature
is poorly supported by the available planning tools.

Moreover, the planning metrics are not sufficient
in cases where a cost should be assigned to in-
stances of a planning action, while the planning met-
rics in PDDL 2.1 work on a generic rather than an
instance level. Namely, we want to assign different
costs to SATISFIES(SeniorClerk,CalcIntRating) and SAT-
ISFIES(Manager,CalcIntRating) actions, while planning
metrics allow us to assign a cost value only to the
“generic” action SATISFIES(a: actor, g: goal). This is not
satisfactory, as in our planning domain, costs associated
with satisfying the same goal are likely to be different
for different actors, as well as costs associated with del-
egating the same goal to different actors can differ (e.g.
delegating a goal to the colleague sitting next to you is
often less costly than delegating the very same goal to

4 Another related approach is planning with preferences
(see e.g. [5]). However, for reasons similar to those for the
planning metrics case, most plan evaluation criteria discussed
in this section cannot be incorporated into planning with
preferences.

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 13

the employee of another department who you even do
not know in person). Thus, instead of using the plan-
ning metrics, we propose to evaluate a plan a posteriori,
and then, on the basis of the evaluation results, provide
additional constraints for the search for the next, better
plan.

Let us now introduce notions of an action and plan
cost, and a general schema we use further in the paper
to represent and compare costs.

A cost associated to an instance of a domain ac-
tion can incorporate a variety of factors, such as the
time spent for executing the action, the amount of
(different types of) resources used, the associated ef-
fort (related to complexity of the action), etc. Let
c(p), where p is the instance of an action of the form
action name(arg1, .., argn), be a cost vector associated
to p, where ci(p) measures the ith cost dimension.

For example, consider the satisfaction
of the goal calculate internal rating. Let
c(SATISFIES(a,CalcIntRating)), where a is the ac-
tor who actually satisfies this goal, be of the form
(total time, doc support, effort). Here the components
of the cost vector are (a) the total time spent to satisfy
the goal (i.e. to calculate an internal customer rating),
(b) the number of instructions and regulations consulted
in the bank electronic document base, (c) the subjective
complexity that actor a attributes to the action (e.g.
characterized as “high”, “medium” or “low”). Then,
two concrete examples for manager and senior clerk
actors will be

c(SATISFIES(Manager,CalcIntRating)) = (20′, 3, low),

c(SATISFIES(SeniorClerk,CalcIntRating)) =

= (35′, 1,medium).

However, as the entries in a cost vector are, in gen-
eral, heterogenous and measured in different units, this
representation of cost is not satisfactory. Let us then
introduce a scaling function rc(c(p)), which maps het-
erogenous cost values to natural numbers from 1 to n,
with 1 being the lowest and n the highest cost values. In
the above example, let n = 3, and

[rc]1(total time) =

1, total time ≤ 20′,
2, 20 < total time ≤ 40′,
3, total time > 40′,

[rc]2(doc support) =

1, doc support ≤ 2,
2, 2 < doc support ≤ 5,
3, doc support > 5,

[rc]3(effort) =

1, effort = low,
2, effort = medium,
3, effort = high,

where [rc]i(argi) is a “partial” scaling function for the
ith cost factor. In this setting,

rc(c(SATISFIES(Manager,CalcIntRating))) = (1, 2, 1),

rc(c(SATISFIES(SeniorClerk,CalcIntRating))) = (2, 1, 2).

The cost function of a plan P , called also social cost in
networks literature (see e.g. [37]), is then defined either
in the vector form

c (P) =
∑
p∈P

rc(c(p)),

or in the scalar form

c̄ (P) =
∑
p∈P

1
n

n∑
i=1

[rc(c(p))]i,

where [v(x)]i is the ith element of vector v(x).
Note that we do not discuss here neither the way the

cost is measured along its various dimensions, nor the
way the scaling function is constructed. These tasks are
domain specific and require the interference of human
experts.

Degree of satisfaction of non-functional re-
quirements. By non-functional requirements (NFR) we
mean quality criteria, which allow one to evaluate a
socio-technical system, as opposed to functional require-
ments, which define the behavior of a system [14]. Ex-
amples of such criteria are efficiency, reliability, safety,
usability, and many others. An important observation
is that there can exist many alternative ways to imple-
ment system functional requirements, which differ with
respect to those non-functional requirements that the
designer considers important for a system. The “best”
alternative may not exist, as often there are trade-offs
between NFR, e.g. performance vs. safety, resilience vs.
efficiency, etc. Therefore, the final choice of an appropri-
ate alternative is usually up to a human designer.

To measure the impact of a design alternative on a
certain non-functional requirement, either qualitative or
quantitative metrics are used. Qualitative metrics are
relative scales which allow comparing the degree of im-
pact of two design alternatives towards a concrete NFR
(e.g. such a metric may allow saying that “alternative X
is better than alternative Y in terms of usability”). In
goal modelling, qualitative reasoning on non-functional
requirements typically means specifying whether the
achievement of a goal contributes positively (“+”) or
negatively (“-”) to a NFR. In [29] a formal framework
for reasoning with goal models is introduced, which dis-
tinguishes between full and partial evidence of a goal
being either satisfied or denied, and defines the propa-
gation rules of the goal satisfaction labels. A number of
works [30,51,35] use similar approaches to reason about
the choice between functional alternatives on the basis
of their contribution to a set of NFR.

In turn, adopting quantitative metrics means assign-
ing numerical weights to quantify positive and nega-
tive influences of alternative design options on the de-
gree of NFR satisfaction. In some cases, the numerical
weights have a domain-specific physical interpretation
(e.g. response or recovery times). However, as pointed

14 Volha Bryl et al.

out in [35], most often it is not clear neither what these
numbers mean (as they are subjective), nor where they
come from (who is responsible of providing them).

Since the problem of both qualitative and quantita-
tive evaluation metrics in the context of non-functional
requirements in software design was studied by many re-
searches (for examples see the references above), and a
number of formal frameworks and tools were developed,
we do not aim at inventing yet another way of dealing
with NFR. A future work direction we consider, is incor-
porating an existing NFR reasoning technique into our
framework.

4.2 Criticality of an actor in a plan

The criticality of an actor measures how a social network
will be affected in case the actor has been removed from
or has left the network. The notion of criticality is tightly
connected to that of resilience of networks to the removal
of their vertices in the social network literature [38]. A
significant, while quite obvious related result is that most
of the real-life and model networks are highly vulnerable
to the removal of their highest-degree vertices, that is,
the vertices with the highest number of in- and outgoing
links.

In our framework, not only the links between the
nodes matter, but also the goals that are assigned to the
removed node according to the plan. In the following
we discuss both criticality dimensions, that is, the im-
pact of the removal of both satisfaction and delegation
actions from a plan5. Note that as we consider only non-
redundant plans, the removal of actor a compromises a
plan P in case there exists an action p ∈ P such that a is
one of p’s arguments, a ∈ arg(p). Namely, if all actions
a participates to are removed from a plan, the remain-
ing actions do not satisfy all goals of the corresponding
planning problem.

Leaf goals satisfaction dimension. When an ac-
tor is removed from a social network, all the leaf sub-
goals he was assigned in the plan remain unsatisfied.
Namely, a measure of a node’s a criticality in plan P is
the (weighted) fraction of leaf goals that cannot be sat-
isfied by P after a is removed from the social network
constructed in accordance with P . Let an integer num-
ber w(g) be the weight of goal g. Basically, w(g) is the
measure of importance of g for the socio-technical sys-
tem defined by a human designer. Then the criticality of
actor a in plan P is defined as follows:

crg(a, P) =

∑
SATISFIES(a,g)∈P w(g)∑
SATISFIES(x,g)∈P w(g)

,

where x is an actor and g is a goal.

5 By action removal we mean, for instance, temporal un-
availability of an actor or the failure of a communication link.

If all goals are considered equally important for the
system (∀g, g′ : goal w(g) = w(g′)), then the criticality
can be calculated as follows:

crg(a, P) =
|g.SATISFIES(a, g) ∈ P |

|(g, x).SATISFIES(x, g) ∈ P |
,

where x is an actor and g is a goal.
Dependency dimension. Together with an actor,

a number of in- and outgoing dependencies for goals are
removed from the network. This means that a number of
delegation chains become broken and the goals delegated
along these chains cannot reach nodes at which they
will be satisfied (either directly or after being AND/OR-
decomposed). Thus, we can define another set of mea-
sures of a node a criticality in plan P , namely, a fraction
of “lost” dependencies (ingoing, outgoing, or any type)
after a is removed from the social network constructed
in accordance with P :

crin(a, P) =

∑
DELEGATES(a′,a,g)∈P w(g)∑
DELEGATES(x,y,g)∈P w(g)

,

crout(a, P) =

∑
DELEGATES(a,a′,g)∈P w(g)∑
DELEGATES(x,y,g)∈P w(g)

,

crdep(a, P) = crin(a, P) + crout(a, P),

where a′, x, y are actors and g is a goal.
In a number of other frameworks [53,24,8], each de-

pendency link is assigned a certain criticality value, ei-
ther qualitative or quantitative, which is the measure of
how the system will be affected if this dependency fails.
In i* [53] the notion of dependency strength is defined,
that is, a dependency is considered to be open (which
corresponds to the lowest criticality level), committed,
or critical. In [24], in- and outgoing criticality of an ac-
tor in a requirements model is defined as the sum of,
respectively, the criticality of the in- and outgoing de-
pendencies this actor participates. In addition, the au-
thors present the procedure of complexity and criticality
analysis (where complexity is the measure of effort re-
quired from an actor to satisfy a specific goal). Namely,
the procedure identifies all the actors for which the val-
ues of complexity and criticality are greater than the re-
spective predefined maximum values. Then, in order to
reduce complexity and criticality of the existing actors,
new (software) actors are introduced and the dependen-
cies which violate complexity and criticality constraints
are redistributed among these new actors.

In [8] the notion of security criticality is introduced,
being the measure of how system security will be af-
fected if the security constraint is violated. An example
of a security constraint in our scenario would be to
keep customer’s data private associated to the goal
register customer. The maximum value of criticality is
defined for each actor, and an algorithm is proposed to
reduce the criticality (as well as the complexity) of an
overloaded actor by redistributing the goals and tasks

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 15

of this actor to others.

Actor criticality with respect to a set of goals.
The proposed criticality measures consider the weighted
fraction of leaf goals that are not satisfied or depen-
dencies that are lost after an actor is removed from a
network. However, it is also important to quantify the
impact of a node removal on the top-level goals of a
socio-technical system, or, in general, on any predefined
set of non-leaf goals. To address this issue, the following
measure is introduced.

Let Gaff (a, P) be a set of goals affected by the re-
moval of actor a from the dependency network con-
structed in accordance with plan P . Namely, if a is re-
moved, all goals in Gaff (a, P) cannot be satisfied by the
above socio-technical structure. Also, let Gdir aff (a, P)
be the set of goals directly affected by the removal of a:

Gdir aff (a, P) = {g : goal. SATISFIES(a, g) ∈ P ∨
∃a′ : actor.(DELEGATES(a′, a, g) ∈ P)∨
∃a′′ : actor.(DELEGATES(a, a′′, g) ∈ P)}

Let Gr be the set of “reference” goals, i.e. top-level or
any predefined subset of system goals with respect to
which criticality of an actor in a plan will be evaluated.
For example, in the e-business case study, Gr can consist
of three goals, get information about loan plans, get cus-
tomer application accepted and get loan approved, or, if
one wants to evaluate the criticality of the system with
respect to the loan approval process, Gr will consists of
its three subgoals, that is, evaluate loan, decide on loan
and finalize the terms.

To construct Gaff (a, P) goal set corresponding to
the set Gdir aff (a, P), the modification of the label prop-
agation algorithm [29] can be used, which allows infer-
ring the (un)satisfiability of top goals by propagating
through a goal graph the labels representing evidence
for the goals being either satisfied or denied. Satisfiabil-
ity is propagated bottom-up, from the leaf to the top-
level goals, along decomposition, means-end and conflict
relations.

The modifications of the algorithm consist in that
the propagation starts not from the set of the leaf goals,
but from the goals in Gdir aff (a, P) (which are as-
signed unsatisfiability labels), and those leaf goals which
are not the (recursive) AND/OR-subgoals of any goal
in Gdir aff (a, P). The unsatisfiability labels of goals
g ∈ Gdir aff (a, P) remain unchained even if their sat-
isfiability is inferred by the label propagation algorithm.
The latter may happen if in P goal g ∈ Gdir aff (a, P)
was delegated along the delegation chain which involved
the removed actor a, while the satisfaction of g was per-
formed by the actor(s) different from a. The above modi-
fications work due to non-redundancy of the constructed
plans, that is, it is assumed that P does not contain al-
ternative ways to satisfy any of the system goals.

After Gaff (a, P) goal set is constructed, the critical-
ity of a in P with respect to Gr is defined as follows.

cr(a, P,Gr) =

∑
g∈Gr∧Gaff (a,P) w(g)∑

g∈Gr
w(g)

.

In many cases, the more even the load (in terms of
assigned goals and delegations) of system actors, the
lower the criticality of each actor. The problem of bal-
ancing the load distribution is considered in Section 4.4,
where an evaluation and replanning procedure is intro-
duced. The key idea of this procedure is to formulate the
constraints for the construction of the next plan on the
basis of the evaluation of the current plan. However, if
the workload is balanced, but the subgoals of each goal
g ∈ Gr are distributed among a large fraction of sys-
tem actors, the criticality of each actor is quite high as
the removal of one actor will cause the failure of most
of the goals in Gr. One of the approaches to the prob-
lem of leveraging high criticality is runtime replanning
of those fragment of the social network in which critical-
ity constraints are violated. Though we do not discuss
it in this paper, such an approach is a feasible extension
of our framework and constitutes another future work
direction.

4.3 Local evaluation: game-theoretic insights

A challenging characteristic of requirements analysis for
a socio-technical system is the presence of human and or-
ganizational actors. These actors can be seen as players
in a game theoretic sense as they are self-interested and
rational. This may mean that they are willing to min-
imize the load imposed personally on them, e.g. they
want to constrain the number and the complexity of ac-
tions they are involved in6. In a certain sense non-human
system actors are players as well as it is undesirable to
overload them. Each player has a set of strategies he
could choose from, e.g. he could decide to satisfy a goal
himself or to pass it further to another system actor.
Strategies are based on player capabilities and his rela-
tions (e.g. subordination, friendship, or trust, all repre-
sented as possible dependencies in our framework) with
other human, organizational and software actors in the
system.

We assume that each player ascribes a cost to each
possible action, as discussed in Section 4.1. Then, it is
possible to calculate the cost of a given alternative (or
the outcome of the game) for the player by summing up
the weights of the plan actions this player is involved in.
For each player, minimizing this cost means maximizing
the utility of the game. One of the key game theoreti-
cal concepts is that of an equilibrium [39], which defines

6 This is not always the case, as sometimes actors may want
the workload to be the maximum they can handle, e.g. in
looking for the reward like salary increase or a the recognition
of the boss/colleagues.

16 Volha Bryl et al.

the set of strategies, one for each player, which none of
independent rational players wants to deviate from. By
playing an equilibrium each player maximizes his util-
ity locally, given some constraints. For example, playing
the Nash equilibrium means that no player can benefit
when deviating from his equilibrium strategy given that
all other players play the equilibrium.

However, in non-cooperative setting, there could ex-
ist Nash equilibria whose social cost (the sum of individ-
ual costs for all players) is much worse than the social
cost in the globally optimal situation, called social opti-
mum. To measure the impact of lack of cooperation and
coordination on the system effectiveness, the notion of
cost of anarchy has been introduced in [33]. Cost of an-
archy is the ratio between the worst possible Nash equi-
librium and the social optimum. There exist numerous
studies on the theoretical bounds on the price of anarchy
in the specific cases (e.g. [33,1]), as well as the attempts
to design games, i.e. strategies and reward schemas, so
that to encourage behaviors close to the social optimum
(see e.g. [3,34], and, more generally, mechanism design
theory [16]).

A substantial difficulty in applying game-theoretic
ideas to our problem is that all actors of a socio-technical
system need to work cooperatively in order to satisfy
all initial organizational goals. Differently from classical
non-cooperative game theory, where all players choose
their strategies independently and simultaneously before
the game, in our problem actor choices are closely inter-
related. A player cannot independently change his strat-
egy because the new action sequence will very likely be
unsatisfactory, i.e. it will not be a solution anymore. So,
to satisfy stakeholder goals it is necessary to impose an
additional load on some other actors in order to com-
pensate the load the deviating player tries to avoid. The
actors on which this additional load is imposed might
not be satisfied with the new solution, and will try to
deviate from the strategy they were imposed, and so on
and so forth. Thus, if one actor wants to deviate from the
generated solution, the re-planning is needed to search
for another alternative option, which is then evaluated,
possibly, to be re-planned again. In the following section,
we discuss a “planning-and-evaluation” procedure which
aims at finding a good enough (rather than optimal) del-
egation and assignment socio-technical structure among
the available alternatives.

4.4 Supporting local evaluation

In an ideal setting, the objective of our framework is to
produce plans which are optimal with respect to both
global and local evaluation criteria. However, choosing
the optimum among all available alternatives, which are
in the general case exponentially many, might not be
feasible in practice. Moreover, as noted by Herbert Si-
mon [46], what makes humans effective (in comparison to

machines) is their ability to identify a satisficing design
as opposed to an optimal one. Thus, our approach to op-
timization, or, more precisely, to looking for a satisficing
solution consists in the following: For all the global and
local criteria, thresholds are specified, and a plan that
stays within these thresholds is considered to be good
enough to be adopted.

In this section we present the revised procedure we
devised for optimizing a plan with respect to the local
criteria [10]. The problem of evaluating and improving
a plan with respect to such global criteria as the overall
plan cost and actor criticality, can be faced in an analo-
gous way. We do not report here the details in order not
to overload the paper, and focus on optimizing a plan
with respect to the local criteria.

An example of a utility function we consider in
this paper, is related to workload distribution. We as-
sume that each actor, human, organizational or software,
wants to minimize the number and cost of goals he is
assigned. The cost of a goal, as it was discussed in Sec-
tion 4.1, can incorporate a variety of factors, such as the
time and effort required to achieve it, resources used,
etc. Costs have to be defined explicitly for leaf goals,
i.e. for those goals that could be assigned to actors that
have capabilities to satisfy them. There is no need to
define or calculate a cost for a goal that is to be further
decomposed and delegated. Costs are “local” in a sense
that the same goal can have different costs for different
actors. For each actor there is a maximum complexity
(in terms of cost) it can handle, i.e. the sum of costs for
all the goals this actor is assigned should be less than
a predefined threshold, namely, maximum complexity. If
this condition is violated, the actor might be willing to
deviate from the imposed assignment.

More precisely, for all actors ai, i = 1, n and all goals
gk, k = 1,m, where n and m are the number of ac-
tors and goals, respectively, the complexity values are
defined:

– csik is the complexity for actor ai of satisfying goal
gk;

– crik is the complexity for actor ai of decomposing
goal gk;

– cdijk is the complexity for actor ai of delegating goal
gk to actor aj .

Here we assume that csik, crik, cdijk are of the form
rc(c(p)), p ∈ P , that is, they are “normalized” with the
help of scaling function rc(..) (see Section 4.1 for the
details).

The cost of a given alternative P for actor ai is calcu-
lated by summing up the costs of actions of P in which
ai is involved, and is denoted by

c(P, ai) =
∑

DELEGATES(ai,aj,gk)∈P

cdijk+

∑
DECOMPOSES(ai,gk,gk1,...,gkl)∈P

crik+

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 17

+
∑

SATISFIES(ai,gk)∈P

csik,

where DECOMPOSES(ai, gk, gk1, ..., gkl) stands for the
AND/OR-decomposition of gk into l subgoals gk1, ..., gkl.

After the costs are computed, for each actor the con-
ditions are defined upon which an actor decides whether
to deviate from an alternative P or not. The conditions
could be either one of the following, or both.

– Actor ai whose predefined maximum complexity
cmax(ai) is less than c(P, ai) is willing to deviate
from P. This condition is the one we consider in the
paper.

– Actor ai whose predefined upper bound cdevup(ai)
on cost deviation is less than c(P, ai)−avgi(c(P, ai))
is willing to deviate from P .

After the costs and maximum complexities are de-
fined, the evaluation procedure is organized as follows.

1. Plan P is generated by the planner.
2. Plan cost for each actor is calculated, by summing

up the costs of all the action the actor is involved in.
3. Actors willing to deviate from the plan are identi-

fied, i.e. actors whose plan cost is greater than the
corresponding maximum complexity.

4. One of these actors is selected, namely, actor amax

which has the maximum difference δ between plan
cost and maximum complexity:

δ(a) =
n∑

i=1

[c(P, a)− cmax(a)]i.

5. A subset of actions Pdev ⊂ Pamax is formed with the
total cost greater or equal to δ, where Pamax denotes
those actions of P in which amax is involved.

6. The definition of the planning problem is changed in
order to avoid the presence of actions of Pdev during
the next planning iteration.

7. The procedure restarts with the generation of a next
plan.

The process stops when a good enough solution is found,
i.e. no actors are willing to deviate from it and the de-
signer approves this solution.

Step 6 of the procedure deserves additional explana-
tions. In order to make it possible to avoid the actions
contained in Pdev in the next plan, we introduce the fol-
lowing “tracing” predicates:
pr satisfies(a : actor, g : goal),
pr and/or decomposes(a : actor, g1, g2, ... : goal),
pr delegates(a1, a2 : actor, g : goal),

which become true when the corresponding action takes
place. Then, if, for instance, Pdev contains a satisfaction
action for goal g, the following line is added to the goal
of the planning problem: not pr satisfies(amax, g),
which means that the next generated solution cannot
contain this action.

5 Evaluation Results

In this section, we report on the application of the pro-
posed approach to the e-business case study as well as
to a number of other case studies, and then present the
results of scalability experiments we have conducted to
justify the use of a planning approach for medium size
real-life case studies.

5.1 Case studies

In the early requirements model of the e-business case
study in Figure 2, the goals get information about loan
plans, get application accepted and get loan approved are
delegated by the customer to the bank. To satisfy these
goals, the actors representing the bank, i.e. the manager
and the bank clerks, decompose these goal as follows.
The first goal, get information about loan plans, can be
satisfied either via online information request process-
ing, or by allowing a customer to come and ask for the
related information in person. The second goal, get ap-
plication accepted, is decomposed into two OR-subgoals,
one of which concerns the processing of hand-filled loan
applications, while the other refers to the processing of
online applications. In both cases, the customer and, af-
ter that, her request for a loan are registered. We assume
that the bank would like to stick to either online or in-
person way of working with customers, that is, conflict
relations are defined (a) between goals provide loan in-
formation in person and process online loan application,
and (b) between goals provide loan information on on-
line request and process hand-filled application.

The third goal, get loan approved, is decomposed into
three AND-subgoals, evaluate loan, decide on loan and
finalize the contract. The first subgoal concerns the eval-
uation of credit worthiness of both new and existing
bank customers, and, in the latter case, can be done
either from scratch or using the previous evaluations
for the same customer stored in the internal database.
In turn, evaluating the customer credit worthiness from
scratch, requires the involvement of the credit bureau.
The goal of finalizing the terms concerns communicat-
ing the decision and available options to a customer (in
person or via phone call), and, finally, signing the loan
contract. Note that there are order relations among the
goals, e.g. loan evaluation should be done before the fi-
nal decision can be made and contract signed. We do not
report all order relations here, though they are part of
the planning problem file that is used in the experiments
reported below.

All the actors, goals, possible ways of goal decompo-
sition, conflict and order relations are formalized in the
problem definition file, which format is the same as in
Figure 4 and which we do not present here for the space
reasons. Also, in this file possible dependencies among
actors and actor capabilities are specified. Namely, man-

18 Volha Bryl et al.

ager and senior clerk are capable of calculating inter-
nal ratings, reviewing existing ratings, deciding on loans
and signing contracts. Senior and junior clerks are capa-
ble of approving online information requests and applica-
tions, registering customers and applications and prepar-
ing contracts. Manager, senior and junior clerks are ca-
pable of providing information on loan plans in person
and communicating final decision and contract options to
customers by phone or in person. The goal check external
rating can be satisfied by the credit bureau. The software
system, a new actor introduced to the scenario in the
process of requirements analysis, is capable of achiev-
ing a number of technological goals, such as processing
online information requests, registering customers and
online loan requests and checking bank database for the
existing customer ratings.

In total, the definition of the planning problem for
the e-business case study comprises 52 entities (6 actors,
5 goal types and 41 goals organized in 7 decomposition
levels), 91 predicates before and 132 predicates after the
preprocessing (see Section 3.5 for the details on the pre-
processing of planning problem specification).

Here we illustrate the planning and evaluation pro-
cedure presented in Section 4.4. We assume that only
satisfaction actions have non-zero complexity for all the
actors, and the complexity of one subgoal is equal to one
unit for any actor. Maximum complexities are defined for
the manager (1 unit) and for the senior clerk (3 units).
In Table 5 the iterations of the planning and evaluation
procedure applied to the case study are presented. Five
iterations are required to reach a good enough solution.
For each iteration we give a short textual description,
the costs of the plan constructed on this iteration for
each of the actors, and the name of amax actor (see Sec-
tion 4.4 for the details), who initiates the deviation from
the generated plan as his complexity thresholds are vio-
lated. The final alternative is presented in Figure 7.

On each iteration, LPG-td took about 5.5 seconds
to produce a plan. The plan corresponding to the final
alternative consists of 57 actions organized in 33 time
steps: LPG-td planner produces partially ordered plans,
that is, actions that can be performed in parallel are
grouped together.

Let us now discuss the evaluation of the final design
alternative with respect to the global criteria presented
in Section 4.1.

There can be identified at least two important non-
functional aspects relevant for the e-business case study.
The first aspect concerns customer satisfaction, which
includes quality of service (referred to the direct commu-
nication between customers and bank clerks), usability,
or ease of use of the online system, availability both of
clerks and the online system, and security of the bank-
ing system as perceived by the customer. The second
aspect refers to maximizing bank profits, which includes
reliability of customer credit trustworthiness assessment,
security of the banking procedures, and attractiveness of

bank services for the customer. Both lists are not sup-
posed to be exhaustive, other non-functional aspects can
be added after examining the stakeholder interests and
the specifics of a concrete bank.

To give an example of comparing two design alterna-
tives with respect to a non-functional requirement, con-
sider the two alternative ways the loan contract terms
are communicated to the customer: either in person, or
via phone. The customer may consider the former alter-
native to contribute positively to the security of the pro-
cedure just because he perceives personal communica-
tion to be more secure for such a private case as the loan
contract discussion. Some of the listed non-functional as-
pect can be addressed only during the further elabora-
tion of the case study. For instance, the questions re-
lated to usability and availability of the online banking
system are considered during the detailed design of the
latter. Some other aspects, such as the availability of the
clerks, can be assessed only on the instantiated model,
in which roles are assigned to concrete agents, and addi-
tional instance level constraints are enforced. An exam-
ple of such constraint, related to security of banking pro-
cedures and reliability of customer rating calculations, is
the requirement that certain phases of the customer as-
sessment cannot be performed by the same clerks. To
a certain extent, this constraint is already addressed at
the level of roles, as in the final plan the manager takes
the final decision on a loan, while the other operations
are performed by the senior clerk. The problems related
to requirements models instantiation and the analysis of
the instance level constraints appear to be an interesting
research direction and are among our ongoing activities.

The examples of the cost-based global evaluation cri-
teria relevant to the case study are the ones concerned
with the resources consumed in each of the alternative
configurations of a socio-technical system. For instance,
it might be of interest to assess how intensively the
printer is used during the loan approval process (the re-
sult can be used to adjust the existing infrastructure), or
how often the internal document base is consulted dur-
ing the various stages of the loan approval process (this
might be related to the unsatisfactory performance of the
bank clerks, or may reveal the insufficient throughput of
the internal network). It is relatively straightforward to
quantify such criteria and to evaluate the alternatives us-
ing the cost-based schema presented in Section 4.1. Note
that, as in case of non-functional requirements, some of
the cost-based criteria are applicable only at the instance
level, for example, in a model containing roles but not
concrete agents it does not appear possible to assess the
total effort (e.g. in working hours) normally spent for
processing one customer application.

The scale of the case study, at least as it is presented
in the paper, does not provide the opportunity to fully
test the criticality evaluation metrics discussed in Sec-
tion 4.1. The observations that can be made on the fi-
nal design alternative presented in Figure 7 with respect

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 19

it# Description Actor : Workload Who deviates

1

Manager answers customer requests on loan plans, provides in-
ternal ratings and decides on loans; Junior clerk registers cus-
tomer applications; Senior clerk communicates final decisions to
customers and finalizes contracts.

Manager : 3
Senior Clerk : 3
Junior Clerk : 2
System : 0

Manager

2

Manager decides on loans; Senior clerk provides internal rat-
ings, communicates final decisions to customers and finalizes
contracts; customer requests are processed and customer appli-
cations are registered automatically by the System and approved
by Senior clerk.

Manager : 1
Senior Clerk : 6
Junior Clerk : 0
System : 3

Senior Clerk

3
No solution found; Pamax of the previous iteration is revisited
and SATISFIES(SeniorClerk, CalcIntRating) is replaced with SAT-
ISFIES(SeniorClerk, PrepareContract).

— —

4

Manager decides on loans; Senior clerk processes customer re-
quests and registers customer applications, provides internal rat-
ings and signs contracts; Junior clerk communicates final deci-
sions to customers and prepares contract templates.

Manager : 1
Senior Clerk : 4
Junior Clerk : 2
System : 0

Senior Clerk

5

Manager decides on loans; Senior clerk provides internal ratings,
communicates final decisions to customers and signs contracts;
customer requests are processed and customer applications are
registered automatically by the System and approved by Junior
clerk; Junior clerk prepares contract templates.

Manager : 1
Senior Clerk : 3
Junior Clerk : 3
System : 3

—

Table 5 E-business case study: plans and their evaluation

Fig. 7 E-business case study: adopted solution

20 Volha Bryl et al.

to criticality are, for instance, the following. The senior
clerk is a critical actor for the goal get loan approved,
while the unavailability of the manager will not be highly
critical, as the only contribution of the manager to this
goal is making the final decision. In an alternative system
configuration, in which the final decision is taken by the
senior clerk, the criticality of the manager for the goal
get loan approved is zero, however, as it was discussed
above, this contributes negatively to the non-functional
requirement for the security and reliability of the loan
approval procedure.

To conclude this section, we mention a number of
applications of the presented approach to various cases
studies. In [12] we have customized our planning-based
framework for the domain of secure system design. The
planning domain is defined to guarantee that the result-
ing socio-technical model satisfies the trust and permis-
sion constraints imposed on it (e.g., no goal is delegated
along an untrusted link). The framework is applied to
the Medical Information System case study, which deals
with the payment for medical care. Another extension of
our framework [4] uses risk-based evaluation metrics for
selecting a suitable design alternative, and aims at safety
critical applications. The approach is evaluated on the
basis of Air Traffic Management case study which comes
from SERENITY Project [45]. The illustrative examples
used in [11] are taken from the e-voting case study re-
lated to the project funded by the Autonomous Province
of Trento, which has the goal of providing a smooth tran-
sition from the paper-based voting system to new tech-
nologies.

5.2 Scalability experiments

The case study considered in the previous section allows
us to illustrate how the proposed planning-based frame-
work works, and what support it provides to a designer.
Still, a reader might wonder what happens in case of
much bigger models, i.e. what conclusions can be drawn
about the scalability of the approach. In this section, we
report on a number of experiments related to the above
question.

The main idea of the first part of the experiments was
to understand how the growing complexity of a planning
problem influences the performance of the approach. We
have looked at series of planning problems with (a) grow-
ing number of goals to satisfy, and (b) growing complex-
ity of the goal trees. All experiments were conducted
using LPG-td planner [36].

A building block of each planning problem file is an
elementary tree which contains 4 decomposition levels,
15 goals (Gi, i = 1, 15), 2 OR and 4 AND decomposition
relations:
(or subgoal2 G1 G2G3)
(and subgoal3 G2 G4G5 G6)
(or subgoal2 G4 G9G10)

Ntrees Nelem Nleafs ttotal

1 15 4 0.14

2 30 8 1.08

3 45 12 5.24

4 60 16 7.43

5 75 20 6.03

6 90 24 15.3

7 105 28 13.25

8 120 32 16.83

9 135 36 19.83

10 150 40 26.52

11 165 44 37.29

12 180 48 ERR

Table 6 Experimental results: increasing the number of el-
ementary goal trees

Nlev Nelem Nleafs ttotal ttotal with no OR’s

4 15 4 0.15 0.14

7 43 7 4.39 4.31

8 51 11 8.88 8.71

9 59 15 6.07 5.48

10 67 19 7.93 7.65

11 75 23 5.94 5.95

12 83 27 12.91 11.84

13 91 31 10.49 8.07

14 99 35 12.58 9.3

15 107 39 12.59 10.48

17 115 43 15.11 10.13

19 123 47 21.61 17

23 131 51 40.39 34.66

24 139 55 ERR ERR

Table 7 Experimental results: increasing the number of goal
tree levels

(and subgoal2 G5 G11G12)
(and subgoal2 G3 G7G8)
(and subgoal3 G7 G13G14 G15)

All problem files contain 6 actors (Ai, i = 1, 6) or-
ganized into three levels with respect to the relations
between them:
(can depend onA1 A2)
(can depend onA1 A3)
(can depend onA2 A4)
(can depend onA2 A5)
(can depend onA3 A5)
(can depend onA3 A6)

Overlapping capabilities are introduced, namely,
each leaf goal can be satisfied by two actors.

In the experiments reported in Table 6 the number
of elementary goal trees Ntrees which actor A1 wants to
satisfy was increasing. That is, we studied what happens
when the planning problem grows “in breadth”, namely,
how the planner behaves in case the number of top goals
to be satisfied increases, while the number of levels in
goal decomposition trees stays the same. Nelem stands

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 21

for the total number of goals in the planning problem
file, Nleafs stands for the number of leaf goals satisfied
in a plan. ttotal is the time (in seconds) the planner took
to solve the problem, namely, it is the sum of two com-
ponents, parsing and search time, the latter one being
insignificant in all the experiments. ERR denotes the sit-
uations in which the planner was not able to produce a
solution due to the problem complexity. As shown in the
table, the planner was able to solve the problems with
up to 11 top goals to satisfy (remember that each top
goal is an elementary tree containing 15 goals organized
into 4 decomposition levels).

In the experiments reported in Table 7, the number
of goal tree levels Nlev for a top goal A1 wants to satisfy
was increasing. That is, we study what happens when
the planning problem grows “in depth”, namely, how
the planner behaves in case the number of top goals (one
goal in our case) to be satisfied does not change, while
the number of levels in goal decomposition tree, and thus
the number of subgoals increases. The meaning of Nelem,
Nleafs, ERR, and ttotal is the same as in Table 6. The
first line of numbers in the table refers to the problem
file containing one elementary tree, the second line – to
the problem file containing three elementary trees, one
at levels 1-3, and the other two at levels 4-7. For each
of the subsequent lines a problem file was constructed
by adding one or two levels of leaf goals to the previous
problem file. As shown in the table, the planner was
able to solve problems with the top goal having up to 23
decomposition levels.

The last column of values in Table 6 refers to ttotal

with no OR’s, which is the time the planner took to solve
the modified problem, where all OR-decompositions in a
problem file were changed to AND-decompositions. The
fact that ttotal with no OR’s is less than ttotal in all the
lines is not surprising, as each OR-decomposition dou-
bles the number of alternative solutions, and thus, in-
creases the search space. Additional line of experiments,
which is not reported here, revealed that avoiding over-
lapping capabilities (i.e. reducing a problem file to the
one in which each goal can be satisfied by just one actor)
did not have a significant impact on ttotal values.

The results reported in Tables 6 and 7, in our opin-
ion, justify the scalability of the use of planning in the
domain of requirements engineering. According to our
experience, requirements models of real-life case studies
(including the one considered in this paper) stay within
the complexity limits which our planning approach can
handle. For instance, for all the case studies reported
in [45], the depth of goal decomposition trees is not
greater than 10 (while in our approach the planner was
able to process the goal tree with depth equal to 23). The
number of top goals for the models in [45] is lower than
11, a number of elementary goal trees the planner was
able to process in the experiments reported in Table 6.

The second set of experiments, which included not
only planning but also the evaluation step, was con-

ducted in order to study the scalability of the whole
approach. Based on the obtained results, the following
two observations were made. Firstly, parsing and search
times were not influenced by additional predicates (nega-
tions of tracing predicates, see Section 4.4 for the details)
in the goal of the planning problem. Secondly, conver-
gence to a good enough plan appeared to depend on
the ratio of acceptable (in terms of costs) assignments
of goals to actors among all possible assignments. For
relatively small problems (with 6 actors, 10 leaf goals
in a plan, each goal can be satisfied by two actors) the
number of iterations towards a good enough plan was
less or equal to 10.

6 Related Work

The notion of a socio-technical system, introduced al-
most 50 years ago [19], can be viewed from two differ-
ent complementary perspectives: a social sciences [19,
43,50] and a design or engineering sciences [46,47]. So-
cial sciences study psychological, managerial, and or-
ganizational aspects of a socio-technical phenomenon.
For example, they are interested in relationships inside
workgroups, roles, supervision, motivation and the like.
Differently, the engineering perspective focuses on the
design of socio-technical systems given sets of require-
ments, as well as their system properties. The latter per-
spective is the one we adopt in our work, like most of
the research in software and requirements engineering.
The basic ingredients of this perspective can be found in
Simon’s seminal vision of a Science of Design [46], where
alternative designs are derived rigorously from their re-
quirements (goals) and are evaluated in accordance with
criteria that measure their effectiveness. The method-
ological differences in research and practice between the
two perspectives are contrasted elegantly in [42].

Goal-based requirements modelling for socio-
technical systems and organizations has been a topic
of considerable research interest during the last fifteen
years [49]. A number of goal-oriented approaches for
requirements representation and reasoning were intro-
duced, e.g. KAOS [15]. The i* modelling framework [53]
and an associated requirements analysis process, i.e.
Tropos [7], are based on the intentional concepts of an
actor, a goal and a social dependency, and support mod-
elling and analysis activities during the requirements
and design phases.

The field of AI planning has found a number of appli-
cations (robotics, process planning, autonomous agents,
etc.). There are two basic approaches to the solution of
planning problems [52]. One is graph-based planning al-
gorithms in which a compact structure, called Planning
Graph, is constructed and analyzed. In the other ap-
proach the planning problem is transformed into a SAT
problem and a SAT solver is used.

There exist several ways to represent the elements of
a classical planning problem, i.e. the initial state of the

22 Volha Bryl et al.

world, the goal of the planning problem (i.e. or the de-
sired state of the world), and the possible actions system
actors can perform. PDDL (Planning Domain Definition
Language) is the widely used specification language pro-
posed in [27]. In the implementation of our approach, we
use PDDL of the version 2.2 [18], which supports, among
others, derived predicates and timed initial literals.

A few works relate planning techniques with infor-
mation systems requirements analysis and design [2,22,
13]. For example, one of the early proposals [2] describes
a program called ASAP (Automated Specifier And Plan-
ner), which automates a part of the domain-specific soft-
ware specification process. ASAP supports a designer in
selecting methods for achieving user goals, discovering
plans that result in undesirable outcomes, and finding
methods for preventing such outcomes. The disadvan-
tage of the approach is that a designer still performs
a lot of work manually when determining the combi-
nation of goals and prohibited situations appropriate for
a given application, defining possible start-up conditions
and providing many other domain-specific expert knowl-
edge.

Castillo et al. [13] present an AI planning applica-
tion to assist an expert in designing control programs in
the field of Automated Manufacturing. The system they
have built integrates POCL, hierarchical and conditional
planning techniques (see [13,40] for references). The au-
thors consider standard planning approaches to be not
appropriate with no ready-to-use tools for the real world,
whereas in our paper the opposite point of view is ad-
vocated. An application of the planning approach to the
design of secure systems is proposed by Gans et al. [22].
Their work is based on i* modelling approach [53] and
ConGolog [28], a logic-based planning language. How-
ever, the authors focus more on representing/modelling
trust in social networks, than on automating the design,
and do not go far in explaining how they exploit the
planning formalism.

Recently, the problem of evaluating and comparing
requirements models has received a lot of attention, and
there are several proposals in the literature which ad-
dress the problem from different, often complementary
perspectives. For example, a number of works [14,29,51]
analyze the contribution links between goals and non-
functional requirements in order to compare the alterna-
tive choices with respect to such non-functional require-
ments as security, efficiency, user-friendliness, etc. In [21]
a problem of defining quantitative evaluation metrics for
evaluating i* models is discussed, with predictability of
model elements as an example of the measured property.
In AGORA requirements elicitation framework [31], each
stakeholder has a preference matrix for each of the goals,
which contains not only his preference value for the goal,
but also his estimation of the preference values for this
goal for other stakeholders. These matrices can aid a de-
signer in selecting and adopting a goal from various alter-
natives by identifying and analyzing goal conflicts. Yet

another i*-related proposal [48] uses coupling metrics to
assess the degree of dependencies between a system and
its users. A closely related area is that of the value-based
software engineering [6], which focuses on the definition
and application of value-driven methods aimed at sup-
porting the search for an optimal engineering solution.

7 Discussion and Future Work

We have proposed a systematic, tool-supported process
which aim is to support a designer in exploring and eval-
uating alternative configurations of socio-technical sys-
tem delegations. This is accomplishing through the use of
AI planning techniques to construct design alternatives,
and a set of evaluation criteria to assess and compare
the available options.

In this paper, we have presented the structured
process supporting the proposed approach, the planning
formalization and the discussion on the concrete set of
evaluation criteria. Moreover, we have reported on the
evaluation of the proposal through several case studies
(one of which is presented in detail here), as well as a
series of scalability experiments.

What concerns the possible future work directions,
we are interested in addressing the following problems:

– Adopt novel planning techniques that go beyond
those we adopted and used in our work; for example,
use concepts from ConGolog [28] or planning with
preferences [5].

– As discussed in Section 4.1, incorporate into the
framework an existing approache to quantitative
and/or qualitative reasoning on non-functional sys-
tem requirements, which will allow evaluating and
comparing alternatives in terms of their impact on
the satisfaction of NFR.

– Further explore criticality evaluation criteria, that
is, define the criticality measures which characterize
how difficult it is to repair a plan when an actor is
removed from it; study the complexity issues related
to these measures.

– Apply the proposed approach to the problem of sys-
tem re-configuration at runtime. In [9] we have pre-
sented preliminary results along this direction.

– Work further on the evaluation of the approach using
the real-life medium and large scale case studies, and
conduct more scalability experiments.

– Continue the development of the tool [44] (see Sec-
tion 3.5 for the details) to better support the pro-
posed process.

Acknowledgements We thank the anonymous reviewers for
the valuable comments and suggestions. This work has been
partially funded by EU Commission through the SERENITY
project, by MEnSA-PRIN project, and by the Provincial Au-
thority of Trentino through the STAMPS project.

Designing Socio-Technical Systems: From Stakeholder Goals to Social Networks 23

References

1. S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and
L. Roditty. On Nash Equilibria for a Network Creation
Game. In SODA’06, pages 89–98, 2006.

2. J. S. Anderson and S. Fickas. A Proposed Perspective
Shift: Viewing Specification Design as a Planning Prob-
lem. In IWSSD’89, pages 177–184, 1989.

3. E. Anshelevich, A. Dasgupta, E. Tardos, and T. Wexler.
Near-Optimal Network Design with Selfish Agents. In
STOC’03, pages 511–520, 2003.

4. Y. Asnar, V. Bryl, and P. Giorgini. Using risk analy-
sis to evaluate design alternatives. In AOSE’06 Post-
proceedings, volume 4405, pages 140–155. Springer, 2006.

5. J. Baier, F. Bacchus, and S. McIlraith. A Heuristic
Search Approach to Planning with Temporally Extended
Preferences. In IJCAI’07, pages 1808–1815, 2007.

6. S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and
P. Grünbacher. Value-Based Software Engineering.
Springer-Verlag New York, Inc., 2005.

7. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopou-
los, and A. Perini. TROPOS: An Agent-Oriented Soft-
ware Development Methodology. JAAMAS, 8(3):203–
236, 2004.

8. P. Bresciani, P. Giorgini, H. Mouratidis, and G. Manson.
Multi-agent Systems and Security Requirements Analy-
sis. Software Engineering for Multi-Agent Systems II,
pages 35–48, 2004.

9. V. Bryl and P. Giorgini. Self-Configuring Socio-Technical
Systems: Redesign at Runtime. In SOAS’06, 2006.

10. V. Bryl, P. Giorgini, and J. Mylopoulos. Designing Co-
operative IS: Exploring and Evaluating Alternatives. In
CoopIS’06, pages 533–550, 2006.

11. V. Bryl, P. Giorgini, and J. Mylopoulos. Supporting Re-
quirements Analysis in Tropos: a Planning-Based Ap-
proach. In PRIMA’07, 2007.

12. V. Bryl, F. Massacci, J. Mylopoulos, and N. Zannone.
Designing Security Requirements Models Through Plan-
ning. In CAiSE’06, pages 33–47, 2006.

13. L. Castillo, J. Fdez-Olivares, and A. Gonzalez. Integrat-
ing Hierarchical and Conditional Planning Techniques
into a Software Design Process for Automated Manufac-
turing. In ICAPS’03, pages 28–39, 2003.

14. L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software Engineering.
Kluwer Publishing, 2000.

15. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed Requirements Acquisition. Science of Computer
Programming, 20:3–50, 1993.

16. R. K. Dash, N. R. Jennings, and D. C. Parkes. Com-
putational Mechanism Design: A Call to Arms. IEEE
Intelligent Systems, 18(6):40–47, 2003.

17. M. Davidson and M. Garagnani. Pre-processing Plan-
ning Domains Containing Language Axioms. In Plan-
SIG’02, pages 23–34, 2002.

18. S. Edelkamp and J. Hoffmann. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Plan-
ning Competition. Technical Report 195, University of
Freiburg, 2004.

19. F. Emery. Characteristics of socio-technical systems.
London: Tavistock, 1959.

20. M. Fox and D. Long. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. JAIR,
20:61–124, 2003.

21. X. Franch. On the Quantitative Analysis of Agent-
Oriented Models. In CAiSE’06, pages 495–509, 2006.

22. G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Mod-
eling the Impact of Trust and Distrust in Agent Net-
works. In AOIS’01, pages 45–58, 2001.

23. M. Garagnani. A Correct Algorithm for Efficient Plan-
ning with Preprocessed Domain Axioms. Research and
Development in Intelligent Systems XVII, pages 363–
374, 2000.

24. M. Garzetti, P. Giorgini, J. Mylopoulos, and F. Sanni-
colò. Applying Tropos Methodology to a real case study:
Complexity and Criticality Analysis. In WOA’02, pages
7–13, 2002.

25. B. C. Gazen and C. A. Knoblock. Combining the Ex-
pressivity of UCPOP with the Efficiency of Graphplan.
In ECP’97, pages 221–233, 1997.

26. A. Gerevini and D. Long. Plan Constraints and Prefer-
ences in PDDL3. Technical Report RT 2005-08-47, Uni-
versity of Brescia, Italy, 2005.

27. M. Ghallab, A. Howe, C. Knoblock, D. McDermott,
A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL –
The Planning Domain Definition Language. In AIPS’98,
1998.

28. G. D. Giacomo, Y. Lesperance, and H. J. Levesque. Con-
Golog, a Concurrent Programming Language Based on
the Situation Calculus. Artificial Intelligence, 121(1-
2):109–169, 2000.

29. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Se-
bastiani. Reasoning with Goal Models. In ER’02, pages
167–181, 2002.

30. D. Gross and E. S. K. Yu. From Non-Functional Re-
quirements to Design through Patterns. Requirements
Engineering, 6(1):18–36, 2001.

31. H. Kaiya, D. Shinbara, J. Kawano, and M. Saeki.
Improving the Detection of Requirements Discor-
dances Among Stakeholders. Requirements Engineering,
10(4):289–303, 2005.

32. J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopou-
los. Extending Planning Graphs to an ADL Subset. In
ECP’97, pages 273–285, 1997.

33. E. Koutsoupias and C. Papadimitriou. Worst-Case Equi-
libria. In STACS’99.

34. K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentives
for Cooperation in Peer-to-Peer Networks. In Workshop
on Economics of Peer-to-Peer Systems, 2003.

35. E. Letier and A. van Lamsweerde. Reasoning about Par-
tial Goal Satisfaction for Requirements and Design Engi-
neering. SIGSOFT Softw. Eng. Notes, 29(6):53–62, 2004.

36. LPG Homepage. LPG-td Planner.
http://zeus.ing.unibs.it/lpg/.

37. T. Moscibroda, S. Schmid, and R. Wattenhofer. On the
Topologies Formed by Selfish Peers. In PODC’06, pages
133–142, 2006.

38. M. E. J. Newman. The Structure and Function of Com-
plex Networks. SIAM Review, 45(2):167–256, 2003.

39. M. J. Osborne and A. Rubinstein. A Course in Game
Theory. MIT Press, 1994.

40. J. Peer. Web Service Composition as AI Planning – a
Survey. Technical report, University of St. Gallen, 2005.

24 Volha Bryl et al.

41. A. Polleres. Advances in Answer Set Planning. PhD
thesis, Vienna University of Technology, Austria, 2003.

42. C. Potts and W. C. Newstetter. Naturalistic inquiry and
requirements engineering: Reconciling their theoretical
foundations. In RE’97, page 118, 1997.

43. G. Ropohl. Philosophy of socio-technical systems. In In
Society for Philosophy and Technology 4(3), 1999.

44. Security and Dependability Tropos Tool.
http://sesa.dit.unitn.it/sistar tool/.

45. Serenity: System Engineering for Security and De-
pendability. Deliverable A1.D2.1. Security and
Privacy Requirements at Organizational Level.
http://www.serenity-forum.org/Work-package-1-2.html.

46. H. A. Simon. The Science of the Artificial. MIT Press,
1969.

47. I. Sommerville. Software engineering (7th ed.). Addison-
Wesley, 2004.

48. A. G. Sutcliffe and S. Minocha. Linking Business Mod-
elling to Socio-technical System Design. In CAiSE’99,
pages 73–87, 1999.

49. A. van Lamsweerde. Requirements Engineering in the
Year 00: a Research Perspective. In ICSE’00, pages 5–
19, 2000.

50. G. H. Walker, N. A. Stanton, P. M. Salmon, and D. P.
Jenkins. A review of sociotechnical systems theory: a
classic concept for new command and control paradigms.
Theoretical Issues in Ergonomics Science, 2008.

51. M. Weiss, D. Amyot, and G. Mussbacher. Formalizing
Architectural Patterns with the Goal-oriented Require-
ment Language. In VikingPLoP’06, 2006.

52. D. S. Weld. Recent Advances in AI Planning. AI Mag-
azine, 20(2):93–123, 1999.

53. E. S.-K. Yu. Modelling Strategic Relationships for
Process Reengineering. PhD thesis, University of
Toronto, 1996.

54. N. Zannone. A Requirements Engineering Methodology
for Trust, Security, and Privacy. PhD thesis, University
of Trento, 2006.

