
Enabling Scoping
in Sensor Network Macroprogramming∗

Luca Mottola‡, Animesh Pathak†, Amol Bakshi†, Viktor K. Prasanna†, and Gian Pietro Picco#
‡Politecnico di Milano, Italy,mottola@elet.polimi.it

†University of Southern California, USA,{animesh, amol, prasanna}@usc.edu
#University of Trento, Italy,picco@dit.unitn.it

Abstract

Wireless sensor networks are increasingly employed to develop sophisticated applications beyond simple data
gathering. In these scenarios,heterogeneousnodes are deployed, andmultiple parallel activitiesmust be performed
to achieve the application goals. Therefore, application developers require the ability topartition the systembased
on the node characteristics, and specify the interactions between different partitions to implement the processing
germane to different activities.

Node-level programming abstractions for sensor networks have already tackled this problem by providing a no-
tion of scoping. However, the level of abstraction achieved is still not suited to implementing non-trivial, large-scale
applications. In this paper we demonstrate how the aforementioned issue can be addressed by enablingscoping con-
ceptsin macroprogrammingfor sensor networks. Using macroprogramming, developers reason at a higher level of
abstraction, focusing on the behavior to be achieved by the system as a whole. By enabling scoping in macropro-
gramming, they can capture the essence of a significant classof distributed, embedded applications in a very concise
manner. This extremely simplifies the development process,and increases the maintainability and re-usability of the
resulting implementations.

1 Introduction

Initial deployments of wireless sensor networks focused ona single, system-wide goal, and featured fairly simple

architectures and algorithms. Habitat monitoring [10], a widely cited example in this respect, can indeed be imple-

mented using mostlyhomogeneousnodes, each running thesameapplication code. In these scenarios, developers are

required to describe fairly simple patterns of interactions, e.g., that of sensing and reporting a physical reading.

Recent technological advances and the consequent advent ofmore powerful sensor nodes [14] are, however, en-

abling the use of WSNs in increasingly sophisticated settings, from smart spaces [24] to monitoring and control in

buildings [8]. These applications often involveheterogeneousnodes equipped with actuators to influence the environ-

ment, and their ultimate goal is usually obtained by composing different,collaborating activities. For instance, a road

traffic management application [13] is usually designed to perform at least two different activities, e.g., controlling the

speed of vehicles on the highway, and regulating access through the ramps leading to it. For this purpose, various types

∗This work is partially supported by the European Union underthe IST-004536 RUNES project and by the National Science Foundation, USA,
under grant number CCF-0430061.

of sensors are employed, and different devices are installed to influence the environment, e.g., speed limit displays and

ramp signals. In this respect, a non-trivial example is further described in Section 2.

Developers of these applications face several common challenges, due to the presence of different types of nodes and

several concurrent activities. In these scenarios, they need to specify different system partitions and express the inter-

actions between them, so as to map the processing implementing the different activities to the “right” subset of nodes.

To achieve this, different notions ofscopinghave been proposed in the sensor network literature, e.g., [19, 26, 27].

These generally refer to the ability of grouping, at a logical level, nodes satisfying specific application requirements.

This approach actually addressessomeof the needs arising in developing complex applications, bymasking hetero-

geneity and providing support for expressing non-trivial communication patterns. However, the currently available

abstractions supporting scoping are targeted to node-level programming frameworks. As a result, developers are still

forced to handle low level aspects such as parsing received messages, as in [27].

Clearly, more powerful abstractions must be provided to letdomain-experts without a strong computing background

develop complex sensor network applications. An answer to this need can be found in the context ofmacroprogram-

ming [4, 11, 21], where higher-level abstractions are provided focusing on the system as a whole, and many low-level

details related to inter-node communication and coordination are hidden. However, most of the existing approaches in

macroprogramming do not explicitly address heterogeneity, and do not allow the specification of different collaborat-

ing parallel activities. To address this issue, in this paper we present the following contributions:

• We propose in Section 4 a precise definition ofscopingin sensor networks to provide a foundation for our

work. Based on this, we take an existing macroprogramming model, whose salient features are described in

Section 3, and introduce novel programming constructs to enable the definition of system partitions and express

the interactions between them. Using this approach, we provide application developers with alogical layer on

top of the underlying physical system, abstracting away thephysicallocation of data and nodes, as illustrated in

Figure 1. This represents an added value to the programming model that developers can easily take advantage

of: the programming activity is naturally brought to a realmwhere the focus is on theapplication goals and

requirements, rather than on thesystemwhere the final implementation runs. The specific constructsenabling

this are illustrated in Section 5, along with examples of their use in a non-trivial application.

• We demonstrate thefeasibilityof our approach by developing an end-to-end programming framework in support

of our programming model. This includes all the aspects of the implementation process, from the compilation of

the macroprogram to an analysis of the system performance. The former problem is tackled in Section 6, where

we illustrate how the programming constructs we are proposing can be compiled down to node-level code that

uses a dedicated run-time layer. The latter is discussed in Section 7, by showing simulation results obtained by

running the actual code resulting from the aforementioned compilation process.

2

C o l l e c t d a t a w i t hi d e n t i fi e r A f r o m n o d e s o ft y p e 5 w i t h i n 7 h o p s a n dc a l l a v e r a g e ()
Scop ing

a nd Mac rop rog ra mming
C o m p u t e t h e a v e r a g e s p e e do f v e h i c l e s o n t h e h i g h w a y f r o mH o l l y w o o d t o S a n t a M o n i c a

Figure 1: Raising the level of abstraction from the physicallevel to a logical level where only application data is
exposed.

To discuss the advantages brought by scoping to macroprogramming, Section 8 reports on code metrics we gathered

on the actual implementation of our reference application,and compares our programming model against existing

proposals to highlight the scenarios where a specific model gives the greatest advantages. Section 9 provides brief

concluding remarks and directions for future work.

The following section describes the reference applicationwe have chosen for this study. While constituting a

meaningful example on its own, it is also representative of amuch larger class of applications, as it embodies many

typical interaction patterns of non-trivial scenarios.

2 Reference Application

To showcase the complexity of the scenarios we target, here we consider aroad traffic monitoring and controlap-

plication, a field where WSNs have gained increasing attention from the research community [13]. Indeed, various

techniques exist to influence the vehicle movement and improve traffic efficiency. These can be applied in various

settings, ranging from metropolitan areas to highways. In the latter case, two of the most commonly used solutions

are speed signaling [2] and ramp metering [16]. The former aims to control the behavior of traffic by suggesting

appropriate speeds, while the latter influences traffic by controlling access to the highway. In these fields, different

proposals exist to optimize goals such as pollution and fuelconsumption [17].

Our reference scenario is depicted in Figure 2. Usually, this kind of system is divided into disjointsectors[17],

with each sector usually being controlled depending on the current status of thesameandneighboringsectors. In the

highway scenario we consider, a sector is identified by a single ramp leading to the highway, i.e., it spans the portion

3

S p e e dS e n s o r
F o r w a r d i n gN o d e

R a m p S i g n a l
P r e s e n c eS e n s o r

S p e e d L i m i tD i s p l a y

i � t h H i g h w a y S e c t o r (i + 1) � t h H i g h w a y S e c t o r
Figure 2: Scenario for the traffic management application.

of highway from a ramp to the following. The system has five main components:

• Speed sensors to measure and report the speeds of vehicles. They are installed on the lanes of the highway.

• Presence sensors to measure and report the presence of vehicles. They are installed on the ramps leading to the

highway.

• Speed limit displays to inform the drivers of the recommended speed limit. They are installed on the road side,

one per highway sector.

• Ramp signals designed to allow or disallow cars onto the highway. They areinstalled one per highway ramp.

• Forwarding nodes to enable wireless communication between the various nodes. They are installed on the road

side at regular intervals.

Figure 3 illustrates, from a high-level perspective, the various stages of data processing in the application. Data is

first collected from the sensing devices, and a first processing is performed to derive an aggregate measure such as the

average speed of vehicles in a highway sector or the average queue length on a ramp. This information is fed as input

to an algorithm determining the best actions to achieve the system objectives, e.g., to maximize the flow of vehicles

on the highway. These actions are then communicated to the ramp signals and to the speed limit displays. The specific

algorithms employed depend on the goals and metrics of interests. Therefore, a modular approach to the development

of this class of applications may be advisable.

The application described above encapsulates behaviors and interactions seen in a large class of networked em-

bedded applications [22]. These common characteristics are grounded in the use ofheterogeneousnodes, and in the

4

���� � ���� �	� �
���� ������ ��� ��	� �
���� �
���� ����� �
����� ��� ��

� � !"�"� �����#$% &
' ��()�* ��
� �+,-'��()�* ��
� �+'��()�* ��
� �+.-

�/ �012134 5�632130� � �����$% &

Figure 3: Data processing in traffic management.

presence ofmultiple, concurrent activitiescollaborating to achieve the application goals. Developers of these applica-

tions must therefore address requirements such as:

• Multi-stage data processing: as the raw sensor data is not useful by itself, the system needs to compute the

average speed and queue length used to compute the ramp signals and speed limits. This represents a common

need in sensor networks when actuation is involved [1].

• Multiple sub-goals: to achieve the high-level application objective, e.g., maximize the vehicle throughput on

the highway, the system is required to run multiple parallelactivities. In our case, regulating the speed of

vehicles on the highway and controlling the access to it. This is often required when the system is designed

to react to sensed data. For instance, in a different scenario like building monitoring and control, the system

is normally required to perform at least three activities [7]: i) indoor environmental monitoring, ii) structural

monitoring, and iii) response to extreme events such as fire.

• Localized interactions: each of the aforementioned sub-goals usually involves onlya specific part of the sys-

tem. For instance, controlling the speed in a specific highway sector relates to the sensors deployed on the

lanes of three neighboring sectors only. Keeping the processing close to where data is sensed has been long

recognized as an effective approach to save energy and achieve more efficient implementations [1,9].

• Heterogeneity handling: various types of nodes are to be employed, with different characteristics and various

devices attached. In our scenario, presence and speed sensors are employed along with nodes controlling the

speed limit displays and ramp signals. Similarly, in building control and monitoring different kind of sensors

5

are used as well, e.g., temperature, humidity, and smoke sensors [8],

Most of the existing WSN programming frameworks cannot meetthe above requirements easily. In first place, they

do not provide programming constructs to enable a clear modularization of different activities or consecutive stages

of processing. As a result, breaking the high-level application goal into smaller collaborating activities becomes hard

to achieve. More importantly, they do not provide support for heterogeneity. It is therefore difficult to identify the

portion of the system concerned with a specific activity. Forinstance, developers cannot map a specific processing to

the nodes equipped with a given sensing device. These aspects are better discussed in Section 8, where we compare

our work with existing approaches.

In this work we rely onscopingto give application developers a tool to address the aforementioned issues. This

notion adequately provides the ability to partition the system depending on the application needs. Unlike existing

work enabling some notion of scoping at the node-level, in this work we make scoping available to the application

programmers at a high-level of abstraction, by enabling this concept in an existing macroprogramming model. This is

illustrated next.

3 ATaG: a Macroprogramming Framework for Sensor Networks

Several efforts are currently underway in macroprogramming for sensor networks, e.g., [11, 21]. As a concrete il-

lustration of our ideas, we enable scoping in the Abstract Task Graph [4] (ATaG), a macroprogramming framework

providing a mixeddeclarative-imperativeapproach to the development of sensor network applications. It is charac-

terized by two features: the first isdata drivencomputing, which provides a natural model for specifying reactive

behaviors, and the second is the use ofdeclarative specificationsto express the placement of processing locations and

the patterns of interactions. An ATaG program, composed of its imperative and declarative parts, is given as input to

a compiler, along with the list of physical nodes employed. This translates the high-level, abstract specifications in

terms of the API provided by an underlying, node-level supporting run-time.

Programming Model. The notions ofabstract taskandabstract data itemare at the core of ATaG’s programming

model. The former is a logical entity encapsulating the processing of one or more data items, representing the infor-

mation itself. The flow of information between tasks is defined in terms of their input/output relations. To achieve

this,abstract channelsare used to connect a task to a data item when the taskproducesthat item, or vice versa when

the taskconsumesit.

Figure 4 illustrates an example ATaG program, specifying a simplified cluster-based, data gathering application [6,

12]. Sensors within a cluster take periodic temperature readings, which are then collected by the corresponding

cluster-head. The former aspect is encoded in theSamplertask, while the latter is represented byCluster-Head. The

6

� � � � � � �
� � � � � � � � 	 � �

 � � � � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � 	 � � � � � � � � �
 � ! " �
 � � # � � � �
$ � � � $ � " � � �% & ' () * + (, * ' -% & ' () * + (. * (* % & ' () * + (/ 0 * 1 1 2 34 1 ' (* 1 (5 * (5 6 17 8 3 2/ 0 * 1 1 2 3% 1 1 6 (* (5 6 1 '

9 5) 5 1 : 7 8 3 2
Figure 4: A sample ATaG program.

Temperaturedata item is connected to both tasks using a channel originating from theSamplertask, and a channel

directed toCluster-Head.

Tasks are annotated withfiring and instantiation rules. The former specify when the processing in a task must

be triggered. In the our example, theSamplertask is triggered every 10 seconds according to theperiodic rule.

Differently, theany-data firing rule requiresCluster-Headto run when at least one data item is ready to be con-

sumed onany of its incoming channels. The instantiation rules govern the placement of tasks on real nodes. The

nodes-per-instance:q construct requires the task to be instantiated once everyq nodes. Asq = 1 in the ex-

ample, theSamplertask is instantiated on every node. Thearea-per-instance construct used forCluster-Head

implies partitioning the geographical space and deployingoneinstance of the task per partition.

Abstract channels are annotated to express theinterestof a task in a data item. In our example, theSamplertask

generates data items of typeTemperaturekeptlocal to the node where they have been generated. TheCluster-Head

uses thedomain annotation to gather data from the temperature sensors in its cluster. This binds to some system

partitioning, e.g., that obtained byarea-per-instance, and connects the tasks running in the same partition.

The code within a task is the only imperative part in an ATaG program. To express the flow of information be-

tween tasks in the imperative code, programmers are provided with the abstraction of ashared data pool, where each

task canoutputdata, or benotifiedwhen some data of interest is available. To support the former aspect, a single

putData(DataItem) operation is made available. The second aspect is handled byproviding the programmer

with an automatically generated template for each task, that lists an emptyhandleDataItem() function for each

incoming channel. The programmer fills these functions implementing the processing associated to each input data

item.

The notion oftask in ATaG provides a powerful concept to modularize differentstages of processing. In addition,

the separation of declarative and imperative parts in an ATaG program, and a modular run-time system and compila-

tion framework make the model easily extensible. Leveraging off these features, we devised novel annotations and

7

constructs to enable scoping in ATaG. This notion is defined next.

4 Scoping

In this section, we describe a precise definition of scoping in sensor networks, aiming to provide a solid basis for

understanding. The actual constructs enabling the definition of scopes in the ATaG programming language will be

discussed next.

A scopein WSNs can be informally defined as asubset of nodes sharing similar characteristics or goals1. In

this work, we specify this notion using amembership functionf , whose goal is that of determining the subset of

nodes included in a scope. Specifically, we define the membership function asfs,i(j), wherei is the node wheref is

evaluated, andj is the node whose membership in scopes must be determined. The boolean output of the function

returns whetherj is part of scopes for nodei or not. The actual definition offs,i is obtained as the composition of

atomicboolean predicateson the nodes characteristics (callednode attributeshereafter). For instance, a node attribute

may describe the sensing devices attached to a node, and a predicate on that attribute may check whether a particular

sensor is among them.

Two orthogonal dimensions combine to form a scope definition. We say a boolean predicatep(·) is symmetric

when it does not depend oni, i.e., it is not a function of the node where the scope is evaluated. For instance, the

predicatehasSpeedSensor (j), returning whetherj is equipped with a speed sensor, is a symmetric one. Therefore,

a scope defined asfs,i(j) ::= hasSpeedSensor (j) will determine the same subset of nodes regardless of the partic-

ular nodei wheref is evaluated. Conversely, a predicate is said to beasymmetricwhen it does depend oni, as in

isSameSector(i, j). Thus, in our scenario a scopefs,i(j) ::= isSameSector (i, j) will return a different subset of

nodes depending on the sector wherei is installed.

In the general case, the membership function defining a scopeis likely to be a combination of a symmetric part with

an asymmetric one, as illustrated in Figure 5. For instance,in our reference application a node in each sector might

define a scope to identify the nodes sensing the speed of vehicles in that sector, and gather data from them to evaluate

the average measure. These nodes are those i) equipped with aspeed sensors, and ii) installed in the same sector as

the node requiring their readings. For this purpose, we mustuse the combination of a symmetric predicate —used to

express “the nodes having a speed sensor”— with an asymmetric one —to describe “installed in the same sector”.

1Hereafter, we will termnodethe hardware hosting CPU and main memory, whereas we will generally indicate asdevicethe sensors or actuators
attached to a node.

8

A B

Figure 5: Scopes as the combination of symmetric and asymmetric predicates. Squared nodes (regardless of their
coloring) are those satisfying asymmetricpredicate to check whether they are equipped with a speed sensor, i.e., the
set{j ∈ N|hasSpeedSensor (j)} (N being the set of nodes in the system). Light grey nodes are those included in
scopes1, defined asfs1,A ::= isSameSector(A, j) ∧ hasSpeedSensor (j) and evaluated on nodeA. Symmetrically,
dark grey nodes are those in scopes2, defined asfs1,B ::= isSameSector(B, j) ∧ hasSpeedSensor (j).

5 Scoping in a Macroprogramming Language

In this section, we provide an overview of how the aforementioned notion of scoping enhances the ATaG programming

model, and then discuss the details of the specific programming constructs using an ATaG-based implementation of

our reference application as example.

5.1 Overview

Augmenting the ATaG programming model with scoping affect primarily two aspects:task placementanddata ex-

changebetween tasks. In the former case, scoping addressesheterogeneityamong the nodes and the need for dividing

the system intological regions. Notably, an ATaG-based implementation of our reference scenario requires tasks to

be instantiated on nodes equipped with the needed sensing/acting devices, or in specific regions only. For instance, a

task designed to operate the ramp signal must be instantiated on a node having that particular device attached. Further,

we need only one task to compute the average speed for each highway sector, so we need to identify the different

sectors uniquely. This has been achieved with novelinstantiation rules, that give application programmers the ability

to define subsets of nodes satisfying specific constraints, e.g., that of being installed in the same highway sector. The

ATaG compiler is instructed to instantiate a task on one or more nodes in a specific subset only.

As for data exchange between tasks, scoping is used by the developer to express the interactions among subset

of nodes. In this sense, it enables the specification oflocalizedinteractions, as well as relations between themultiple

stagesof a given processing or multiple collaboratingsub-goals. For instance, in our scenario the speed limit is decided

9

a s y m m e t r i c p r e d i c a t e ssymmet ri cpredi cat es L o g i c a l S c o p eh a s S p e e d S e n s o r
i s S a m e S e c t o r

(a) A logical scope as the combination of sym-
metric and asymmetric predicates.

c h a n n e l i n t e r e s t si nst anti ati onrul es A T a G S c o p e
(b) A scope in ATaG as the combination of in-
stantiation rules and channel annotations.

Figure 6: Embedding scoping in ATaG.

based on the information gathered from three neighboring highway sectors. To express this, we define newchannel

interestsin ATaG, so that application programmers can specify the task interests by referring to the logical properties

of data, regardless of their physical location. This specification is passed to the run-time support, that retrieves thedata

accordingly.

The combination of the novel instantiation rules and channel interests can be mapped to the two orthogonal dimen-

sions we relied on to define scopes, as illustrated in Figure 6. Instantiation rules define subsets of nodes with common

characteristics, e.g., having a particular actuator attached. As such, the subset they define is the same regardless of the

node where it is evaluated, and can therefore be described with one or moresymmetricpredicates. Conversely, chan-

nel interests are typically described in terms ofasymmetricpredicates. They strictly depend on the associated task,

therefore, the subset of nodes the application is interested in is a function of the node where the task is running. For

example, in our scenario, the three neighboring sectors arerelative to the particular sector where the node requesting

the data for processing is located. This mapping is at the core of the translation process that generates the actual scope

definitions from the ATaG constructs, described in Section 6.

5.2 ATaG Constructs for Scoping

The syntax and use of our scoping constructs are shown in Figure 7, where we illustrate the ATaG specification of the

application described in Section 2. All the application information is represented as ATaG data items. The actual algo-

rithm determining the actuation part is encapsulated in twotasks:SpeedLimitCalculatorandRampSignalCalculator,

whose inputs are the data produced by tasks deriving the average measures. Once the actuation is determined, this is

given as input to the tasks operating the displays and ramp signals.

Task Placement. The SpeedSamplertask is in charge of gathering the raw data from a speed sensoron a ramp

leading to the highway. Therefore, it must run on a node equipped with the corresponding sensing device. To express

10

� � � � � � � � � � � � � 	

 � � � � � � � �� � � � � � � � � �

 � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �� � � � � 	 � � � � � � � � � �� � � � � � � � �
 � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� ! � � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � �

� � � � � � � � �� � � � � � � � � �
� � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� ! � � � � � � � � � � � � � � � � � �� � � � � � � � ��� � � �� � � � � � � � 	 � � � �" � � � 	 � � � � � � � � � #

 � � � � � � � �
$ � 	 � � � � % � � � � � � �

� � � � � �

� � � � � � � � � � � � � 	� � � � � �� � � � � � � � �
� � � � � � � � � �

 � � � � � �
� � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� ! � � � � � � � � � � � � � �� � � � � � � � � � & �
� � � � � � � � � � � � � � � � � � �� ! � � � � � � � � � � �� � � � � � � � � � & �

� � � � � �� � � � �
� � � � � � � � � � � � � � � � � � � � � �� � � � � 	 � � � � � � � � � �� � � � � � � � �

� � � � �� � � � � � � � � � � � � � � � �� � � � � 	 � � � � � � � � � �� � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �� � � � � 	 � � � � � � � � � �� � � � � � � � �

� � � � � � � � 	 � � � �" � � � 	 � � � � � � � � � #
� � � � � � � � 	 � � � �" � � � 	 � � � � � � � � � #� � � � � � � � 	 � � � �" � � � 	 � � � � � � � � � # � � � � � � � � � � �

Figure 7: The ATaG program for the traffic management application.

<task name="SpeedSampler">
<instantiationrule>
<nodes-per-instance

number="1"
requiredAttributeType="AttachedSensors"/>

<attribute type="AttachedSensors">
<value="speedSensor">

</attribute>
</instantiationrule>

</task>

Figure 8: XML declaration for@speedSensor in Figure 7. (AttachedSensors is defined in a separate XML
file listing the relevant attributes for each node).

this requirement, thenodes-per-instance:1@speedSensor construct is used, where@speedSensor is a

placeholder for a boolean predicate determining the set of nodes equipped with a specific sensing devices. In our

current prototype, the actual predicate is specified using asimple XML file, shown in Figure 82. Similar constructs are

used forRampSampler, SpeedLimitDisplayer, andRampSignalDisplayer.

The AvgSpeedCalculatortask takes as input the raw data coming from the speed sensorsin a sector, and derives

the average speed of vehicles in the same sector. Therefore,we need such a task to be instantiated once per sector.

To express this, thepartition-per-instance:1/HighwaySector construct is used. This is based on the

enumeration of possible values of the node attributeHighwaySector—that describes where a node is placed in the

highway— and requires the task to be instantiated on one nodein each sector only.

Data Exchange. To bind tasks running in the sameHighwaySector, thedomain annotation on a channel can be

used. However, this time it is based on the system partitioning obtained through thepartition-per-instance

2It is not our intention to force the programmer to write XML directly, we instead envision these specification to be auto-generated by an
integrated development environment.

11

H i g h w a y S e c t o r Al o g i c a l h o p s f r o m A : 0 H i g h w a y S e c t o r Bl o g i c a l h o p s f r o m A : 1 H i g h w a y S e c t o r Cl o g i c a l h o p s f r o m A : 2
9 0k m h 8 0k m h 1 1 0k m h

Figure 9: Logical hops over theHighwaySector attribute. The picture shows the number of logical hops to be
crossed for a node in highway sectorA to reach any node in a different highway sector.

instantiation rule. Differently fromarea-per-instance, this rule determines the different partitions at a logical

level, by considering the node attributes instead of the geographical position.

In addition, the constructlogical-hops:1(HighwaySector) connecting, e.g., theAvgSpeedCalculatorto

both theSpeedLimitCalculatorand theRampSignalCalculatoris used to collect a data item from different highway

sectors. It represents a number of hops counted not on the physical network links, but in terms of how many system

partitions (derived from the attribute given in parenthesis) can be crossed. Figure 9 illustrates the concept graphically.

Given the partitioning induced by theHighwaySector attribute, requiring one logical hop on that attribute means,

for a SpeedLimitCalculator, to collect a data item from the same, immediately precedingand following highway

sectors. Notice how the semantics of specifying a number of zero hops is not to cross any partition, i.e., to collect from

the same partition where the data item originated. In this sense, thedomain construct actually constitutes a particular

case of the more generallogical-hops construct.

6 Compiler and Run-time Support

To enable scoping in a macroprogramming language, one needsto implement compiler support for the scoping con-

structs, and have an underlying, node-level run-time capable of providing data delivery to/from nodes in a given scope.

It is indeed unreasonable to ask the compiler to generate thenode-level code up to the network layers [20,23].

In the prototype system we developed, we use the Java2ME [15]language and APIs to describe the imperative part

of an ATaG program, targeting the upcoming SunSpot sensor platform [25]. As for supporting node-level run-time, we

developed a Java version of Logical Neighborhoods [18,19],a middleware-level programming abstraction providing a

notion of scoping in WSNs. With Logical Neighborhoods, the physical neighborhood of a node is replaced by a logical

notion of proximity determined by applicative information. A (logical) neighborhood is specified in a neighborhood

template, that encodes a boolean predicate acting as a selection predicate over the set of possible nodes. For instance,

12

ATaG Logical Neighborhoods
Symmetric Predicates Instantiation Rules Neighborhood Template

Asymmetric Predicates Channel Interests Neighborhood Instantiation

Figure 10: Mapping scoping in ATaG to Logical Neighborhoods.

thehasSpeedSensor predicate described in Section 4 can be inserted in a neighborhood template. The template is then

instantiatedon a specific node, by specifying where the encoded predicatemust be evaluated w.r.t. the instantiating

node. This is used to limit the span of the logical neighborhood, e.g., by specifying a maximum number of logical hops

away from the instantiating node. Originally, the Logical Neighborhood run-time did not provide a way of specifying

logical hops. However, adding this feature did not require any major modification in the processing required to

determine the neighborhood members. In this case, the node attribute over which the logical hops should be counted

must also be provided.

The neighborhood definition is fed to Logical Neighborhoodsin the form of a suitable data structure. To interact

with the nodes in a (logical) neighborhood, the programmer is provided with a simple message-passing API, used

to broadcast(in a logical sense) a message to all nodes member of a neighborhood. An efficient routing scheme is

provided in support of this API, illustrated in [19].

Given the logical neighborhood API, it is straightforward for the ATaG compiler to map scopes in ATaG to logical

neighborhoods, as Figure 10 illustrates. Instantiation rules can indeed be considered as selection predicates over the

set of nodes in the system, and are directly translated as neighborhood templates. Instead, the channel annotations

actually constrain the span of the scope associated to a given channel. As such, they depend on the node where the

task is running, and can therefore be translated as neighborhood instantiations on the same node.

For instance, the node whereAvgSpeedCalculatoris running gathers data output bySpeedSamplertasks in its same

domain (highway sector). These are instantiated on nodes equipped with the corresponding sensor. Therefore, the

compiler determines the nodesj from whichAvgSpeedCalculatorshould gather data as those satisfying:

fs1,i(j) ::= isSameSector (i, j)∧

hasSpeedSensor (j)
(1)

wherei is the node whereAvgSpeedCalculatoris running. The latter conjunct is derived from the instantiation rule

specified for the producer task (@speedSensor), and can therefore be specified as part of a neighborhood template.

The former conjunct is instead derived from the channel interest (domain) and can be expressed at the time of instan-

tiating the neighborhood on the node whereAvgSpeedCalculatoris running. Similarly, consider the tasks producing

the data triggering the execution ofSpeedLimitCalculator. In this case, the producer task can either beAverageQueue-

LengthCalculatoror AvgSpeedCalculator, and can either be located on a node in the same sector, or in adjacent ones.

13

Therefore, the set of nodesj included in the scope is the one satisfying:

fs2,i(j) ::= isWithinNSectors(i, j, 1)∧

(isRunningAvgSpeedCalculator (j)∨

isRunningAvgQueueLengthCalculator(j))

(2)

whereSpeedLimitCalculatoris running at nodei. The first conjunct is again derived from the channel interest,

(logical-hops:1(HighwaySector)), and is therefore specified as part of the neighborhood instantiation on

nodei, whereas the second determines the node included in scopes2 based on the task it is running, and is hence

specified in a neighborhood template. The latter conjunct isneeded since the instantiation rule used in this case does

not uniquely specify the node where the producer task is running.

The compiler takes as input the list of nodes with their attributes, and the ATaG program. The compilation is carried

out in a four step process:

1. The compiler allocates tasks to nodes by looking at the instantiation rules specified in the ATaG program, and

matching them against the node attributes. Consistency checks are performed to ensure all the requirements on

task placement can be satisfied.

2. Once the tasks are placed, the compiler identifies a set ofdata pathsbetween nodes running tasks connected by

some input/output relation. For each such path, the compiler combines the instantiation rules of the connected

tasks with the channel annotations, and derives an abstractscope specification.

3. Given the abstract scope specifications, these are translated into neighborhood templates and neighborhoods

instantiations, and given as input to the run-time support layer of each target node.

4. Additionally, the ATaG compiler configures other helper components in the run-time support layer [3].

When the instantiation rule does not uniquely specify the node where to instantiate a task, as in the case ofpartition

-per-instance, the compiler currently places the task so that it is colocated with the producer task of at least one

data item it consumes.

7 System Evaluation

To assess the feasibility of our approach, it is necessary tolook at the performance of the running system. To that end,

we run our traffic management application in a simulated scenario, and gathered performance metrics to characterize

the system behavior. To do so, we used the SWANS/Jist simulator [5], as it is able to run unmodified Java code on top

14

Parameter Name Value

Propagation Model Two-ray Ground
Radio Model Additive Noise
MAC Layer CSMA
Transmission Rate 250 Kbps
Communication Range 40 meters
Message Size 47 bytes
Simulation Time 2000 secs
Number of Repetitions 30

Figure 11: Simulation parameters.

of a simulated network. This way, we measured the performance of the same code that can be deployed on the real

nodes.

The relevant simulation parameters are summarized in Figure 11. As for network topology, we simulated the

scenario represented in Figure 2 with a highway sector being20 meters wide and 200 meters in length. We placed the

forwarding nodes 25 meters apart, and randomly distributedthe speed sensors on the four lanes so that each of them

is range of at least another speed sensor or a forwarding node. Similarly, the presence sensors have been randomly

distributed on the ramp so that each of them is in range of at least one speed sensor or another presence sensor.

The node controlling the ramp signal and the speed limit display are placed at the border between different sectors,

on the opposite sides of the road. Overall, 18 nodes are deployed in each highway sector. Also note the message

rate is implicitly determined by the application itself, inparticular by the firing rules for tasks. For instance, a node

running an instance ofRampSamplerwill generate one message every 10 seconds, as the corresponding firing rule is

periodic:10. TheAvgQueueLengthCalculatorfires for any data item received, and correspondingly outputs a new

data item. Therefore, if fourRampSamplertasks are in itsdomain, the node running theAvgQueueLengthCalculator

will generate a message every 2.5 seconds, on the average.

The various simulation runs differ in the initial random seed, in the location of nodes, and in the placement of

tasks not tied to the node capabilities when more than a choice is available. As performance metrics, we consider the

following:

• the number ofmissing actuationson the environment, resulting fromone or more message losseson the path

from the nodes running the sensing tasks to the nodes runningthe actuation tasks,

• thenetwork overhead, represented as the overall number of messages sent at the physical layer,

• the averagenumber of physical hopstraveled by a message carrying a data item before either being discarded or

delivered.

As the goal of the application developer is that of decidingactionsbased on datasensed, the first quantity intuitively

measures thequality of serviceprovided by the implemented system. The second measure indicates the cost paid

to achieve a given degree of service, and is therefore key to understanding thescalabilityproperties of the resulting

implementation. The third measure gives more insights intothe trends related to communication cost, describing

15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 3 4 5 6 7 8 9

N
et

w
or

k
O

ve
rh

ea
d

(T
ho

us
an

ds
 o

f M
es

sa
ge

s)

Number of Highway Sectors

Ideal Solution
ATaG with Logical Neighborhoods

ATaG with Flooding

(a) Network overhead against number of highway sec-
tors.

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8 9

A
vg

 N
um

be
r

of
 P

hy
si

ca
l H

op
s

T
ra

ve
le

d

Number of Highway Sectors

Ideal Solution
ATaG with Logical Neighborhoods

ATaG with Flooding

(b) Average number of physical hops traveled by a mes-
sage.

Figure 12: Performance of the traffic management application.

where in the system communication takes place. As the independent variable, we choose to vary the number of

highway sectors, as this dimension is likely to affect the system performance.

At a first glance, the aforementioned metrics appear to depend only on the performance provided by the run-time

support. However, this is in turn affected by the particulartask placement. Therefore, these quantities effectively

provide insights into the effectiveness of the framework asa whole, from the ATaG compiler to the routing layer

supporting Logical Neighborhoods. To compare against, we have chosen to compute the aforementioned metrics for

an ideal solutionminimizing the network overhead. This is determined by identifying the minimum cost routing tree

connecting a sender to all the intended recipients, provided global knowledge of the network topology and reliable

transmissions. The sender location is in turn determined byidentifying, based on the same assumptions, the optimal

task placement3. While being an artifact far from reality, this choice removes the bias introduced by comparing against

alternative routing schemes that may not be expressly designed for the scenarios at hand. The performance obtained

with a pure flooding scheme are also reported as an upper boundfor further comparison.

Results. Given the message generation rates discussed earlier, our simulations revealed our solution can provide at

least 96% of the actuations that would be occurring in case there were no message losses. This illustrates how the

messages carrying the application data are effectively delivered to the intended recipients, and is consistent w.r.t the

results shown in [18] obtained in a synthetic scenario. Remarkably, this metric is not affected by a varying number of

highway sectors (and is hence not shown graphically). This behavior demonstrates how the processing is effectively

kept in a limited portion of the system, both at the application and at the network level.

Figure 12(a) depicts the trends in network overhead againsta varying number of highway sectors. As the chart

illustrates, the network load imposed by our solution is much closer to the ideal solution than to flooding. More

importantly, the pattern exhibited as the number of highwaysectors increases mimics that of the ideal solution, while

3Determining the optimal task placement on a graph is a problem known to be NP-hard in the general case. To derive the optimal solution, we
performed an exhaustive search in the space of all possible task allocations.

16

the flooding approach reveals a much steeper increase in the number of messages. These good scalability properties

are clearly due to the ability of keeping message propagation localized around the nodes running the relevant tasks.

Furthermore, albeit being already reasonable, these results are likely to see a dramatic improvement if the compiler is

provided with a cost model of the underlying routing scheme,used to place the tasks smartly by minimizing a given

metric. This topic is definitely worth being investigated, and is among our immediate research goals.

The chart in Figure 12(b) further confirms how the improvements over flooding are obtained by constraining mes-

sage propagation around the nodes running related tasks. Indeed, the number of hops traveled by a message using

flooding rapidly increases with the number of highway sectors. This is expected given the blind propagation of mes-

sages performed in this case. Differently, our solution keeps an almost constant performance in a range of settings,

effectively ending up very close to the theoretical minimum. This trend demonstrates how the routing layer is well

aware of the application semantics, that indeed requires a processing to span three adjacent highway sectors, and is

therefore independent of the overall length of the highway.

8 Value of Scoping to Macroprogramming

Enabling scoping in macroprogramming makes developing complex applications extremely easy. At the same time,

every programming model has its own specific field of applicability, and there is no “one size fits all” solution. Based

on this, in this section we first evaluatequantitativelythe programming effort in our reference application with respect

to the total size of the deployed code, and then compare, on aqualitativebasis, our programming model with existing

solutions. The former gives a measure of how effective our approach is in automating the implementation process

from high-level abstract specifications, hence alleviating the programming burden. The latter gives the bigger picture

of the advantages brought by the combination of scoping and macroprogramming with respect to the current state of

the art.

8.1 Evaluating the Programming Effort

To quantify the development effort, we took a number of code metrics on our prototype implementation4. Looking at

the number of Java classes compiled to deploy the application on a single node, it turns out only 15 out of a total of

51 classes are the direct result of developers’ effort. The remaining ones are either the implementation of the ATaG

run-time support, or the Logical Neighborhood routing layer. Furthermore, considering the actual number of lines of

non-commented code, only about 12% of the imperative code ishand-written by developers, whereas the rest is either

part of the run-time support, or automatically generated. This is clearly due to the high-level abstractions provided by

4In doing so, we do not consider the code needed to implement the actual control algorithm, as it is strictly application dependent.

17

our framework, where most of the details related to message processing, coordination and communication are hidden

from the application programmer.

Considering the code implementing each task, it is possibleto identify a recurring pattern with only two classes

needed. One of them is directly connected to the ATaG run-time, and contains processing that either inserts some data

item in the the data pool (usingputData), or handles the arrival of a new data item. Notably, in our implementation

all the state variables defined in this class relate only to the application semantics, and never refer to distribution or

coordination aspects. This same class usually holds a reference to a second class containing the actual processing,

e.g., to average the incoming data as in the case ofAvgQueueLengthCalculator. The data items are instead defined in

separate classes. These usually implement only a number of setter/getter methods relative to different class attributes.

Notice how our framework naturally leads to highly encapsulated implementations: both within single tasks and

with respect to different tasks. As for the former aspect, the data processing can be effectively implemented as

an I/O machine without any explicit references to node locations or distribution. These low-level information can

be encapsulated in the particular class connected to the ATaG run-time, where the references to the different tasks

are implicit, being determined by the nature of data items and channel declarations. This results in highly re-usable

implementations: adding an additional task or changing thesystem scale does not require any change in the application

code.

8.2 Comparing against the State of the Art

Despite the clear advantages brought by the programming model we propose, scoping and macroprogramming might

not be a suitable paradigm for every application. Here, we revisit the requirements illustrated in Section 2, and

discuss the reasons why they cannot be addressed by existingprogramming models. Simultaneously, we highlight the

requirements thatcannotbe effectively addressed by our proposal, and instead are better met by other frameworks.

For comparison, we will focus on the Regiment language [21],the Kairos system [11], and the programming model

offered by Abstract Regions [26]. The former is a functionalmacroprogramming language based on the notion of

region stream: a spatially distributed, time-varying collection of node states. These are taken as input to one or

more functions used to express the application processing.Kairos is a macroprogramming model inspired by parallel

architectures. Developers express the application behavior by writing or reading variables at nodes, iterating on the

1-hop neighbors of a node, and addressing arbitrary nodes. Abstract Regions is instead a node-centric programming

approach, whose communication model —based on a data-sharing paradigm among nodes within a region— closely

resembles the one in ATaG. In some cases, Abstract Regions isalso able to select a subset of nodes in the system based

on topological characteristics, thus also enabling a notion of scoping.

Multi-stage data processing. The combined use oftasksandscopesnaturally allows the programmer to express

18

multiple stages of processing, and to determine the subset of nodes involved in each stage. Achieving the same in

Kairos or Abstract Regions is more difficult, as neither of them embodies any well-defined notion of processing unit.

Conversely, Regiment is presumably even more effective than our framework in expressing this particular pattern.

Indeed, as long as it is possible to express the input-outputmapping as a mathematical function, composing multiple

functions is straightforward in Regiment. The fundamentaldifference in this case is that our framework easily allows

the output of a stage to be directed to more than a single, following stage. To the best of our knowledge, achieving the

same in Regiment would force the system to duplicate the effort, invoking the same function more than once.

Multiple sub-goals. Similarly to what discussed above, scoping allows the definition of the different system partitions

concerned with a specific sub-goal. This enables better separation of concerns, and results in more reusable imple-

mentations. It is hard to achieve the same in the absence of scoping, as in the case of Regiment or Kairos. In these

cases, different programs should be written to achieve multiple goals without explicit support to achieve collaboration.

In the case of Abstract Regions, one could, in principle, associate different goals to different regions, and run them

in parallel. However, as any region requires an underlying,dedicated implementation reaching down to the network

stack, the programming effort in this case may become unreasonable.

When the application has a single specific goal, our programming model can still be used to express the desired

behavior, even if its expressive power is not fully exploited. However, if the developer needs to implement aservice

rather than an end-user application, e.g., a localization mechanism or a routing scheme, our framework might not be

the best choice. Indeed, many details related to communication such as link quality are intentionally hidden from the

programmer.

Localized interactions. Thechannel annotationswe propose make it easy to describe the tasks involved in a given

processing by placing a logical layer on top of the physical network. Regiment as well as Kairos are instead designed

with a single system-wide processing in mind. Therefore it might be difficult to localize a given processing around

specific nodes. In particular, the latter completely hides the individual devices from the programmer. This rules out

the possibility of controlling how processing is distributed on the actual nodes.

However, if the desired goal depends on topological properties of the physical network, relying on Kairos or Abstract

Regions might be advisable. In the former case, the network topology is explicitly made available with the construct

to iterate on the 1-hop neighbors of a node. Therefore, the processing needed to, for instance, build overlays on top

of the physical network can be expressed very succinctly [11]. In Abstract Regions, the network topology can be

used as input during region construction. In this case as well, building overlay-like structures turns out to be easily

achieved [26]. Conversely, our model might make expressingthe aforementioned behaviors difficult if not impossible.

Addressing heterogeneity. To map a specific task to the nodes equipped with the required capabilities, we devised

novel instantiation rules. Conversely, hiding the single nodes in Regiment requires all of them to produce the same

19

kind of data and have the same capabilities. The same reasoning holds in the case of Kairos: a node is characterized

only by its identifier and the variables it exports to other nodes for read/write operations. In Abstract Regions, one

might associate nodes with equal capabilities to the same region. However, as our reference application illustrates,

nodes with the same characteristics do not necessarily communicate only among themselves. Therefore, one should

address the problem of sharing data across different regions, a functionality not currently supported.

In case the system is mostly homogeneous, the drawbacks discussed above have no impact on the expressivity of the

programming model. In particular, if the application is concerned only about the node identifier, the Kairos framework

could provide a better fit between the high-level design and the implemented code, as it exposes the node identifiers

as a first-class concept and provides built-in operators to manage them.

9 Conclusion and Future Work

Scoping gives developers the tools to address the complexity of large scale, sophisticated WSN applications. However,

it is still relegated to node-level programming frameworks. In this paper, we introduced the notion ofscopingin

the context ofmacroprogrammingsensor networks. Using macroprogramming, developers reason at a high-level

of abstraction, where coordination and communication aspects are mostly hidden. To illustrate our proposal, we

augmented the ATaG programming model with constructs enabling the definition of scopes. The feasibility of our

approach is demonstrated by a dedicated compiler we developed targeting Logical Neighborhoods as supporting run-

time, and by simulation studies assessing the performance of the resulting implementations.

In the near future we intend to explore techniques tooptimize the placement of taskson the nodes during the

compilation process, looking at the expected flow of information as specified in the high-level abstract program.

References

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks: Research challenges.Ad Hoc Networks Journal,

2(4):351–367, October 2004.

[2] A. Alessandri, A. di Febbraro, A. Ferrara, and E. Punta. Nonlinear optimization for freeway control using variable-

speedsignaling.IEEE Transact. on Vehicular Technology, 48(6), Nov 1999.

[3] A. Bakshi, A. Pathak, and V. K. Prasanna. System-level support for macroprogramming of networked sensing applications.

In Int. Conf. on Pervasive Systems and Computing (PSC), 2005.

[4] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The abstract task graph: A methodology for architecture-independent

programming of networked sensor systems. InWorkshop on End-to-end Sense-and-respond Systems (EESR), June 2005.

[5] R. Barr, Z. J. Haas, and R. van Renesse. Jist: an efficient approach to simulation using virtual machines.Softw. Pract. Exper.,

35(6), 2005.

20

[6] W. Choi, P. Shah, and S. Das. A framework for energy-saving data gathering using two-phase clustering in wireless sensor

networks. InProc. of the1
st Int. Conf. on Mobile and Ubiquitous Systems: Networking andServices (MOBIQUITOUS),

2004.

[7] M. Dermibas. Wireless sensor networks for monitoring oflarge public buildings. Technical report, University at Buffalo,

2005.

[8] A. Deshpande, C. Guestrin, and S. Madden. Resource-aware wireless sensor-actuator networks.IEEE Data Engineering,

28(1), 2005.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: scalable coordination in sensor networks. In

Proc. of the5th Int. Conf. on Mobile computing and networking (MobiCom), 1999.

[10] Habitat Monitoring on the Great Duck Island.www.greatisland.net.

[11] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor networks using Kairos. InProc. of the1st

Int. Conf. on Distributed Computing in Sensor Systems (DCOSS), June 2005.

[12] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor

networks. InProc. of the33rd Int. Conf. on System Sciences, 2000.

[13] T. T. Hsieh. Using sensor networks for highway and traffic applications.IEEE Potentials, 23(2), 2004.

[14] W. Hu, C. T. Chou, S. Jha, and N. Bulusu. Deploying long-lived and cost-effective hybrid sensor networks.Ad-Hoc Networks,

4(6), 2006.

[15] SunTM Java2 Micro-edition Specification,java.sun.com/javame.

[16] P. Kachroo and K. Ozbay.Feedback Ramp Metering in Intelligent Transportation Systems. Plenum Pub Corp, 2004.

[17] C. Manzie, H. C. Watson, S. K. Halgamuge, and K. Lim. On the potential for improving fuel economy using a traffic flow

sensor network. InProc. of the Int. Conf. on Intelligent Sensing and Information Processing, 2005.

[18] L. Mottola and G. P. Picco. Logical Neighborhoods: A programming abstraction for wireless sensor networks. InProc. of the

the2
nd Int. Conf. on Distributed Computing on Sensor Systems (DCOSS), 2006.

[19] L. Mottola and G. P. Picco. Programming wireless sensornetworks with logical neighborhoods. InProc. of the1st Int. Conf.

on Integrated Internet Ad hoc and Sensor Networks (InterSense), 2006.

[20] R. Newton, Arvind, and M. Welsh. Building up to macroprogramming: An intermediate language for sensor networks. In

Proc. of the4th Int. Conf. on Information Processing in Sensor Networks (IPSN), 2005.

[21] R. Newton and M. Welsh. Region streams: Functional macroprogramming for sensor networks. InProc of the1
st Int.

Workshop on Data Management for Sensor Networks (DMSN), 2004.

[22] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and G. P. Picco. Expressing sensor network interaction patterns using

data-driven macroprogramming. InProc. of the3
rd Int. Wkshp. on Sensor Networks and Systems for Pervasive Computing

(PerSens - colocated with IEEE PERCOM), 2007.

21

[23] A. Pathak and V. K. Prasanna. Issues in Designing a Compilation Framework for Macroprogrammed Networked Sensor

Systems. InProc. of the the1st Int. Conf. on Integrated Internet Ad hoc and Sensor Networks(InterSense), 2006.

[24] E. Petriu, N. Georganas, D. Petriu, D. Makrakis, and V. Groza. Sensor-based information appliances.IEEE Instrumentation

and Measurement Mag., 3:31–35, 2000.

[25] SunTM Small Programmable Object Technology (Sun SPOT),www.sunspotworld.com.

[26] M. Welsh and G. Mainland. Programming sensor networks using abstract regions. InProc of the1st USENIX/ACM Symp. on

Networked Systems Design and Implementation (NSDI), March 2004.

[27] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood:a neighborhood abstraction for sensor networks. InProc. of the

2
nd Int. Conf. on Mobile systems, applications, and services (MOBISYS), 2004.

22

